Vitamin C can shorten the length of stay in the ICU: a meta-analysis
Harri Hemilä and Elizabeth Chalker
Nutrients 2019
This is Web page for the references of the paper.
The published paper
has DOI-links, but some of the papers have other sources,
that
are shown here, but they are not available as links in the paper.
References to which additional links are listed here, are marked with bold.
Harri
Hemilä
Department of Public Health
University of
Helsinki, Helsinki, Finland
harri.hemila@helsinki.fi
Home: http://www.mv.helsinki.fi/home/hemila
This file: http://www.mv.helsinki.fi/home/hemila/N2019
version 2019-4-25
References
1. Hemilä, H.
References to “Vitamin C can shorten the length of stay in the
ICU: a meta-analysis” with web-links.
http://www.mv.helsinki.fi/home/hemila/N2019
2. Hess, A.F.
Scurvy: Past and Present.
Lippincott: Philadelphia, PA,
USA,
1920.
http://chla.library.cornell.edu/cgi/t/text/text-idx?c=chla;idno=2903792
http://chla.library.cornell.edu
search Author =
Hess
https://www.gutenberg.org/files/40505/40505-h/40505-h.htm
https://archive.org/stream/scurvypastpresen00hessiala/scurvypastpresen00hessiala_djvu.txt
https://archive.org/details/scurvypastpresen00hessiala/page/n4
https://www.amazon.com/Scurvy-past-present-Alfred-Fabian/dp/B006E0RVL6
https://www.amazon.com/Scurvy-Past-Present-Classic-Reprint/dp/0266279023
https://www.amazon.com/Scurvy-Past-Present-Alfred-Hess/dp/1502321270
Hess 1920 pages 88 and
99:
http://www.mv.helsinki.fi/home/hemila/CP/Hess_1920_pages_88_99.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1353801
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524083
See
also:
http://www.mv.helsinki.fi/home/hemila/CP/Hess_1932_NEJM_ch.pdf
3. Carpenter,
K.J. The History of Scurvy and Vitamin C.
Cambridge
University Press: Cambridge, UK,
1986.
https://www.cambridge.org/fi/academic/subjects/history/history-medicine/history-scurvy-and-vitamin-c
https://www.amazon.com/The-History-Scurvy-Vitamin-C/dp/0521347734
https://doi.org/10.1093/jn/117.3.599
https://doi.org/10.1016/0261-5614(89)90056-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1139720
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1491777
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2589114
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590233
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379445
4. Bown, S.R.
Scurvy: How a Surgeon, a Mariner and a Gentleman Solved the
Greatest Medical Mystery of the Age of Sail.
Summersdale:
Chichester, West Sussex, UK,
2003.
http://stephenrbown.net/scurvy-description.php
https://www.amazon.com/Scurvy-Surgeon-Mariner-Gentlemen-Greatest/dp/0312313926
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535077
https://epdf.tips/scurvy-how-a-surgeon-a-mariner-and-a-gentlemen-solved-the-greatest-medical-myste.html
https://www.captaincooksociety.com/home/detail/scurvy-how-a-surgeon-a-mariner-and-a-gentleman-solved-the-greatest-medical-mystery-of-the-age-of-sail-bown-stephen-r-2003
https://www.publishersweekly.com/978-0-312-31391-3
5. Harvie, D.I.
Limeys: the True Story of One Man’s War against Ignorance,
the Establishment and the Deadly Scurvy.
Sutton: Stroud,
Gloucestershire, UK,
2002.
https://www.amazon.com/Limeys-Against-Ignorance-Establishment-Deadly/dp/0750927720
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1124350
https://www.jstor.org/stable/44448080
https://muse.jhu.edu/article/40931
https://muse.jhu.edu/article/40931/pdf
https://muse.jhu.edu/article/172580/summary
https://muse.jhu.edu/article/172580/pdf
https://www.captaincooksociety.com/home/detail/limeys-the-true-story-of-one-man-s-war-against-ignorance-the-establishment-and-the-deadly-scurvy-harvie-david-i-2002
6. Lamb, J.
Scurvy: the Disease of Discovery.
Princeton University
Press: Princeton, NJ,
2016.
https://press.princeton.edu/titles/10836.html
https://www.amazon.com/Scurvy-Disease-Discovery-Jonathan-Lamb/dp/0691147825
https://www.jstor.org/stable/j.ctt21c4vc3
https://muse.jhu.edu/article/682384
https://doi.org/10.1093/jhmas/jrx029
https://doi.org/10.1017/S0007087417000954
https://doi.org/10.1038/540338a
https://doi.org/10.1086/699347
https://theamericanscholar.org/scurvy-the-disease-of-discovery
https://www.bsls.ac.uk/reviews/early-modern-and-enlightenment/jonathan-lamb-scurvy-the-disease-of-discovery
https://news.nationalgeographic.com/2017/01/scurvy-disease-discovery-jonathan-lamb
http://www.bbc.co.uk/history/british/empire_seapower/captaincook_scurvy_01.shtml
https://www.newscientist.com/article/mg23231002-300-scurvy-a-tale-of-the-sailors-curse-and-a-cure-that-got-lost
7. Wilson, L.G. The
clinical definition of scurvy and the discovery of vitamin C. J.
Hist. Med. Allied Sci. 1975, 30,
40-60.
https://doi.org/10.1093/jhmas/XXX.1.40
8. Dickman, S.R. The
search for the specific factor in scurvy. Perspect. Biol. Med. 1981,
24, 382-395.
https://doi.org/10.1353/pbm.1981.0006
9. Thomas, D.P.
Sailors, scurvy and science. J. R. Soc. Med 1997, 90, 50-54.
https://doi.org/10.1177/014107689709000118
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1296121
Comments:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1296241
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1296402
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1296546
10.
Hirschmann, J.V. Adult scurvy. J. Am. Acad. Dermatol. 1999, 41,
895-906.
https://doi.org/10.1016/S0190-9622(99)70244-6
http://faculty.washington.edu/andchien/PDFs/HuBio/scurvy.pdf
11. Carpenter, K.J.
A short history of nutritional science. Part 2 (1885-1912). J. Nutr.
2003, 133, 975-984.
https://doi.org/10.1093/jn/133.4.975
12. Carpenter, K.J.
A short history of nutritional science. Part 3 (1912-1944). J. Nutr.
2003, 133, 3023-3032.
https://doi.org/10.1093/jn/133.10.3023
13. Pimentel, L.
Scurvy: historical review and current diagnostic approach. Am. J.
Emerg. Med. 2003, 21, 328-332.
https://doi.org/10.1016/S0735-6757(03)00083-4
https://www.researchgate.net/publication/10629258_Scurvy_Historical_Review_and_Current_Diagnostic_Approach
14. Sutton, G.
Putrid gums and ‘dead men’s cloaths’: James
Lind aboard the Salisbury. J. R. Soc. Med 2003, 96,
605-608.
https://doi.org/10.1177/014107680309601213
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539665
Comments:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079482
15. Magiorkinis,
E. Scurvy: past, present and future. Eur. J. Intern Med. 2011,
22, 147-152.
https://doi.org/10.1016/j.ejim.2010.10.006
https://www.researchgate.net/publication/50394446_Scurvy_Past_present_and_future
Comment:
https://doi.org/10.1016/j.ejim.2011.09.007
16. Hemilä,
H. Do vitamins C and E affect respiratory infections?
University
of Helsinki: Helsinki, Finland, 2006; pp. 5-51,
101-104.
https://hdl.handle.net/10138/20335
https://www.mv.helsinki.fi/home/hemila/history/
See also about scurvy:
https://doi.org/10.1111/j.1753-4887.2009.00205.x
https://www.researchgate.net/publication/26285774_Sailors'_scurvy_before_and_after_James_Lind_-_A_reassessment
http://hekint.org/documents/sailors_scurvy-final.pdf
https://doi.org/10.1016/j.ejim.2011.09.007
https://doi.org/10.1177/0141076813483090
https://doi.org/10.1258/jrsm.2012.12k090
https://doi.org/10.1080/21533369.2002.9668317
17.
Szent-Györgyi, A. Lost in the twentieth century. Annu. Rev.
Biochem. 1963, 32, 1-14.
https://doi.org/10.1146/annurev.bi.32.070163.000245
https://profiles.nlm.nih.gov/ps/retrieve/ResourceMetadata/WGBBJJ
http://www.chm.bris.ac.uk/sillymolecules/lost.pdf
See
also:
https://profiles.nlm.nih.gov/WG
https://www.mv.helsinki.fi/home/hemila/ASG_King.htm
18. Ashor, A.W.
Effect of vitamin C on endothelial function in health and disease:
a systematic review and meta-analysis of randomised controlled
trials. Atherosclerosis 2012, 235,
9–20.
https://doi.org/10.1016/j.atherosclerosis.2014.04.004
https://www.researchgate.net/publication/262148303_Effect_of_vitamin_C_on_endothelial_function_in_health_and_disease_A_systematic_review_and_meta-analysis_of_randomised_controlled_trials
19. Ashor, A.W.
Effect of vitamin C and vitamin E supplementation on endothelial
function: a systematic review and meta-analysis of randomised
controlled trials. Br. J. Nutr. 2015, 113, 1182-1194.
https://doi.org/10.1017/S0007114515000227
20. Thosar, S.S.
Antioxidant vitamin C prevents decline in endothelial function during
sitting. Med. Sci. Monit. 2015, 21,
1015-1021.
https://doi.org/10.12659/MSM.893192
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401065
21. Juraschek,
S.P. Effects of vitamin C supplementation on blood pressure: a
meta-analysis of randomized controlled trials. Am. J. Clin. Nutr.
2012, 95, 1079–1088.
https://doi.org/10.3945/ajcn.111.027995
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325833
22. Oktar, G.L.
Biochemical and hemodynamic effects of ascorbic acid and
alpha-tocopherol in coronary artery surgery. Scand. J. Clin. Lab.
Investig. 2001, 61, 621-629.
https://doi.org/10.1080/003655101753267982
23. Basili, S.
Intravenous ascorbic acid infusion improves myocardial perfusion
grade during elective percutaneous coronary intervention:
relationship with oxidative stress markers. JACC Cardiovasc. Interv.
2010, 3, 221–229.
http://doi.org/10.1016/j.jcin.2009.10.025
https://www.researchgate.net/publication/41507666_Intravenous_Ascorbic_Acid_Infusion_Improves_Myocardial_Perfusion_Grade_During_Elective_Percutaneous_Coronary_Intervention_Relationship_With_Oxidative_Stress_Markers
24. Pignatelli,
P. Ascorbic acid infusion blunts CD40L upregulation in patients
undergoing coronary stent. Cardiovasc. Ther. 2011, 29, 385-394.
https://doi.org/10.1111/j.1755-5922.2010.00168.x
https://www.researchgate.net/publication/45186901_Ascorbic_Acid_Infusion_Blunts_CD40L_Upregulation_in_Patients_Undergoing_Coronary_Stent
25. Valls, N.
Amelioration of persistent left ventricular function impairment
through increased plasma ascorbate levels following myocardial
infarction. Redox Rep. 2016, 21, 75-83.
http://doi.org/10.1179/1351000215Y.0000000018
https://www.researchgate.net/publication/278040987_Amelioration_of_persistent_left_ventricular_function_impairment_through_increased_plasma_ascorbate_levels_following_myocardial_infarction
26. Ramos, C.
Effects of a novel ascorbate-based protocol on infarct size and
ventricle function in acute myocardial infarction patients undergoing
percutaneous coronary angioplasty. Arch. Med. Sci. 2017, 13,
558-567.
https://doi.org/10.5114/aoms.2016.59713
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420620
27.
