Vitamin C can shorten the length of stay in the ICU: a meta-analysis

Harri Hemilä and Elizabeth Chalker

Nutrients 2019


This is Web page for the references of the paper.

The published paper has DOI-links, but some of the papers have other sources,
that are shown here, but they are not available as links in the paper.

References to which additional links are listed here, are marked with bold.

Harri Hemilä
Department of Public Health
University of Helsinki, Helsinki, Finland
harri.hemila@helsinki.fi
Home: http://www.mv.helsinki.fi/home/hemila
This file: http://www.mv.helsinki.fi/home/hemila/N2019
version 2019-4-25

References

1. Hemilä, H. References to “Vitamin C can shorten the length of stay in the ICU: a meta-analysis” with web-links.
http://www.mv.helsinki.fi/home/hemila/N2019

2. Hess, A.F. Scurvy: Past and Present.
Lippincott: Philadelphia, PA, USA, 1920.
http://chla.library.cornell.edu/cgi/t/text/text-idx?c=chla;idno=2903792
http://chla.library.cornell.edu search Author = Hess
https://www.gutenberg.org/files/40505/40505-h/40505-h.htm
https://archive.org/stream/scurvypastpresen00hessiala/scurvypastpresen00hessiala_djvu.txt
https://archive.org/details/scurvypastpresen00hessiala/page/n4
https://www.amazon.com/Scurvy-past-present-Alfred-Fabian/dp/B006E0RVL6
https://www.amazon.com/Scurvy-Past-Present-Classic-Reprint/dp/0266279023
https://www.amazon.com/Scurvy-Past-Present-Alfred-Hess/dp/1502321270
Hess 1920 pages 88 and 99:
http://www.mv.helsinki.fi/home/hemila/CP/Hess_1920_pages_88_99.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1353801
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524083
See also:
http://www.mv.helsinki.fi/home/hemila/CP/Hess_1932_NEJM_ch.pdf

3. Carpenter, K.J. The History of Scurvy and Vitamin C.
Cambridge University Press: Cambridge, UK, 1986.
https://www.cambridge.org/fi/academic/subjects/history/history-medicine/history-scurvy-and-vitamin-c
https://www.amazon.com/The-History-Scurvy-Vitamin-C/dp/0521347734
https://doi.org/10.1093/jn/117.3.599
https://doi.org/10.1016/0261-5614(89)90056-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1139720
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1491777
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2589114
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590233
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379445

4. Bown, S.R. Scurvy: How a Surgeon, a Mariner and a Gentleman Solved the Greatest Medical Mystery of the Age of Sail.
Summersdale: Chichester, West Sussex, UK, 2003.
http://stephenrbown.net/scurvy-description.php
https://www.amazon.com/Scurvy-Surgeon-Mariner-Gentlemen-Greatest/dp/0312313926
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535077
https://epdf.tips/scurvy-how-a-surgeon-a-mariner-and-a-gentlemen-solved-the-greatest-medical-myste.html
https://www.captaincooksociety.com/home/detail/scurvy-how-a-surgeon-a-mariner-and-a-gentleman-solved-the-greatest-medical-mystery-of-the-age-of-sail-bown-stephen-r-2003
https://www.publishersweekly.com/978-0-312-31391-3

5. Harvie, D.I. Limeys: the True Story of One Man’s War against Ignorance, the Establishment and the Deadly Scurvy.
Sutton: Stroud, Gloucestershire, UK, 2002.
https://www.amazon.com/Limeys-Against-Ignorance-Establishment-Deadly/dp/0750927720
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1124350
https://www.jstor.org/stable/44448080
https://muse.jhu.edu/article/40931
https://muse.jhu.edu/article/40931/pdf
https://muse.jhu.edu/article/172580/summary
https://muse.jhu.edu/article/172580/pdf
https://www.captaincooksociety.com/home/detail/limeys-the-true-story-of-one-man-s-war-against-ignorance-the-establishment-and-the-deadly-scurvy-harvie-david-i-2002

6. Lamb, J. Scurvy: the Disease of Discovery.
Princeton University Press: Princeton, NJ, 2016.
https://press.princeton.edu/titles/10836.html
https://www.amazon.com/Scurvy-Disease-Discovery-Jonathan-Lamb/dp/0691147825
https://www.jstor.org/stable/j.ctt21c4vc3
https://muse.jhu.edu/article/682384
https://doi.org/10.1093/jhmas/jrx029
https://doi.org/10.1017/S0007087417000954
https://doi.org/10.1038/540338a
https://doi.org/10.1086/699347
https://theamericanscholar.org/scurvy-the-disease-of-discovery
https://www.bsls.ac.uk/reviews/early-modern-and-enlightenment/jonathan-lamb-scurvy-the-disease-of-discovery
https://news.nationalgeographic.com/2017/01/scurvy-disease-discovery-jonathan-lamb
http://www.bbc.co.uk/history/british/empire_seapower/captaincook_scurvy_01.shtml
https://www.newscientist.com/article/mg23231002-300-scurvy-a-tale-of-the-sailors-curse-and-a-cure-that-got-lost