Polymeropoulos, E. Vitamin C for the prevention of postoperative
atrial fibrillation after cardiac surgery: a meta-analysis. Adv.
Pharm. Bull. 2016, 6, 243-250.
https://doi.org/10.15171/apb.2016.033
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961983
28. Hemilä,
H.; Suonsyrjä, T. Vitamin C for preventing atrial fibrillation
in high risk patients: a systematic review and meta-analysis.
BMC Cardiovasc. Disord. 2017, 17, 49.
https://doi.org/10.1186/s12872-017-0478-5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286679
29. Shi, R. Sole
and combined vitamin C supplementation can prevent postoperative
atrial fibrillation after cardiac surgery: a systematic review
and meta-analysis of randomized controlled trials. Clin. Cardiol.
2018, 41, 871-878.
https://doi.org/10.1002/clc.22951
https://www.researchgate.net/publication/324124840_Sole_and_combined_vitamin_C_supplementation_can_prevent_postoperative_atrial_fibrillation_after_cardiac_surgery_A_systematic_review_and_meta-analysis_of_randomized_controlled_trials
30. Sadat, U.
Does ascorbic acid protect against contrast-induced acute kidney
injury in patients undergoing coronary angiography: a systematic
review with meta-analysis of randomized, controlled trials. J. Am.
Coll. Cardiol. 2013, 62, 2167-2175.
https://doi.org/10.1016/j.jacc.2013.07.065
https://www.researchgate.net/publication/256331051_Does_Ascorbic_Acid_Protect_Against_Contrast-Induced_Acute_Kidney_Injury_in_Patients_Undergoing_Coronary_Angiography
31. Xu, Y.
Vitamins for prevention of contrast-induced acute kidney injury:
a systematic review and trial sequential analysis. Am. J. Cardiovasc.
Drugs 2018, 18, 373-386.
https://doi.org/10.1007/s40256-018-0274-3
https://www.researchgate.net/publication/324361689_Vitamins_for_Prevention_of_Contrast-induced_Acute_Kidney_Injury_A_Systematic_Review_and_Trial_Sequential_Analysis
32. Ashor AW.
Effects of vitamin C supplementation on glycaemic control: a
systematic review and meta-analysis of randomised controlled trials.
Eur. J. Clin. Nutr. 2017, 71, 1371-1380.
https://doi.org/10.1038/ejcn.2017.24
33. Hemilä,
H. Vitamin C may alleviate exercise-induced bronchoconstriction: a
meta-analysis.
BMJ Open 2013, 3, e002416.
https://doi.org/10.1136/bmjopen-2012-002416
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686214
34. Hemilä,
H. The effect of vitamin C on bronchoconstriction and respiratory
symptoms caused by exercise: a review and statistical
analysis.
Allergy Asthma Clin. Immunol. 2014, 10,
58.
https://doi.org/10.1186/1710-1492-10-58
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363347
35. Hemilä,
H. Vitamin C and common cold-induced asthma: a systematic review and
statistical analysis.
Allergy Asthma Clin. Immunol. 2013,
9, 46.
https://doi.org/10.1186/1710-1492-9-46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018579
36. Pauling, L.
The significance of the evidence about ascorbic acid and the common
cold.
Proc. Natl. Acad. Sci. USA. 1971, 68, 2678-2681.
https://doi.org/10.1073/pnas.68.11.2678
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC389499
https://profiles.nlm.nih.gov/MM/B/B/G/V/_/mmbbgv.pdf
See also:
https://profiles.nlm.nih.gov/MM
https://www.mv.helsinki.fi/home/hemila/pauling
https://www.mv.helsinki.fi/home/hemila/pauling.htm
37. Pauling, L.
Ascorbic acid and the common cold. Am. J. Clin. Nutr. 1971, 24,
1294-1299.
https://doi.org/10.1093/ajcn/24.11.1294
38. Hemilä,
H.; Herman, Z.S: Vitamin C and the common cold: a retrospective
analysis of Chalmers’ review.
J. Am. Coll. Nutr.
1995, 4, 116-123.
http://dx.doi.org/10.1080/07315724.1995.10718483
https://helda.helsinki.fi/handle/10138/42358
http://www.mv.helsinki.fi/home/hemila/H/HH_1995.pdf
39. Hemilä,
H. Vitamin C supplementation and common cold symptoms: problems with
inaccurate reviews.
Nutrition 1996, 12, 804-809.
https://doi.org/10.1016/S0899-9007(96)00223-7
https://helda.helsinki.fi/handle/10138/225877
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_NUT.pdf
40. Hemilä,
H. Vitamin C, the placebo effect, and the common cold: a case study
of how preconceptions influence the analysis of results
[comments in 1996, 49, 1985-1987]. J. Clin. Epidemiol. 1996,
49, 1079–1084.
https://doi.org/10.1016/0895-4356(96)00189-8
https://helda.helsinki.fi/handle/10138/225872
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE.pdf
See
Discussion:
http://dx.doi.org/10.1016/0895-4356%2896%2900190-4
http://dx.doi.org/10.1016/0895-4356%2896%2900191-6
http://hdl.handle.net/10250/8079
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE2.pdf
41. Hemilä,
H.; Chalker, E. Vitamin C for preventing and treating the common
cold. Cochrane Database Syst. Rev. 2013,
CD000980.
https://doi.org/10.1002/14651858.CD000980.pub4
https://helda.helsinki.fi/handle/10138/225864
http://www.mv.helsinki.fi/home/hemila/CC/CochraneColds_2013.pdf
See
references with links:
https://www.mv.helsinki.fi/home/hemila/CC
Comments:
http://dx.doi.org/10.1002/ebch.261
http://www.mv.helsinki.fi/home/hemila/H/2008_L_EBCH.pdf
42. Hemilä,
H. Vitamin C and infections. Nutrients 2017, 9, 339.
https://doi.org/10.3390/nu9040339
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409678
43. Hemilä,
H. Vitamin C and common cold incidence: a review of studies with
subjects under heavy physical stress. Int. J. Sports Med. 1996,
17, 379-383.
https://doi.org/10.1055/s-2007-972864
https://helda.helsinki.fi/handle/10138/225881
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_IJSM.pdf
44. Shibuya, N.
Efficacy and safety of high-dose vitamin C on complex regional pain
syndrome in extremity trauma and surgery: systematic review and
meta-analysis. J. Foot Ankle Surg. 2013, 52, 62-66.
https://doi.org/10.1053/j.jfas.2012.08.003
https://www.researchgate.net/publication/230869472_Efficacy_and_Safety_of_High-dose_Vitamin_C_on_Complex_Regional_Pain_Syndrome_in_Extremity_Trauma_and_Surgery-Systematic_Review_and_Meta-Analysis
45. Meena, S.
Role of vitamin C in prevention of complex regional pain syndrome
after distal radius fractures: a meta-analysis. Eur. J. Orthop.
Surg. Traumatol. 2015, 25, 637-641.
https://doi.org/10.1007/s00590-014-1573-2
https://www.researchgate.net/publication/270512921_Role_of_vitamin_C_in_prevention_of_complex_regional_pain_syndrome_after_distal_radius_fractures_a_meta-analysis
46. Chen, S. Effect
of perioperative vitamin C supplementation on postoperative pain and
the incidence of chronic regional pain syndrome: a systematic review
and meta-analysis. Clin. J. Pain. 2016, 32, 179-185.
https://doi.org/10.1097/AJP.0000000000000218
47. Carr, A.C.
The role of vitamin C in the treatment of pain: new insights. J.
Transl. Med. 2017, 15, 77.
https://doi.org/10.1186/s12967-017-1179-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391567
48. Hemilä,
H.; Louhiala, P. Vitamin C may affect lung infections. J. R. Soc.
Med 2007, 100, 495-498.
https://doi.org/10.1177/014107680710001109
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099400
49. Hemilä,
H.; Louhiala, P. Vitamin C for preventing and treating pneumonia.
Cochrane Database Syst. Rev. 2013, CD005532.
https://doi.org/10.1002/14651858.CD005532.pub3
https://helda.helsinki.fi/handle/10138/225862
http://www.mv.helsinki.fi/home/hemila/CP/2013_Coch_Pneu_CD005532.pdf
See references with
links:
https://www.mv.helsinki.fi/home/hemila/CP
50. Crandon, J.H.;
Lund, C.C. Vitamin C deficiency in an otherwise normal adult. N.
Engl. J. Med. 1940, 222,
748-752.
https://doi.org/10.1056/NEJM194005022221802
51. Crandon, J.H.
Experimental human scurvy. N. Engl. J. Med. 1940, 223, 353-369.
https://doi.org/10.1056/NEJM194009052231001
52. Lund, C.C.;
Crandon, J.H. Human experimental scurvy and the relation of vitamin C
deficiency to postoperative pneumonia and to wound healing. JAMA
1941, 116, 663-668.
https://doi.org/10.1001/jama.1941.02820080003002
53. Vitamin C
subcommittee. Vitamin C requirement of human adults. Experimental
study of vitamin-C deprivation in man. Lancet 1948, 251, 853-858.
https://doi.org/10.1016/S0140-6736(48)90572-8
http://jameslindlibrary.org/wp-data/uploads/2014/07/Medical_Research_Council_Vitamin_C_SUbcommittee_1948.pdf
54. Bartley, W. Vitamin C Requirement of Human Adults; A Report by the Vitamin C Subcommittee of the Accessory Food Factors Committee. Her Majesty’s Stationery Office (HMSO): London, UK, 1953.
55. Krebs, H.A. The
Sheffield experiment on the vitamin C requirement of human adults.
Proc. Nutr. Soc. 1953, 12,
237-246.
https://doi.org/10.1079/PNS19530054
56. Hodges, R.E.
Experimental scurvy in man. Am. J. Clin. Nutr. 1969, 22, 535–548.
https://doi.org/10.1093/ajcn/22.5.535
http://vorga.org/22-5-535.full.pdf
57. Hood, J. Femoral
neuropathy in scurvy. N. Engl. J. Med. 1969, 281, 1292-1293.
https://doi.org/10.1056/NEJM196912042812309
58. Hood, J.
Sjögren's syndrome in scurvy. N. Engl. J. Med. 1970, 282,
1120-1124.
https://doi.org/10.1056/NEJM197005142822003
59. Hodges, R.E.
What's new about scurvy? Am. J. Clin. Nutr. 1971, 24, 383-384.
https://doi.org/10.1093/ajcn/24.4.383
60. Hodges, R.E.
Clinical manifestations of ascorbic acid deficiency in man. Am. J.