7. Wilson, L.G. The clinical definition of scurvy and the discovery of vitamin C. J. Hist. Med. Allied Sci. 1975, 30, 40-60.
https://doi.org/10.1093/jhmas/XXX.1.40

8. Dickman, S.R. The search for the specific factor in scurvy. Perspect. Biol. Med. 1981, 24, 382-395.
https://doi.org/10.1353/pbm.1981.0006

9. Thomas, D.P. Sailors, scurvy and science. J. R. Soc. Med 1997, 90, 50-54.
https://doi.org/10.1177/014107689709000118
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1296121
Comments:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1296241
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1296402
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1296546

10. Hirschmann, J.V. Adult scurvy. J. Am. Acad. Dermatol. 1999, 41, 895-906.
https://doi.org/10.1016/S0190-9622(99)70244-6
http://faculty.washington.edu/andchien/PDFs/HuBio/scurvy.pdf

11. Carpenter, K.J. A short history of nutritional science. Part 2 (1885-1912). J. Nutr. 2003, 133, 975-984.
https://doi.org/10.1093/jn/133.4.975

12. Carpenter, K.J. A short history of nutritional science. Part 3 (1912-1944). J. Nutr. 2003, 133, 3023-3032.
https://doi.org/10.1093/jn/133.10.3023

13. Pimentel, L. Scurvy: historical review and current diagnostic approach. Am. J. Emerg. Med. 2003, 21, 328-332.
https://doi.org/10.1016/S0735-6757(03)00083-4
https://www.researchgate.net/publication/10629258_Scurvy_Historical_Review_and_Current_Diagnostic_Approach

14. Sutton, G. Putrid gums and ‘dead men’s cloaths’: James Lind aboard the Salisbury. J. R. Soc. Med 2003, 96, 605-608.
https://doi.org/10.1177/014107680309601213
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539665
Comments:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079482

15. Magiorkinis, E. Scurvy: past, present and future. Eur. J. Intern Med. 2011, 22, 147-152.
https://doi.org/10.1016/j.ejim.2010.10.006
https://www.researchgate.net/publication/50394446_Scurvy_Past_present_and_future
Comment:
https://doi.org/10.1016/j.ejim.2011.09.007

16. Hemilä, H. Do vitamins C and E affect respiratory infections?
University of Helsinki: Helsinki, Finland, 2006; pp. 5-51, 101-104.
https://hdl.handle.net/10138/20335
https://www.mv.helsinki.fi/home/hemila/history/


See also about scurvy:

https://doi.org/10.1111/j.1753-4887.2009.00205.x
https://www.researchgate.net/publication/26285774_Sailors'_scurvy_before_and_after_James_Lind_-_A_reassessment
http://hekint.org/documents/sailors_scurvy-final.pdf
https://doi.org/10.1016/j.ejim.2011.09.007
https://
doi.org/10.1177/0141076813483090
https://doi.org/10.1258/jrsm.2012.12k090
https://doi.org/10.1080/21533369.2002.9668317



17. Szent-Györgyi, A. Lost in the twentieth century. Annu. Rev. Biochem. 1963, 32, 1-14.
https://doi.org/10.1146/annurev.bi.32.070163.000245
https://profiles.nlm.nih.gov/ps/retrieve/ResourceMetadata/WGBBJJ
http://www.chm.bris.ac.uk/sillymolecules/lost.pdf
See also:
https://profiles.nlm.nih.gov/WG
https://www.mv.helsinki.fi/home/hemila/ASG_King.htm


18. Ashor, A.W. Effect of vitamin C on endothelial function in health and disease: a systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2012, 235, 9–20.
https://doi.org/10.1016/j.atherosclerosis.2014.04.004
https://www.researchgate.net/publication/262148303_Effect_of_vitamin_C_on_endothelial_function_in_health_and_disease_A_systematic_review_and_meta-analysis_of_randomised_controlled_trials

19. Ashor, A.W. Effect of vitamin C and vitamin E supplementation on endothelial function: a systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2015, 113, 1182-1194.
https://doi.org/10.1017/S0007114515000227

20. Thosar, S.S. Antioxidant vitamin C prevents decline in endothelial function during sitting. Med. Sci. Monit. 2015, 21, 1015-1021.
https://doi.org/10.12659/MSM.893192
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401065

21. Juraschek, S.P. Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 95, 1079–1088.
https://doi.org/10.3945/ajcn.111.027995
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325833

22. Oktar, G.L. Biochemical and hemodynamic effects of ascorbic acid and alpha-tocopherol in coronary artery surgery. Scand. J. Clin. Lab. Investig. 2001, 61, 621-629.
https://doi.org/10.1080/003655101753267982

23. Basili, S. Intravenous ascorbic acid infusion improves myocardial perfusion grade during elective percutaneous coronary intervention: relationship with oxidative stress markers. JACC Cardiovasc. Interv. 2010, 3, 221–229.
http://doi.org/10.1016/j.jcin.2009.10.025
https://www.researchgate.net/publication/41507666_Intravenous_Ascorbic_Acid_Infusion_Improves_Myocardial_Perfusion_Grade_During_Elective_Percutaneous_Coronary_Intervention_Relationship_With_Oxidative_Stress_Markers

24. Pignatelli, P. Ascorbic acid infusion blunts CD40L upregulation in patients undergoing coronary stent. Cardiovasc. Ther. 2011, 29, 385-394.
https://doi.org/10.1111/j.1755-5922.2010.00168.x
https://www.researchgate.net/publication/45186901_Ascorbic_Acid_Infusion_Blunts_CD40L_Upregulation_in_Patients_Undergoing_Coronary_Stent

25. Valls, N. Amelioration of persistent left ventricular function impairment through increased plasma ascorbate levels following myocardial infarction. Redox Rep. 2016, 21, 75-83.
http://doi.org/10.1179/1351000215Y.0000000018
https://www.researchgate.net/publication/278040987_Amelioration_of_persistent_left_ventricular_function_impairment_through_increased_plasma_ascorbate_levels_following_myocardial_infarction

26. Ramos, C. Effects of a novel ascorbate-based protocol on infarct size and ventricle function in acute myocardial infarction patients undergoing percutaneous coronary angioplasty. Arch. Med. Sci. 2017, 13, 558-567.
https://doi.org/10.5114/aoms.2016.59713
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420620

27. Polymeropoulos, E. Vitamin C for the prevention of postoperative atrial fibrillation after cardiac surgery: a meta-analysis. Adv. Pharm. Bull. 2016, 6, 243-250.
https://doi.org/10.15171/apb.2016.033
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961983

28. Hemilä, H.; Suonsyrjä, T. Vitamin C for preventing atrial fibrillation in high risk patients: a systematic review and meta-analysis.
BMC Cardiovasc. Disord. 2017, 17, 49.
https://doi.org/10.1186/s12872-017-0478-5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286679

29. Shi, R. Sole and combined vitamin C supplementation can prevent postoperative atrial fibrillation after cardiac surgery: a systematic review and meta-analysis of randomized controlled trials. Clin. Cardiol. 2018, 41, 871-878.
https://doi.org/10.1002/clc.22951
https://www.researchgate.net/publication/324124840_Sole_and_combined_vitamin_C_supplementation_can_prevent_postoperative_atrial_fibrillation_after_cardiac_surgery_A_systematic_review_and_meta-analysis_of_randomized_controlled_trials

30. Sadat, U. Does ascorbic acid protect against contrast-induced acute kidney injury in patients undergoing coronary angiography: a systematic review with meta-analysis of randomized, controlled trials. J. Am. Coll. Cardiol. 2013, 62, 2167-2175.
https://doi.org/10.1016/j.jacc.2013.07.065
https://www.researchgate.net/publication/256331051_Does_Ascorbic_Acid_Protect_Against_Contrast-Induced_Acute_Kidney_Injury_in_Patients_Undergoing_Coronary_Angiography

31. Xu, Y. Vitamins for prevention of contrast-induced acute kidney injury: a systematic review and trial sequential analysis. Am. J. Cardiovasc. Drugs 2018, 18, 373-386.
https://doi.org/10.1007/s40256-018-0274-3
https://www.researchgate.net/publication/324361689_Vitamins_for_Prevention_of_Contrast-induced_Acute_Kidney_Injury_A_Systematic_Review_and_Trial_Sequential_Analysis

32. Ashor AW. Effects of vitamin C supplementation on glycaemic control: a systematic review and meta-analysis of randomised controlled trials. Eur. J. Clin. Nutr. 2017, 71, 1371-1380.
https://doi.org/10.1038/ejcn.2017.24

33. Hemilä, H. Vitamin C may alleviate exercise-induced bronchoconstriction: a meta-analysis.
BMJ Open 2013, 3, e002416.
https://doi.org/10.1136/bmjopen-2012-002416
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686214

34. Hemilä, H. The effect of vitamin C on bronchoconstriction and respiratory symptoms caused by exercise: a review and statistical analysis.
Allergy Asthma Clin. Immunol. 2014, 10, 58.
https://doi.org/10.1186/1710-1492-10-58
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363347