Clin. Nutr. 1971, 24, 432-443.
https://doi.org/10.1093/ajcn/24.4.432
61. Kinsman, R.A.;
Hood, J. Some behavioral effects of ascorbic acid deficiency. Am. J.
Clin. Nutr. 1971, 24, 455–464.
https://doi.org/10.1093/ajcn/24.4.455
62. Levine, M.
Vitamin C pharmacokinetics in healthy volunteers: evidence for a
recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996,
93, 3704–3709.
https://doi.org/10.1073/pnas.93.8.3704
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39676
63. Food and
Nutrition Board, Institute of Medicine: Dietary Reference Intakes for
Vitamin C, Vitamin E, Selenium and Carotenoids;
National
Academy Press: Washington, DC, USA, 2000; pp.
95–185.
https://www.ncbi.nlm.nih.gov/pubmed/25077263
https://www.ncbi.nlm.nih.gov/books/NBK225483
https://www.nap.edu/catalog/9810/dietary-reference-intakes-for-vitamin-c-vitamin-e-selenium-and-carotenoids
64. Kieffer, P.
Multiple organ dysfunction dramatically improving with the infusion
of vitamin C: more support for the persistence of scurvy in our
"welfare" society. Intensive Care Med. 2001, 27, 448.
https://doi.org/10.1007/s001340000830
65. Holley, A.D.
Scurvy: historically a plague of the sailor that remains a
consideration in the modern intensive care unit. Intern. Med. J.
2011, 41, 283-285.
https://doi.org/10.1111/j.1445-5994.2010.02413.x
66. Doll, S.; Ricou,
B. Severe vitamin C deficiency in a critically ill adult: a case
report. Eur. J. Clin. Nutr. 2013, 67,
881-882.
https://doi.org/10.1038/ejcn.2013.42
67. Weinstein, M. An
orange a day keeps the doctor away: scurvy in the year 2000.
Pediatrics 2001, 108,
E55.
http://pediatrics.aappublications.org/content/108/3/e55
68. Duvall, M.G.
Pulmonary hypertension associated with scurvy and vitamin
deficiencies in an autistic child. Pediatrics 2013, 132,
e1699-e1703.
https://doi.org/10.1542/peds.2012-3054
69. Bennett, S.E.
Case 22-2018: a 64-year-old man with progressive leg weakness,
recurrent falls, and anemia. N. Engl. J. Med. 2018, 379,
282-289.
https://doi.org/10.1056/NEJMcpc1802826
70. Shafar, J. Rapid
reversion of electrocardiographic abnormalities after treatment in
two cases of scurvy. Lancet 1967, 290,
176-178.
https://doi.org/10.1016/S0140-6736(67)90004-9
71. Singh, D.; Chan,
W. Cardiomegaly and generalized oedema due to vitamin C deficiency.
Singapore Med. J. 1974, 15,
60-63.
http://smj.sma.org.sg/1501/1501smj11.pdf
72. Meisel, J.L.;
McDowell, R.K. Case 39-1995: a 72-year-old man with exertional
dyspnea, fatigue, and extensive ecchymoses and purpuric lesions. N.
Engl. J. Med. 1995, 333, 1695-1702.
https://doi.org/10.1056/NEJM199512213332508
73. Mertens, M.T.;
Gertner, E. Rheumatic manifestations of scurvy: a report of three
recent cases in a major urban center and a review. Semin. Arthritis
Rheum. 2011, 41, 286-290.
https://doi.org/10.1016/j.semarthrit.2010.10.005
74. Kupari, M.;
Rapola, J. Reversible pulmonary hypertension associated with vitamin
C deficiency. Chest 2012, 142, 225-227.
https://doi.org/10.1378/chest.11-1857
75. Zipursky, J.S. A
rare presentation of an ancient disease: scurvy presenting as
orthostatic hypotension. BMJ Case Rep. 2014, 2014, bcr2013201982.
https://doi.org/10.1136/bcr-2013-201982
76. Abbas, F.
Reversible right heart failure in scurvy: rediscovery of an old
observation. Circ. Heart Fail. 2016, 9, e003497.
https://doi.org/10.1161/CIRCHEARTFAILURE.116.003497
77. Velandia, B.
Scurvy is still present in developed countries. J. Gen. Intern. Med.
2008, 23, 1281-1284.
https://doi.org/10.1007/s11606-008-0577-1
78. Woodier, N.;
Koytzoumis, V. Scurvy: presentation and skin manifestations of a not
so uncommon condition. Emerg. Med. J. 2012, 29,
103.
https://doi.org/10.1136/emermed-2011-200417
79. Bonsall, A.
Never surprise a patient with scurvy. Int. J. Dermatol. 2017, 56,
1488-1489.
https://doi.org/10.1111/ijd.13723
80. Lux-Battistelli,
C.; Battistelli, D. Latent scurvy with tiredness and leg pain in
alcoholics: an underestimated disease three case reports. Medicine
(Baltimore) 2017, 96, e8861.
https://doi.org/10.1097/MD.0000000000008861
81. Jiang, A.W.
Scurvy, a not-so-ancient disease. Am. J. Med. 2018, 131, e185-e186.
https://doi.org/10.1016/j.amjmed.2017.12.007
82. Hunt, C. The
clinical effects of vitamin C supplementation in elderly hospitalised
patients with acute respiratory infections. Int. J. Vitam. Nutr.
Res. 1994, 64,
212-219.
http://www.mv.helsinki.fi/home/hemila/CP/Hunt_1994_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Hunt_1994_bm.pdf
https://www.ncbi.nlm.nih.gov/pubmed/7814237
83. Fain, O.
Scurvy in patients with cancer. BMJ 1998, 316, 1661-1662.
https://doi.org/10.1136/bmj.316.7145.1661
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1113239
84. Teixeira, A.
Vitamin C deficiency in elderly hospitalized patients. Am. J.
Med. 2001, 111, 502.
https://doi.org/10.1016/S0002-9343(01)00893-2
https://www.researchgate.net/publication/11662753_Vitamin_C_deficiency_in_elderly_hospitalized_patients
85. Fain, O.
Hypovitaminosis C in hospitalized patients. Eur. J. Intern. Med.
2003, 14, 419-425.
http://dx.doi.org/10.1016/j.ejim.2003.08.006
https://www.researchgate.net/publication/9011213_Hypovitaminosis_C_in_hospitalized_patients
86. Mayland, C.R.
Vitamin C deficiency in cancer patients. Palliat. Med. 2005, 19,
17-20.
https://doi.org/10.1191/0269216305pm970oa
https://www.researchgate.net/publication/8041529_Vitamin_C_deficiency_in_cancer_patients
87. Gan, R.
Vitamin C deficiency in a university teaching hospital. J. Am.
Coll. Nutr. 2008, 27,
428-433.
https://doi.org/10.1080/07315724.2008.10719721
https://www.researchgate.net/publication/23302990_Vitamin_C_Deficiency_in_a_University_Teaching_Hospital
87.
Raynaud-Simon, A. Scurvy in hospitalized elderly patients. J.
Nutr. Health Aging 2010, 14,
407-410.
https://doi.org/10.1007/s12603-010-0032-y
https://www.researchgate.net/publication/45114787_Scurvy_in_hospitalized_elderly_patients
89. Ravindran, P.
Vitamin C deficiency in an Australian cohort of metropolitan surgical
patients. Pathology 2018, 50, 654-658.
https://doi.org/10.1016/j.pathol.2018.07.004
https://www.researchgate.net/publication/327355674_Vitamin_C_deficiency_in_an_Australian_cohort_of_metropolitan_surgical_patients
90. MacLennan, W.J.;
Hamilton, J.C. The effect of acute illness on leucocyte and plasma
ascorbic acid levels. Br. J. Nutr. 1977, 38,
217-223.
https://doi.org/10.1079/BJN19770081
91. Ballmer, P.E.
Depletion of plasma vitamin C but not of vitamin E in response to
cardiac operations [correction in 1995, 110, 1972]. J. Thor.
Cardiovasc. Surg. 1994, 108, 311–320.
https://www.jtcvs.org/article/S0022-5223(94)70013-3/fulltext
92. Borrelli, E.
Plasma concentrations of cytokines, their soluble receptors, and
antioxidant vitamins can predict the development of multiple organ
failure in patients at risk. Crit. Care Med. 1996, 24, 392-397.
https://doi.org/10.1097/00003246-199603000-00006
https://www.researchgate.net/publication/14574186_Plasma_concentrations_of_cytokines_their_soluble_receptors_and_antioxidant_vitamins_can_predict_the_development_of_multiple_organ_failure_in_patients_at_risk
93. Schorah, C.J.
Total vitamin C, ascorbic acid, and dehydroascorbic acid
concentrations in plasma of critically ill patients. Am. J. Clin.
Nutr. 1996, 63, 760-765.
https://doi.org/10.1093/ajcn/63.5.760
https://www.researchgate.net/publication/14585919_Total_Vitamin_C_ascorbic_acid_and_dehydroascorbic_acid_concentrations_in_plasma_of_critically_ill_patients
94. Galley, H.F.
Ascorbyl radical formation in patients with sepsis: effect of
ascorbate loading. Free Radic. Biol. Med. 1996, 20, 139-143.
https://doi.org/10.1016/0891-5849(95)02022-5
95. The reference to 2002 paper (below) was erroneous. The correct reference should have been:
Metnitz GH, et al. Acta Anaesthesiol Scand. 2000 Mar;44(3):236-40
https://www.ncbi.nlm.nih.gov/pubmed/10714834
https://doi.org/10.1034/j.1399-6576.2000.440304.x
The selection of this wrong reference with a PubMed search was caused
by tight dead line when preparing the manuscript:
Metnitz, P.G.
Effect of acute renal failure requiring renal replacement therapy on
outcome in critically ill patients. Crit. Care Med. 2002, 30,
2051-2058.
https://doi.org/10.1097/00003246-200209000-00016
https://www.researchgate.net/publication/11105182_Effect_of_acute_renal_failure_requiring_renal_replacement_therapy_on_outcome_in_critically_ill_patients
96. Lassnigg, A.
Influence of intravenous vitamin E supplementation in cardiac surgery
on oxidative stress: a double-blinded, randomized, controlled
study. Br. J. Anaesthesia. 2003, 90, 148–154.
https://doi.org/10.1093/bja/aeg042
https://www.researchgate.net/publication/10942024_Influence_of_intravenous_vitamin_E_supplementation_in_cardiac_surgery_on_oxidative_stress_A_double-blinded_randomized_controlled_study
97. Doise, J.M.
Plasma antioxidant status in septic critically ill patients: a
decrease over time. Fundam. Clin. Pharmacol. 2008, 22, 203-209.
https://doi.org/10.1111/j.1472-8206.2008.00573.x
98. Evans-Olders,
R. Metabolic origin of hypovitaminosis C in acutely hospitalized
patients. Nutrition 2010, 26,
1070-1074.
https://doi.org/10.1016/j.nut.2009.08.015
https://www.researchgate.net/publication/40695844_Metabolic_origin_of_hypovitaminosis_C_in_acutely_hospitalized_patients
99. Rodemeister,
S. Massive and long-lasting decrease in vitamin C plasma levels as a
consequence of extracorporeal circulation. Nutrition 2014, 30,
673–678.
https://doi.org/10.1016/j.nut.2013.10.026
https://www.researchgate.net/publication/259134426_Massive_and_long-lasting_decrease_in_vitamin_C_plasma_levels_as_a_consequence_of_extracorporeal_circulation
100. Katundu, K.G.H.
An observational study on the relationship between plasma vitamin C,
blood glucose, oxidative stress, endothelial dysfunction and outcome
in patients with septic shock. Southern African J. Crit. Care 2016,
32, 21-27.
http://dx.doi.org/10.7196/SAJCC.2016.v32i1.270
101. Carr, A.C.
Hypovitaminosis C and vitamin C deficiency in critically ill patients
despite recommended enteral and parenteral intakes. Crit. Care.
2017, 21, 300.
https://doi.org/10.1186/s13054-017-1891-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725835
102. Long, C.L.
Ascorbic acid dynamics in the seriously ill and injured. J. Surg.
Res. 2003, 109, 144-148.
https://doi.org/10.1016/S0022-4804(02)00083-5
https://www.researchgate.net/publication/10849886_Ascorbic_acid_dynamics_in_the_seriously_ill_and_injured
103. Rümelin,
A. Early postoperative substitution procedure of the antioxidant
ascorbic acid. J. Nutr. Biochem. 2005, 16, 104-108.
https://doi.org/10.1016/j.jnutbio.2004.10.005
https://www.researchgate.net/publication/8051293_Early_postoperative_substitution_procedure_of_the_antioxidant_ascorbic_acid
104. Rümelin,
A. Metabolic clearance of the antioxidant ascorbic acid in surgical
patients. J. Surg. Res. 2005, 129, 46-51.
https://doi.org/10.1016/j.jss.2005.03.017
https://www.researchgate.net/publication/7675256_Metabolic_Clearance_of_the_Antioxidant_Ascorbic_Acid_in_Surgical_Patients1
105. de Grooth,
H.J. Vitamin C pharmacokinetics in critically ill patients: a
randomized trial of four iv regimens. Chest 2018, 153, 1368-1377.
https://doi.org/10.1016/j.chest.2018.02.025
https://www.researchgate.net/publication/323595550_Vitamin-C_pharmacokinetics_in_critically_ill_patients_a_randomized_trial_of_four_intravenous_regimens
106. Dingchao, H.
The protective effects of high-dose ascorbic acid on myocardium
against reperfusion injury during and after cardiopulmonary bypass.
Thorac. Cardiovasc. Surg. 1994, 42, 276-278.
https://doi.org/10.1055/s-2007-1016504
107. Tanaka, H.
Reduction of resuscitation fluid volumes in severely burned patients
using ascorbic acid administration: a randomized, prospective
study. Arch. Surg. 2000, 135, 326–331.
https://doi.org/10.1001/archsurg.135.3.326
www.talkingaboutthescience.com/studies/Tanaka2000.pdf
108. Eslami, M. Oral
ascorbic acid in combination with beta-blockers is more effective
than beta-blockers alone in the prevention of atrial fibrillation
after coronary artery bypass grafting. Tex. Heart Inst. J. 2007, 34,
268–274.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1995047
109. Colby, J.A.
Effect of ascorbic acid on inflammatory markers after cardiothoracic
surgery. Am. J. Health-Syst. Pharm. 2011, 68,
1632–1639.
https://doi.org/10.2146/ajhp100703
https://www.researchgate.net/publication/51585731_Effect_of_ascorbic_acid_on_inflammatory_markers_after_cardiothoracic_surgery
110. Papoulidis,
P. The role of ascorbic acid in the prevention of atrial fibrillation
after elective on-pump myocardial revascularization surgery: a
single-center experience, a pilot study. Interact. Cardiovasc.
Thorac. Surg. 2011, 12, 121–124.
https://doi.org/10.1510/icvts.2010.240473
https://www.researchgate.net/publication/49629658_The_role_of_ascorbic_acid_in_the_prevention_of_atrial_fibrillation_after_elective_on-pump_myocardial_revascularization_surgery_A_single-center_experience_-_a_pilot_study
111. Bjordahl, P.M.
Perioperative supplementation with ascorbic acid does not prevent
atrial fibrillation in coronary artery bypass graft patients. Am. J.
Surg. 2012, 204, 862–867.
https://doi.org/10.1016/j.amjsurg.2012.03.012
112. Donovan, P.C.;
Kramer, R.S. Prophylaxis to reduce postoperative atrial fibrillation
in cardiac surgery. ClinicalTrials.gov NCT00953212. 2012.
https://clinicaltrials.gov/ct2/show/NCT00953212
113. Dehghani,
M.R. Effect of oral vitamin C on atrial fibrillation development
after isolated coronary artery bypass grafting surgery: a
prospective randomized clinical trial. Cardiol. J. 2014, 21, 492–499.
https://doi.org/10.5603/CJ.a2013.0154
https://journals.viamedica.pl/cardiology_journal/article/view/CJ.a2013.0154/31780
114. Ebade, A.
Ascorbic acid versus magnesium for the prevention of atrial
fibrillation after coronary artery bypass grafting surgery.
Egyptian J. Cardiothoracic Anesthesia. 2014, 8, 59-65.
https://doi.org/10.4103/1687-9090.143259
http://www.ejca.eg.net/article.asp?issn=1687-9090;year=2014;volume=8;issue=2;spage=59;epage=65;aulast=Ebade
115. Fowler, A.A.
Phase I safety trial of intravenous ascorbic acid in patients with
severe sepsis. J. Transl. Med. 2014, 12, 32.
https://doi.org/10.1186/1479-5876-12-32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937164
116. Sarzaeem,
M.; Shayan, N. Vitamin C in prevention of atrial fibrillation after
coronary artery bypass graft: double blind randomized clinical
trial [in Farsi (Persian)]. Tehran University Med. J. 2014, 71,
787–793.
http://www.mv.helsinki.fi/home/hemila/T14.pdf
The Farsi (Persian) version is available
at:
http://tumj.tums.ac.ir/browse.php?a_id=5853&sid=1&slc_lang=en
with a copy
at:
http://www.mv.helsinki.fi/home/hemila/Sarzaeem_2014_Farsi.pdf
117. Zabet, M.H.
Effect of high-dose ascorbic acid on vasopressor's requirement in
septic shock. J. Res. Pharm. Pract. 2016, 5, 94-100.
https://doi.org/10.4103/2279-042X.179569
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843590
118. Alshafey,
M.K. Role of ascorbic acid in reduction of the incidence of the
atrial fibrillation in patients under beta-blocker and undergoing
coronary artery bypass graft operation in early post-operative
period. J. Egyptian Soc. Cardio-Thoracic Surgery 2017, 25,
198-203.
https://doi.org/10.1016/j.jescts.2017.04.003
https://pdfs.semanticscholar.org/8d81/55f6d30e7c29b5432922484b831fd0019a06.pdf
119. Antonic, M.
Perioperative ascorbic acid supplementation does not reduce the
incidence of postoperative atrial fibrillation in on-pump coronary
artery bypass graft patients. J. Cardiol. 2017, 69, 98–102.
https://doi.org/10.1016/j.jjcc.2016.01.010
120. Amini, S.
Selenium, vitamin C and N-acetylcysteine do not reduce the risk of
acute kidney injury after off-pump CABG: a randomized clinical
trial. Braz. J. Cardiovasc. Surg. 2018, 33, 129-134.
https://doi.org/10.21470/1678-9741-2017-0071
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985838
121.
Mirmohammadsadeghi, M. Preventive use of ascorbic acid for atrial
fibrillation after coronary artery bypass graft surgery. Heart
Surg. Forum 2018, 21, E415-E417.
https://doi.org/10.1532/hsf.1938
https://www.researchgate.net/publication/328036409_Preventive_Use_of_Ascorbic_Acid_For_Atrial_Fibrillation_After_Coronary_Artery_Bypass_Graft_Surgery
122.
Abdoulhossein, D. Effect of vitamin C and vitamin E on lung
contusion: a randomized clinical trial study. Ann. Med. Surg.
(Lond) 2018, 36, 152-157.
https://doi.org/10.1016/j.amsu.2018.10.026
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240669
123. Sadeghpour,
A. Impact of vitamin C supplementation on post-cardiac surgery ICU
and hospital length of stay. Anesth. Pain Med. 2015, 5, e25337.
https://doi.org/10.5812/aapm.25337
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350190
124. Montori, V.M.;
Guyatt, G.H. Intention-to-treat principle. CMAJ 2001, 165, 1339-1341.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC81628
125. McCoy, C.E.
Understanding the intention-to-treat principle in randomized
controlled trials. West. J. Emerg. Med. 2017, 18, 1075-1078.
https://doi.org/10.5811/westjem.2017.8.35985
126. DeMets, D.L.;
Cook, T. Challenges of non-intention-to-treat analyses. JAMA 2019,
321, 145-146.
https://doi.org/10.1001/jama.2018.19192
127. Friedrich, J.O.
Ratio of means for analyzing continuous outcomes in meta-analysis
performed as well as mean difference methods. J. Clin. Epidemiol.
2011, 64, 556–564.
https://doi.org/10.1016/j.jclinepi.2010.09.016
128. Friedrich,
J.O. The ratio of means method as an alternative to mean differences
for analyzing continuous outcome variables in meta-analysis: a
simulation study. BMC Med. Res. Methodol. 2008, 8, 32.
https://doi.org/10.1186/1471-2288-8-32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430201
129. Hemilä,
H. Many continuous variables such as the duration of the common cold
should be analyzed using the relative scale. J. Clin. Epidemiol.
2016, 78, 128–129.
http://dx.doi.org/10.1016/j.jclinepi.2016.03.020
https://helda.helsinki.fi/handle/10138/173096
https://www.mv.helsinki.fi/home/hemila/H/2016_L_JCE.pdf
130. Hemilä,
H. Duration of the common cold and similar continuous outcomes should
be analyzed on the relative scale: a case study of two zinc lozenge
trials. BMC Med. Res. Methodol. 2017, 17, 82.
https://doi.org/10.1186/s12874-017-0356-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427521
131. R Core Team. R Project for Statistical Computing, 2019. https://www.r-project.org
132. Higgins,
J.P.T. Measuring inconsistency in meta-analysis. BMJ 2003, 327,
557–560.
https://doi.org/10.1136/bmj.327.7414.557
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC192859
133. Englard, S.;
Seifter, S. The biochemical functions of ascorbic acid. Annu. Rev.
Nutr. 1986, 6, 365–406.
https://doi.org/10.1146/annurev.nu.06.070186.002053
134. Levine, M.;
Morita, K. Ascorbic acid in endocrine systems. Vitam. Horm. 1985, 42,
1-64.
http://dx.doi.org/10.1016/S0083-6729(08)60060-6
135. Levine, M.
New concepts in the biology and biochemistry of ascorbic acid. N.
Engl. J. Med. 1986, 314, 892-902.
https://doi.org/10.1056/NEJM198604033141407
https://www.researchgate.net/publication/262790946_New_Concepts_in_the_Biology_and_Biochemistry_of_Ascorbic_Acid
136. Rice, M.E.
Ascorbate regulation and its neuroprotective role in the brain.
Trends Neurosci. 2000, 23,
209–216.
https://doi.org/10.1016/S0166-2236(99)01543-X
https://www.researchgate.net/publication/12534895_Ascorbate_regulation_and_its_neuroprotective_role_in_the_brain
137. Holowatz, L.A.
Ascorbic acid: what do we really NO? J. Appl. Physiol 2011, 111,
1542-1543.
https://doi.org/10.1152/japplphysiol.01187.2011
138. May, J.M.
Mechanisms of ascorbic acid stimulation of norepinephrine synthesis
in neuronal cells. Biochem. Biophys. Res. Commun. 2012, 426,
148–152.
https://doi.org/10.1016/j.bbrc.2012.08.054
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449284
139.
Figueroa-Méndez, R. Vitamin C in health and disease: its
role in the metabolism of cells and redox state in the brain. Front.
Physiol. 2015, 6, 397.
https://doi.org/10.3389/fphys.2015.00397
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688356
140. Carr, A.C.
Ascorbate-dependent vasopressor synthesis: a rationale for
vitamin C administration in severe sepsis and septic shock? Crit.
Care 2015, 19, 418.
https://doi.org/10.1186/s13054-015-1131-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661979
141. Kumar, D. 60
YEARS OF POMC: from POMC and α-MSH to PAM, molecular oxygen,
copper, and vitamin C. J. Mol. Endocrinol. 2016, 56, T63-T76.
https://doi.org/10.1530/JME-15-0266
https://www.researchgate.net/publication/287124676_60_YEARS_OF_POMC_From_POMC_and_aMSH_to_PAM_molecular_oxygen_copper_and_vitamin_C
142. Manning, J.
Vitamin C promotes maturation of T-cells. Antioxid. Redox Signal.
2013, 19, 2054–2067.
http://dx.doi.org/10.1089/ars.2012.4988
https://www.researchgate.net/publication/233948089_Vitamin_C_Promotes_Maturation_of_T-Cells
143. May, J.M.;
Harrison, F.E. Role of vitamin C in the function of the vascular
endothelium. Antioxid. Redox Signal. 2013, 19,
2068-2083.
https://doi.org/10.1089/ars.2013.5205
http://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23581713
144. Monfort, A.;
Wutz, A. Breathing-in epigenetic change with vitamin C. EMBO Rep.
2013, 14, 337-346.
https://doi.org/10.1038/embor.2013.29
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615655
145. Young, J.I.
Regulation of the epigenome by vitamin C. Annu. Rev. Nutr. 2015,
35, 545-564.
https://doi.org/10.1146/annurev-nutr-071714-034228
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506708
146. Camarena,
V.; Wang, G. The epigenetic role of vitamin C in health and disease.
Cell. Mol. Life. Sci. 2016, 73, 1645-1658.
https://doi.org/10.1007/s00018-016-2145-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805483
147. Ang, A.
Vitamin C and immune cell function in inflammation and cancer.
Biochem. Soc. Trans. 2018, 46, 1147-1159.
https://doi.org/10.1042/BST20180169
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195639
148. Mandl, J.
Vitamin C: update on physiology and pharmacology. Br. J.
Pharmacol. 2009, 157, 1097-1110.
https://doi.org/10.1111/j.1476-5381.2009.00282.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743829
149. Padayatty,
S.J.; Levine, M. Vitamin C: the known and the unknown and Goldilocks.
Oral Dis. 2016, 22, 463-493.
https://doi.org/10.1111/odi.12446
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959991
150. Webb, A.L.;
Villamor, E. Update: Effects of antioxidant and non-antioxidant
vitamin supplementation on immune function. Nutr. Rev. 2007, 65,
181–217.
https://doi.org/10.1111/j.1753-4887.2007.tb00298.x
https://www.researchgate.net/publication/6269642_Update_Effects_of_Antioxidant_and_Non-Antioxidant_Vitamin_Supplementation_on_Immune_Function
151. Carr, A.C.
Vitamin C and immune function. Nutrients 2017, 9, 1211.
https://doi.org/10.3390/nu9111211
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707683
152. Wilson, J.X.
Mechanism of action of vitamin C in sepsis: ascorbate modulates
redox signaling in endothelium. Biofactors 2009, 35,
5-13.
https://doi.org/10.1002/biof.7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767105
153. Tyml, K.
Vitamin C and microvascular dysfunction in systemic inflammation.
Antioxidants (Basel) 2017, 6,
E49.
https://doi.org/10.3390/antiox6030049
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618077
154. Harrison,
F.E.; May, J.M. Vitamin C function in the brain: vital role of
the ascorbate transporter SVCT2. Free Radic. Biol. Med. 2009, 46,
719-730.
https://doi.org/10.1016/j.freeradbiomed.2008.12.018
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649700
155. Brown, T.M.
Neuropsychiatric scurvy. Psychosomatics 2015, 56, 12-20.
https://doi.org/10.1016/j.psym.2014.05.010
156. Carnes, C.A.
Ascorbate attenuates atrial pacing-induced peroxynitrite formation
and electrical remodeling and decreases the incidence of
postoperative atrial fibrillation. Circ. Res. 2001, 89, E32–E38.
http://dx.doi.org/10.1161/hh1801.097644
157. Kim, H. Vitamin
C prevents stress-induced damage on the heart caused by the death of
cardiomyocytes, through down-regulation of the excessive production
of catecholamine, TNF-α, and ROS production in Gulo(-/-)Vit
C-Insufficient mice. Free Radic. Biol. Med. 2013, 65, 573-583.
https://doi.org/10.1016/j.freeradbiomed.2013.07.023
158. Talkhabi, M.
Ascorbic acid promotes the direct conversion of mouse fibroblasts
into beating cardiomyocytes. Biochem. Biophys. Res. Comm. 2015, 463,
699–705.
https://doi.org/10.1016/j.bbrc.2015.05.127
159. Akolkar, G.
Vitamin C mitigates oxidative/nitrosative stress and inflammation in
doxorubicin-induced cardiomyopathy. Am. J. Physiol. Heart. Circ.
Physiol. 2017, 313, H795-H809.
https://doi.org/10.1152/ajpheart.00253.2017
160. Levin, N.A.;
Greer, K.E. Scurvy in an unrepentant carnivore. Cutis 2000, 66,
39-44.
https://www.mdedge.com/dermatology/article/66468/scurvy-unrepentant-carnivore
161. Pangan, A.L.;
Robinson, D. Hemarthrosis as initial presentation of scurvy. J.
Rheumatol. 2001, 28,
1923-1925.
http://www.jrheum.org/content/28/8/1923
162. Bingham, A.C. A
16-year-old boy with purpura and leg pain. J. Pediatr. 2003, 142,
560-563.
https://doi.org/10.1067/mpd.2003.186
163. Reed, R.M.
Captain Ignose to the rescue. Am. J. Med. 2010, 123, 704-706.
https://doi.org/10.1016/j.amjmed.2010.04.003
164. De Luna, R.H.
Scurvy: an often forgotten cause of bleeding. Am. J. Hematol. 2003,
74, 85-87.
https://doi.org/10.1002/ajh.10354
165. Patrozou, E.;
Opal, S. Scurvy masquerading as infectious cellulitis. Intern. Med.
J. 2008, 38, 452-453.
https://doi.org/10.1111/j.1445-5994.2008.01662.x
166. Lau, H. Skin,
muscle and joint disease from the 17th century: scurvy. Int. J.
Rheum. Dis. 2009, 12, 361-365.
https://doi.org/10.1111/j.1756-185X.2009.01437.x
167. Bernardino,
V.R. 2011: the scurvy Odyssey. BMJ Case Rep. 2012, 2012,
bcr0220125819.
https://doi.org/10.1136/bcr-02-2012-5819
168. Smith, A.; Di
Primio, G.; Humphrey-Murto, S. Scurvy in the developed world. CMAJ
2011, 183, E752-E755.
https://doi.org/10.1503/cmaj.091938
169. Ciccocioppo, R.
An unconventional case of scurvy. Eur. J. Clin. Nutr. 2013, 67,
1336-1337.
https://doi.org/10.1038/ejcn.2013.181
170. Fleming, J.D.
Pain, purpura and curly hairs. Clin. Exp. Dermatol. 2013, 38,
940-942.
https://doi.org/10.1111/ced.12118
171. Zammit, P.
Vitamin C deficiency in an elderly adult. J. Am. Geriatr. Soc. 2013,
61, 657-658.
https://doi.org/10.1111/jgs.12183
172. Kluesner, N.H.;
Miller, D.G. Scurvy: malnourishment in the land of plenty. J. Emerg.
Med. 2014, 46,
530-502.
https://doi.org/10.1016/j.jemermed.2013.09.027
173. Dufrost, V.
Unexpected cause of bleeding. Am. J. Med. 2017, 130, e387-e388.
https://doi.org/10.1016/j.amjmed.2017.03.016
174. Kinlin, L.M.
Scurvy as a mimicker of osteomyelitis in a child with autism spectrum
disorder. Int. J. Infect. Dis. 2018, 69, 99-102.
https://doi.org/10.1016/j.ijid.2018.02.002
175. Berkram, P. A
landlubber with an ancient mariner's leaky vessels. Gastrointest.
Endosc. 2007, 66,
1065-1066.
https://doi.org/10.1016/j.gie.2007.03.1036
176. Mitchell, L.V.
A historic disease still prevalent today. BMJ 2017, 356, j1013.
https://doi.org/10.1136/bmj.j1013
177. Schuman, R.W.;
Rahmin, M.; Dannenberg, A.J. Scurvy and the gastrointestinal tract.
Gastrointest. Endosc. 1997, 45,
195-196.
https://doi.org/10.1016/S0016-5107(97)70250-5
178. Blee, T.H.
Hemorrhage associated with vitamin C deficiency in surgical patients.
Surgery 2002, 131, 408-412.
https://doi.org/10.1067/msy.2002.122373
179. Choh, C.T.
Unrecognised scurvy. BMJ 2009, 339, b3580.
https://doi.org/10.1136/bmj.b3580
180. Ohta A. Scurvy
with gastrointestinal bleeding. Endoscopy 2013, 45(Suppl 2),
E147-E148.
https://doi.org/10.1055/s-0032-1326456
181. Poussier, M.
Intestinal disorders caused by scurvy. Clin. Res. Hepatol.
Gastroenterol. 2014, 38,
e39-e40.
https://doi.org/10.1016/j.clinre.2013.08.010
182. DeSantis, J.
Scurvy and psychiatric symptoms. Perspect. Psychiatr. Care 1993, 29,
18-22.
https://doi.org/10.1111/j.1744-6163.1993.tb00397.x
183. Shavit, I.;
Brown, T.M. Simultaneous scurvy and Wernicke's encephalopathy in a
patient with an ascorbate-responsive dyskinesia. Psychosomatics 2013,
54, 181-186.
https://doi.org/10.1016/j.psym.2012.07.009
184. Noble, M. Old
disease, new look? A first report of parkinsonism due to scurvy, and
of refeeding-induced worsening of scurvy. Psychosomatics 2013, 54,
277-283.
https://doi.org/10.1016/j.psym.2013.02.001
185. Wright, A.D.
The neuropsychiatry of scurvy. Psychosomatics 2014, 55, 179-185.
https://doi.org/10.1016/j.psym.2013.10.003
186. Finkle, P.
Vitamin C saturation levels in the body in normal subjects and in
various pathological conditions. J. Clin. Invest. 1937, 16,
587-593.
https://doi.org/10.1172/JCI100885
187. Lund, C.C. The
effect of surgical operations on the level of cevitamic acid in the
blood plasma. N. Engl. J. Med. 1939, 221,
123-127.
https://doi.org/10.1056/NEJM193907272210401
188. Abbasy, M.A.
Vitamin C and infection: excretion of vitamin C in osteomyelitis.
Lancet 1937, 230,
177-180.
https://doi.org/10.1016/S0140-6736(00)87937-4
189. Evans, W.
Vitamin C in heart failure. Lancet 1938, 231, 308-309.
https://doi.org/10.1016/S0140-6736(00)62412-1
190. Editorial.
Ascorbic acid as a diuretic. Lancet 1944, 244, 6310.
https://doi.org/10.1016/S0140-6736(00)42799-6
191. Hochwald, A.
Vitamin C in the treatment of croupous pneumonia [in German].
Dtsch. Med. Wochenschr. 1937, 63,
182–184.
http://www.mv.helsinki.fi/home/hemila/T8.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Hochwald_1937_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Hochwald_1937_bm.pdf
192. Gander, J.;
Niederberger, W. Vitamin C in the treatment of pneumonia [in
German]. Münch. Med. Wochenschr. 1936, 83,
2074–2077.
http://www.mv.helsinki.fi/home/hemila/T1.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Gander_1936_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Gander_1936_bm.pdf
193. Bohnholtzer,
E. Contribution to the question of pneumonia treatment with vitamin C
[in German]. Dtsch. Med. Wochenschr. 1937, 63, 1001–1003.
http://www.mv.helsinki.fi/home/hemila/T7.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Bohnholzer_1937_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Bohnholzer_1937_bm.pdf
194. Klenner,
F.R. Virus pneumonia and its treatment with vitamin C. South.
Med. Surg. 1948, 110, 36–38.
http://www.mv.helsinki.fi/home/hemila/CP/Ch4_Klenner1948VirusPneumonia.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Klenner_1948_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Klenner_1948_bm.pdf
Available
via:
http://www.mv.helsinki.fi/home/hemila/klenner.htm
195. Klenner,
F.R. Massive doses of vitamin C and the virus diseases. South.
Med. Surg. 1951, 113, 101–107.
http://www.mv.helsinki.fi/home/hemila/CP/Ch6_Klenner1951VirusDiseases.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Klenner_1951_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Klenner_1951_bm.pdf
Available
via:
http://www.mv.helsinki.fi/home/hemila/klenner.htm
196. Dalton, W.L.
Massive doses of vitamin C in the treatment of viral diseases. J.
Indiana State Med. Assoc. 1962, 55, 1151–1154.
http://www.ncbi.nlm.nih.gov/pubmed/13883259
http://www.mv.helsinki.fi/home/hemila/CP/Ch20_Dalton_VirusDiseases.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Dalton_1962_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Dalton_1962_bm.pdf
197. Stone, I.
The Healing Factor: Vitamin C against Disease. Grosset Dunlap:
New York, NY, USA,
1972.
https://www.amazon.com/Healing-Factor-Vitamin-Against-Disease/dp/0448021307
Available
via:
http://www.mv.helsinki.fi/home/hemila/klenner.htm
198. Mochalkin,
N.I. Ascorbic acid in the complex therapy of acute pneumonia [in
Russian].
Voen. Med. Zh. 1970, 9, 17–21.
https://www.ncbi.nlm.nih.gov/pubmed/5515787
http://www.mv.helsinki.fi/home/hemila/T5.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Mochalkin_1970_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Mochalkin_1970_bm.pdf
199. Kimbarowski,
J.A. Colored precipitation reaction of the urine according to
Kimbarowski as an index of the effect of ascorbic acid during
treatment of viral influenza [in German]. Dtsch. Gesundheitsw. 1967,
22, 2413–2418.
https://www.ncbi.nlm.nih.gov/pubmed/5614915
http://www.mv.helsinki.fi/home/hemila/T4.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Kimbarowski_1967_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Kimbarowski_1967_bm.pdf
200. Hemilä,
H.; Louhiala, P. Vitamin C for preventing and treating pneumonia.
Cochrane Database Syst. Rev. 2007,
CD005532.
https://doi.org/10.1002/14651858.CD005532.pub2
https://www.mv.helsinki.fi/home/hemila/H/HH_2007_CochPneu.pdf
The above Cochrane review (2007) concluded in the Abstract:
https://www.ncbi.nlm.nih.gov/pubmed/17253561
”The prophylactic use of vitamin C to prevent
pneumonia should be further investigated in populations who have high
incidence of pneumonia, especially if dietary vitamin C
intake is low. Similarly, the therapeutic effects of vitamin C should
be studied, especially in patients with low plasma vitamin C levels.”
However, the strong
evidence indicating that vitamin C influences pneumonia incidence in
some contexts was shown one decade even earlier, in 1997,
see:
https://www.ncbi.nlm.nih.gov/pubmed/9306475
https://doi.org/10.1097/00006454-199709000-00003
http://www.mv.helsinki.fi/home/hemila/H/HH_1997_PIDJ.pdf
201. Hume, R.;
Weyers, E. Changes in leucocyte ascorbic acid during the common cold.
Scott. Med. J. 1973, 18,
3–7.
https://doi.org/10.1177/003693307301800102
http://www.mv.helsinki.fi/home/hemila/metabolism/Hume_1973_ch.pdf
http://www.mv.helsinki.fi/home/hemila/metabolism/Hume_1973_bm.pdf
202. Hemilä,
H. Vitamin C intake and susceptibility to the common cold. Br. J.
Nutr. 1997, 77, 59–72.
http://dx.doi.org/10.1017/S0007114500002889
http://www.mv.helsinki.fi/home/hemila/H/HH_1997_BJN.pdf
203. Bates, C.J.;
Schorah, C.J.; Hemilä, H. Vitamin C intake and susceptibility to
the common cold: invited comments and reply. Br. J. Nutr. 1997,
78, 857–866.
http://dx.doi.org/10.1079/BJN19970201
http://www.mv.helsinki.fi/home/hemila/H/HH_1997_BJN2.pdf
204. Hemilä,
H. Vitamin C supplementation and common cold symptoms: factors
affecting the magnitude of the benefit. Med. Hypotheses 1999, 52,
171–178.
http://dx.doi.org/10.1054/mehy.1997.0639
https://helda.helsinki.fi/handle/10138/223761
http://www.mv.helsinki.fi/home/hemila/H/HH_1999_MH.pdf
205. Karlowski,
T.R. Ascorbic acid for the common cold: a prophylactic and
therapeutic trial. JAMA 1975, 231, 1038–1042.
http://dx.doi.org/10.1001/jama.1975.03240220018013
http://www.mv.helsinki.fi/home/hemila/CC/Karlowski_1975_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CC/Karlowski_1975_bm.pdf
See
comments:
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE.pdf
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE2.pdf
https://www.mv.helsinki.fi/home/hemila/karlowski
206. Anderson, T.W.
The effect on winter illness of large doses of vitamin C. Can. Med.
Assoc. J. 1974, 111, 31–36.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1947567
207. Anderson,
T.W. Vitamin C and the common cold: a double-blind trial. Can.
Med. Assoc. J. 1972, 107, 503-508.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1940935
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1941144
Erratum 1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1941189
Erratum 2
208. Ludvigsson,
J. Vitamin C as a preventive medicine against common colds in
children. Scand. J. Infect. Dis. 1977, 9, 91-98.
https://www.ncbi.nlm.nih.gov/pubmed/897573
http://www.mv.helsinki.fi/home/hemila/CC/Ludvigsson_1977_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CC/Ludvigsson_1977_bm.pdf
209. Hemilä,
H. Vitamin C and sex differences in respiratory tract infections.
Respir. Med. 2008, 102,
625–626.
http://dx.doi.org/10.1016/j.rmed.2007.12.011
https://www.mv.helsinki.fi/home/hemila/H/2008_L_RespMed.pdf
210. Tyrrell,
D.A. A trial of ascorbic acid in the treatment of the common cold.
Br. J. Prev. Soc. Med. 1977, 31, 189-191.
http://dx.doi.org/10.1136/jech.31.3.189
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC479021
211. Baird, I.M.
The effects of ascorbic acid and flavonoids on the occurrence of
symptoms normally associated with the common cold. Am. J. Clin.
Nutr. 1979, 32, 1686–1690.
http://dx.doi.org/10.1093/ajcn/32.8.1686
https://www.researchgate.net/publication/22678083_The_effects_of_ascorbic_acid_and_flavonoids_on_thc_occurence_of_symptoms_normally_associated_with_the_common_cold
212. Constantini,
N.W. The effect of vitamin C on upper respiratory infections in
adolescent swimmers: a randomized trial. Eur. J. Pediatr. 2011,
170, 59–63.
http://dx.doi.org/10.1007/s00431-010-1270-z
http://hdl.handle.net/10138/144198
https://www.mv.helsinki.fi/home/hemila/H/HH_2011_EurJPediatr.pdf
213. Panagiotou,
O.A. Comparative effect sizes in randomised trials from less
developed and more developed countries: meta-epidemiological
assessment. BMJ 2013, 346, f707.
http://dx.doi.org/10.1136/bmj.f707
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570069
214. Wang, Z.J. The
effect of intravenous vitamin C infusion on periprocedural myocardial
injury for patients undergoing elective percutaneous coronary
intervention. Can. J. Cardiol. 2014, 30, 96–101.
http://dx.doi.org/10.1016/j.cjca.2013.08.018
215. Spoelstra-de
Man, A.M.E. Making sense of early high-dose intravenous vitamin C in
ischemia/reperfusion injury. Crit. Care 2018, 22, 70.
http://dx.doi.org/10.1186/s13054-018-1996-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861638
216. Angus, D.C.
Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840-851.
https://doi.org/10.1056/NEJMra1208623
217. Wilson, J.X.
Evaluation of vitamin C for adjuvant sepsis therapy. Antioxid.
Redox Signal. 2013, 19,
2129-2140.
https://doi.org/10.1089/ars.2013.5401
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869437
218. Oudemans-van
Straaten, H.M. Vitamin C revisited. Crit. Care 2014, 18, 460.
https://doi.org/10.1186/s13054-014-0460-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423646
219. Berger, M.M.
Vitamin C supplementation in the critically ill patient. Curr.
Opin. Clin. Nutr. Metab. Care 2015, 18, 193-201.
https://doi.org/10.1097/MCO.0000000000000148
https://www.researchgate.net/publication/271591452_Vitamin_C_supplementation_in_the_critically_ill_patient
220. Marik, P.E.
Hydrocortisone, ascorbic acid and thiamine (HAT therapy) for the
treatment of sepsis: focus on ascorbic acid. Nutrients 2018, 10,
1762.
https://doi.org/10.3390/nu10111762
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265973
221. Moskowitz,
A. Ascorbic acid, corticosteroids, and thiamine in sepsis: a
review of the biologic rationale and the present state of clinical
evaluation. Crit. Care. 2018, 22, 283.
https://doi.org/10.1186/s13054-018-2217-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206928
222. Amrein, K.
Vitamin therapy in critically ill patients: focus on thiamine,
vitamin C, and vitamin D. Intensive Care Med. 2018, 44,
1940-1944.
https://doi.org/10.1007/s00134-018-5107-y
https://www.researchgate.net/publication/323649692_Vitamin_therapy_in_critically_ill_patients_focus_on_thiamine_vitamin_C_and_vitamin_D
223. Spoelstra-de
Man, A.M.E. Vitamin C: should we supplement? Curr. Opin. Crit.
Care 2018, 24, 248-255.
https://doi.org/10.1097/MCC.0000000000000510
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039380
224. Zhang, M.
Vitamin C provision improves mood in acutely hospitalized patients.
Nutrition 2011, 27, 530–533.
http://dx.doi.org/10.1016/j.nut.2010.05.016
https://www.researchgate.net/publication/45507873_Vitamin_C_provision_improves_mood_in_acutely_hospitalized_patients
225. Wang, Y.
Effects of vitamin C and vitamin D administration on mood and
distress in acutely hospitalized patients. Am. J. Clin. Nutr.
2013, 98, 705–711.
http://dx.doi.org/10.3945/ajcn.112.056366
https://www.researchgate.net/publication/251878612_Effects_of_vitamin_C_and_vitamin_D_administration_on_mood_and_distress_in_acutely_hospitalized_patients
226. Padayatty,
S.J. Vitamin C pharmacokinetics: implications for oral and
intravenous use. Ann. Intern. Med. 2004, 140,
533–537.
https://doi.org/10.7326/0003-4819-140-7-200404060-00010
https://www.researchgate.net/publication/8632637_Vitamin_C_Pharmacokinetics_Implications_for_Oral_and_Intravenous_Use
227. Levine, M.
Vitamin C: a concentration-function approach yields pharmacology and
therapeutic discoveries. Adv. Nutr. 2011, 2, 78-88.
https://doi.org/10.3945/an.110.000109
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065766
228. Padayatty,
S.J. Vitamin C: intravenous use by complementary and alternative
medicine practitioners and adverse effects. PLoS One 2010, 5,
e11414.
https://doi.org/10.1371/journal.pone.0011414
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898816
229. Mikirova, N.
Effect of high-dose intravenous vitamin C on inflammation in cancer
patients. J. Transl. Med. 2012, 10, 189.
https://doi.org/10.1186/1479-5876-10-189
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480897
230. Schencking,
M. Intravenous vitamin C in the treatment of shingles: results of
a multicenter prospective cohort study. Med. Sci. Monit. 2012, 18,
CR215-CR224.
https://doi.org/10.12659/MSM.882621
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560828
231. Pourmatroud,
E. Intravenous ascorbic acid (vitamin C) administration in
myomectomy: a prospective, randomized, clinical trial. Arch.
Gynecol. Obstet. 2012, 285, 111-115.
https://doi.org/10.1007/s00404-011-1897-7
https://www.researchgate.net/publication/50908203_Intravenous_ascorbic_acid_vitamin_C_administration_in_myomectomy_A_prospective_randomized_clinical_trial
232. Hoffer, L.J.
High-dose intravenous vitamin C combined with cytotoxic chemotherapy
in patients with advanced cancer: a phase I-II clinical trial.
PLoS One 2015, 10, e0120228.
https://doi.org/10.1371/journal.pone.0120228
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388666
233. Jeon, Y.
Effect of intravenous high dose vitamin C on postoperative pain and
morphine use after laparoscopic colectomy: a randomized
controlled trial. Pain Res. Manag. 2016, 2016, 9147279.
https://doi.org/10.1155/2016/9147279
https://www.researchgate.net/publication/309587012_Effect_of_Intravenous_High_Dose_Vitamin_C_on_Postoperative_Pain_and_Morphine_Use_after_Laparoscopic_Colectomy_A_Randomized_Controlled_Trial
234. Kim, M.S. A
study of intravenous administration of vitamin C in the treatment of
acute herpetic pain and postherpetic neuralgia. Ann. Dermatol.
2016, 28, 677-683.
https://doi.org/10.5021/ad.2016.28.6.677
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125947
235. Nauman, G.
Systematic review of intravenous ascorbate in cancer clinical trials.
Antioxidants (Basel) 2018, 7, E89.
https://doi.org/10.3390/antiox7070089
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071214
236. CONSORT 2010
Statement: updated guidelines for reporting parallel group randomised
trials. BMJ 2010, 340, c332.
https://doi.org/10.1136/bmj.c332
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844940
237. Hill, C.L.
Discrepancy between published report and actual conduct of randomized
clinical trials. J. Clin. Epidemiol. 2002, 55, 783-786.
https://doi.org/10.1016/S0895-4356(02)00440-7
238. Devereaux, P.J.
An observational study found that authors of randomized controlled
trials frequently use concealment of randomization and blinding,
despite the failure to report these methods. J. Clin. Epidemiol.
2004, 57, 1232–1236.
https://doi.org/10.1016/j.jclinepi.2004.03.017
239. Mhaskar, R.
Published methodological quality of randomized controlled trials does
not reflect the actual quality assessed in protocols. J. Clin.
Epidemiol. 2012, 65, 602-609.
https://doi.org/10.1016/j.jclinepi.2011.10.016
240.
Hrobjartsson, A.; Gøtzsche, P.C. Is the placebo powerless? An
analysis of clinical trials comparing placebo with no treatment. N.
Engl. J. Med. 2001, 344,
1594-1602.
https://doi.org/10.1056/NEJM200105243442106
https://www.researchgate.net/publication/11966295_Is_the_Placebo_Powerless_An_Analysis_of_Clinical_Trials_Comparing_Placebo_with_No_Treatment
241. Jahan, K.
Effect of ascorbic acid in the treatment of tetanus. Bangladesh
Med. Res. Counc. Bull. 1984, 10, 24–28.
https://www.ncbi.nlm.nih.gov/pubmed/6466264
https://www.mv.helsinki.fi/home/hemila/CT/Ch29_JahanTetanus.pdf
http://www.mv.helsinki.fi/home/hemila/CT/Jahan_1984_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CT/Jahan_1984_bm.pdf
242. Du, W.D.
Therapeutic efficacy of high-dose vitamin C on acute pancreatitis and
its potential mechanisms. World J. Gastroenterol. 2003, 9,
2565-2569.
http://dx.doi.org/10.3748/wjg.v9.i11.2565
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656542
243. Hemilä,
H.; Koivula, T. Vitamin C for preventing and treating tetanus.
Cochrane Database Syst. Rev. 2013,
CD006665.
http://dx.doi.org/10.1002/14651858.CD006665.pub3
https://helda.helsinki.fi/handle/10138/225863
http://www.mv.helsinki.fi/home/hemila/CT/2013_Coch_Tetanus_CD006665.pdf
See references with
links:
https://www.mv.helsinki.fi/home/hemila/CT
244. Dey, P.K.
Efficacy of vitamin C in counteracting tetanus toxin toxicity.
Naturwissenschaften 1966, 53,
310.
http://dx.doi.org/10.1007/BF00712228
http://www.mv.helsinki.fi/home/hemila/CT/Ch21_DeyTetanus.pdf
http://www.mv.helsinki.fi/home/hemila/CT/Dey_1966_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CT/Dey_1966_bm.pdf
245. Clemetson,
C.A.B. Barlow’s disease. Med. Hypotheses 2002, 59, 52-56.
http://dx.doi.org/10.1016/S0306-9877(02)00114-7
246. Hemilä,
H.; Kaprio, J. Modification of the effect of vitamin E
supplementation on the mortality of male smokers by age and dietary
vitamin C. Am. J. Epidemiol. 2009, 169, 946-953.
http://dx.doi.org/10.1093/aje/kwn413
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661323
247. Sisto, T.
Pretreatment with antioxidants and allopurinol diminishes cardiac
onset events in coronary artery bypass grafting. Ann. Thorac.
Surg. 1995, 59, 1519-1523.
https://doi.org/10.1016/0003-4975(95)00197-S
https://www.researchgate.net/publication/15427027_Pretreatment_with_antioxidants_and_allopurinol_diminishes_cardiac_onset_events_in_coronary_artery_bypass_grafting
248. Galley, H.F.
The effects of intravenous antioxidants in patients with septic
shock. Free Radic. Biol. Med. 1997, 23, 768-774.
https://doi.org/10.1016/S0891-5849(97)00059-2
https://www.researchgate.net/publication/13925731_The_Effects_of_Intravenous_Antioxidants_in_Patients_With_Septic_Shock
249. Nathens,
A.B. Randomized, prospective trial of antioxidant supplementation in
critically ill surgical patients. Ann. Surg. 2002, 236, 814-822.
http://dx.doi.org/10.1097/00000658-200212000-00014
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1422648
250. Crimi, E.
The beneficial effects of antioxidant supplementation in enteral
feeding in critically ill patients: a prospective, randomized,
double-blind, placebo-controlled trial. Anesth. Analg. 2004, 99,
857-863.
http://dx.doi.org/10.1213/01.ANE.0000133144.60584.F6
http://www.ccmpitt.com/ebm/nutrition/NUT-RCT%20antioxidants%20C%20and%20E%20in%20Enetral%20feeding%20critically%20i.pdf
https://www.researchgate.net/publication/258173522_The_Beneficial_Effects_of_Antioxidant_Supplementation_in_Enteral_Feeding_in_Critically_Ill_Patients_A_Prospective_Randomized_Double-Blind_Placebo-Controlled_Trial
251. Berger, M.M.
Influence of early antioxidant supplements on clinical evolution and
organ function in critically ill cardiac surgery, major trauma, and
subarachnoid hemorrhage patients. Crit. Care 2008, 12, R101.
http://dx.doi.org/10.1186/cc6981
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575590
252. Barbosa, E.
Supplementation of vitamin E, vitamin C, and zinc attenuates
oxidative stress in burned children: a randomized, double-blind,
placebo-controlled pilot study. J. Burn Care Res. 2009, 30, 859-866.
http://dx.doi.org/10.1097/BCR.0b013e3181b487a8
https://www.researchgate.net/publication/26753577_Supplementation_of_Vitamin_E_Vitamin_C_and_Zinc_Attenuates_Oxidative_Stress_in_Burned_Children_A_Randomized_Double-Blind_Placebo-Controlled_Pilot_Study
253. Howe, K.P.
Mechanical ventilation antioxidant trial. Am. J. Crit. Care 2015, 24,
440-445.
http://dx.doi.org/10.4037/ajcc2015335
254. Collier, B.R.
Impact of high-dose antioxidants on outcomes in acutely injured
patients. JPEN J. Parenter. Enteral Nutr. 2008, 32,
384-388.
http://dx.doi.org/10.1177/0148607108319808
255. Giladi, A.M.
High-dose antioxidant administration is associated with a reduction
in post-injury complications in critically ill trauma patients.
Injury 2011, 42, 78-82.
http://dx.doi.org/10.1016/j.injury.2010.01.104
https://www.researchgate.net/publication/41423780_High-dose_antioxidant_administration_is_associated_with_a_reduction_in_post-injury_complications_in_critically_ill_trauma_patients
256. Kahn, S.A.
Resuscitation after severe burn injury using high-dose ascorbic acid:
a retrospective review. J. Burn Care Res. 2011, 32, 110-117.
http://dx.doi.org/10.1097/BCR.0b013e318204b336
https://www.researchgate.net/publication/49658561_Resuscitation_After_Severe_Burn_Injury_Using_High-Dose_Ascorbic_Acid_A_Retrospective_Review
257. Bedreag, O.H.
Influence of antioxidant therapy on the clinical status of multiple
trauma patients; a retrospective single center study. Rom. J.
Anaesth. Intensive Care 2015, 22,
89-96.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505380
258. Marik, P.E.
Hydrocortisone, vitamin C, and thiamine for the treatment of severe
sepsis and septic shock: a retrospective before-after study.
Chest 2017, 151, 1229-1238.
http://dx.doi.org/10.1016/j.chest.2016.11.036
https://static1.squarespace.com/static/57313085a3360c6b87c17029/t/5937624ae6f2e1c6ae177ae6/1496801870388.pdf
259. Balakrishnan,
M. Hydrocortisone, vitamin C and thiamine for the treatment of sepsis
and septic shock following cardiac surgery. Indian J. Anaesth. 2018,
62, 934-939.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299773
260. Kim, W.Y.
Combined vitamin C, hydrocortisone, and thiamine therapy for patients
with severe pneumonia who were admitted to the intensive care unit:
propensity score-based analysis of a before-after cohort study.
J. Crit. Care 2018, 47, 211-218.
http://dx.doi.org/10.1016/j.jcrc.2018.07.004
https://www.researchgate.net/publication/326216930_Combined_vitamin_C_hydrocortisone_and_thiamine_therapy_for_patients_with_severe_pneumonia_who_were_admitted_to_the_intensive_care_unit_Propensity_score-based_analysis_of_a_before-after_cohort_study
261. Hemilä,
H. Spectacular reduction in the mortality of acutely injured patients
by the administration of vitamins C and E and selenium [reply in
2009, 33, 449]. JPEN J. Parenter. Enteral Nutr. 2009, 33, 447-448.
http://dx.doi.org/10.1177/0148607108328520
https://helda.helsinki.fi/handle/10138/16985
http://www.mv.helsinki.fi/home/hemila/H/2009_L_JPEN.pdf
262. Cathcart,
R.F. Vitamin C, titrating to bowel tolerance, anascorbemia, and acute
induced scurvy. Med. Hypotheses 1981, 7, 1359–1376.
http://dx.doi.org/10.1016/0306-9877(81)90126-2
Available
via:
http://www.mv.helsinki.fi/home/hemila/klenner.htm
See
also:
http://www.mv.helsinki.fi/home/hemila/CP/Luberoff_1978_ch.pdf
263. Buehner, M.
Oxalate nephropathy after continuous infusion of high-dose vitamin C
as an adjunct to burn resuscitation. J. Burn Care Res. 2016, 37,
e374-e379.
https://doi.org/10.1097/BCR.0000000000000233
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933579
264. Chalmers,
T.C. Effects of ascorbic acid on the common cold: an evaluation of
the evidence. Am. J. Med. 1975, 58,
532–536.
https://dx.doi.org/10.1016/0002-9343(75)90127-8
http://www.mv.helsinki.fi/home/hemila/reviews/Chalmers_1975_ch.pdf
http://www.mv.helsinki.fi/home/hemila/reviews/Chalmers_1975_bm.pdf
The Chalmers
review has been extensively cited in journal articles and textbooks,
see:
http://www.mv.helsinki.fi/home/hemila/Chalmers1975CitedBy.htm
Thomas Chalmers
was a very influential
physician:
http://www.nytimes.com/1995/12/29/nyregion/dr-thomas-c-chalmers-a-president-of-mt-sinai-dies-at-78.html
https://en.wikipedia.org/wiki/Thomas_C._Chalmers
http://www.jameslindlibrary.org/articles/thomas-c-chalmers-1917-1995
https://circulatingnow.nlm.nih.gov/2014/12/18/thomas-c-chalmers-clinical-research-pragmatist
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878827
David Sackett describes in this paper that Thomas Chalmers' 1955
clinical trial report changed his career and led to the emergence of
the EBM movement
https://doi.org/10.1136/bmj.g371
According to Richard Smith and Drummond Rennie, Thomas Chalmers was
one of the "three individuals from an earlier generation
[who] were particularly important in inspiring" the EBM
movement
http://annals.org/aim/fullarticle/709574/tributes-thomas-chalmers
http://annals.org/aim/fullarticle/709576/tributes-thomas-chalmers
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1335248
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1335469
https://doi.org/10.1016/S0140-6736(96)90369-4
https://doi.org/10.1001/jama.1996.03540080078041
https://doi.org/10.1016/S0197-2456(96)90026-4
https://doi.org/10.1016/S0197-2456(97)82189-7
https://doi.org/10.1177/0141076815586354
https://doi.org/10.1177/0141076815606279
265. Hemilä,
H. Do vitamins C and E affect respiratory infections?
University
of Helsinki: Helsinki, Finland, 2006; pp. 21-45, 59-66.
https://hdl.handle.net/10138/20335
see
also:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793763
https://www.mv.helsinki.fi/home/hemila/reviews/chalmers
https://www.mv.helsinki.fi/home/hemila/reviews/dykes
266. Council of
Scientific Affairs, American Medical Association. Vitamin
preparations as dietary supplements and as therapeutic agents. JAMA
1987, 257, 1929–1936.
https://doi.org/10.1001/jama.1987.03390140099035
http://www.mv.helsinki.fi/home/hemila/reviews/AMA_1987.pdf
267.
Dykes, M.H.M.; Meier, P. Ascorbic acid and the common cold:
evaluation of its efficacy and toxicity. JAMA 1975, 231,
1073–1079.
https://dx.doi.org/10.1001/jama.1975.03240220051025
http://www.mv.helsinki.fi/home/hemila/reviews/Dykes_1975_ch.pdf
http://www.mv.helsinki.fi/home/hemila/reviews/Dykes_1975_bm.pdf
Paul Meier was
a very famous statistician,
eg:
http://en.wikipedia.org/wiki/Paul_Meier_(statistician)
https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator
http://garfield.library.upenn.edu/classics1983/A1983QS51100001.pdf
https://doi.org/10.1136/bmj.d5507
https://doi.org/10.1016/S0140-6736(11)61438-4
https://doi.org/10.2105/AJPH.2012.300778
https://doi.org/10.1191/1740774504cn011xx
http://bulletin.imstat.org/2011/12/obituary-paul-meier-1924%E2%80%932011/
http://www.nytimes.com/2011/08/13/health/13meier.html
https://news.uchicago.edu/article/2011/08/11/paul-meier-statistician-who-helped-change-clinical-research-1924-2011
http://articles.latimes.com/2011/aug/22/local/la-me-paul-meier-20110822
https://www.telegraph.co.uk/news/obituaries/medicine-obituaries/8804883/Paul-Meier.html
268. Pauling, L.
Ascorbic acid and the common cold: evaluation of its efficacy and
toxicity. Part I. Medical Tribune 1976, 17,
18-19.
http://www.mv.helsinki.fi/home/hemila/pauling/Pauling_1976_MT_1.pdf
269. Pauling, L.
Ascorbic acid and the common cold. Part II. Medical Tribune 1976,
17,
37-38.
http://www.mv.helsinki.fi/home/hemila/pauling/Pauling_1976_MT_2.pdf
270. Chalmers, T.C.
Dissent to the preceding article by H. Hemilä. J. Clin.
Epidemiol. 1996, 49, 1085.
https://dx.doi.org/10.1016/0895-4356(96)00190-4
271. Hemilä,
H. To the dissent by Thomas Chalmers. J. Clin. Epidemiol. 1996,
49, 1087.
https://dx.doi.org/10.1016/0895-4356(96)00191-6
https://helda.helsinki.fi/handle/10138/225873
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE2.pdf
272. Richards, E.
The politics of therapeutic evaluation: the vitamin C and cancer
controversy. Soc. Stud. Sci. 1988, 18, 653-701.
https://doi.org/10.1177/030631288018004004
https://www.researchgate.net/publication/313577764_The_Politics_of_Therapeutic_Evaluation_The_Vitamin_C_and_Cancer_Controversy
273. Richards, E.
Vitamin C and Cancer: Medicine or Politics?
St. Martins
Press: New York, NY, USA,
1991.
http://www.springer.com/gp/book/9781349096060
https://link.springer.com/book/10.1007/978-1-349-09606-0
https://www.palgrave.com/us/book/9781349096060
https://www.amazon.com/Vitamin-C-Cancer-Medicine-Politics/dp/0312052421
https://doi.org/10.1038/353125a0
https://doi.org/10.1086/356441
https://doi.org/10.1080/08109029208629523
https://doi.org/10.1016/0165-6147(92)90029-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2399293
https://www.newscientist.com/article/mg13518295-400-review-the-trials-and-tribulations-of-vitamin-c
274. Segerstråle,
U. Beleaguering the cancer establishment. Science 1992, 255,
613–615.
https://doi.org/10.1126/science.255.5044.613
https://www.jstor.org/stable/2876833
275. Goodwin,
J.S. Battling quackery: attitudes about micronutrient supplements in
American Academic medicine. Arch. Intern. Med. 1998, 158,
2187–2191.
https://doi.org/10.1001/archinte.158.20.2187
https://www.researchgate.net/publication/13467491_Battling_Quackery_Attitudes_About_Micronutrient_Supplements_in_American_Academic_Medicine
www.mv.helsinki.fi/home/hemila/safety/Goodwin_1998_p2188.pdf
276. Goodwin,
J.S. Failure to recognize efficacious treatments: a history of
salicylate therapy in rheumatoid arthritis. Persp. Biol. Med. 1981,
31, 78-92.
https://doi.org/10.1353/pbm.1981.0053
https://muse.jhu.edu/article/404496/pdf
277. Goodwin,
J.S. The tomato effect: rejection of highly efficacious therapies.
JAMA 1984, 251,
2387–2390.
https://dx.doi.org/10.1001/jama.1984.03340420053025
https://www.researchgate.net/publication/16827181_The_Tomato_effect_Rejection_of_highly_efficacious_therapies
www.mv.helsinki.fi/home/hemila/birkhauser/Goodwin_1984.pdf
278.
Louhiala, P.; Hemilä, H. Can CAM treatments be evidence-based?
Focus Altern. Complement. Ther. 2014, 19,
84–89.
https://dx.doi.org/10.1111/fct.12110
https://helda.helsinki.fi/handle/10138/228056
https://www.mv.helsinki.fi/home/hemila/H/HH_2014_FACT.pdf