35. Hemilä, H. Vitamin C and common cold-induced asthma: a systematic review and statistical analysis.
Allergy Asthma Clin. Immunol. 2013, 9, 46.
https://doi.org/10.1186/1710-1492-9-46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018579

36. Pauling, L. The significance of the evidence about ascorbic acid and the common cold.
Proc. Natl. Acad. Sci. USA. 1971, 68, 2678-2681.
https://doi.org/10.1073/pnas.68.11.2678
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC389499
https://profiles.nlm.nih.gov/MM/B/B/G/V/_/mmbbgv.pdf
See also:

https://profiles.nlm.nih.gov/MM
https://www.mv.helsinki.fi/home/hemila/pauling
https://www.mv.helsinki.fi/home/hemila/pauling.htm

37. Pauling, L. Ascorbic acid and the common cold. Am. J. Clin. Nutr. 1971, 24, 1294-1299.
https://doi.org/10.1093/ajcn/24.11.1294

38. Hemilä, H.; Herman, Z.S: Vitamin C and the common cold: a retrospective analysis of Chalmers’ review.
J. Am. Coll. Nutr. 1995, 4, 116-123.
http://dx.doi.org/10.1080/07315724.1995.10718483
https://helda.helsinki.fi/handle/10138/42358
http://www.mv.helsinki.fi/home/hemila/H/HH_1995.pdf

39. Hemilä, H. Vitamin C supplementation and common cold symptoms: problems with inaccurate reviews.
Nutrition 1996, 12, 804-809.
https://doi.org/10.1016/S0899-9007(96)00223-7
https://helda.helsinki.fi/handle/10138/225877
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_NUT.pdf

40. Hemilä, H. Vitamin C, the placebo effect, and the common cold: a case study of how preconceptions influence the analysis of results
[comments in 1996, 49, 1985-1987]. J. Clin. Epidemiol. 1996, 49, 1079–1084.
https://doi.org/10.1016/0895-4356(96)00189-8
https://helda.helsinki.fi/handle/10138/225872
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE.pdf
See Discussion:
http://dx.doi.org/10.1016/0895-4356%2896%2900190-4
http://dx.doi.org/10.1016/0895-4356%2896%2900191-6
http://hdl.handle.net/10250/8079
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE2.pdf

41. Hemilä, H.; Chalker, E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2013, CD000980.
https://doi.org/10.1002/14651858.CD000980.pub4
https://helda.helsinki.fi/handle/10138/225864
http://www.mv.helsinki.fi/home/hemila/CC/CochraneColds_2013.pdf
See references with links:
https://www.mv.helsinki.fi/home/hemila/CC
Comments:
http://dx.doi.org/10.1002/ebch.261
http://www.mv.helsinki.fi/home/hemila/H/2008_L_EBCH.pdf

42. Hemilä, H. Vitamin C and infections. Nutrients 2017, 9, 339.
https://doi.org/10.3390/nu9040339
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409678

43. Hemilä, H. Vitamin C and common cold incidence: a review of studies with subjects under heavy physical stress. Int. J. Sports Med. 1996, 17, 379-383.
https://doi.org/10.1055/s-2007-972864
https://helda.helsinki.fi/handle/10138/225881
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_IJSM.pdf

44. Shibuya, N. Efficacy and safety of high-dose vitamin C on complex regional pain syndrome in extremity trauma and surgery: systematic review and meta-analysis. J. Foot Ankle Surg. 2013, 52, 62-66.
https://doi.org/10.1053/j.jfas.2012.08.003
https://www.researchgate.net/publication/230869472_Efficacy_and_Safety_of_High-dose_Vitamin_C_on_Complex_Regional_Pain_Syndrome_in_Extremity_Trauma_and_Surgery-Systematic_Review_and_Meta-Analysis

45. Meena, S. Role of vitamin C in prevention of complex regional pain syndrome after distal radius fractures: a meta-analysis. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 637-641.
https://doi.org/10.1007/s00590-014-1573-2
https://www.researchgate.net/publication/270512921_Role_of_vitamin_C_in_prevention_of_complex_regional_pain_syndrome_after_distal_radius_fractures_a_meta-analysis

46. Chen, S. Effect of perioperative vitamin C supplementation on postoperative pain and the incidence of chronic regional pain syndrome: a systematic review and meta-analysis. Clin. J. Pain. 2016, 32, 179-185.
https://doi.org/10.1097/AJP.0000000000000218

47. Carr, A.C. The role of vitamin C in the treatment of pain: new insights. J. Transl. Med. 2017, 15, 77.
https://doi.org/10.1186/s12967-017-1179-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391567

48. Hemilä, H.; Louhiala, P. Vitamin C may affect lung infections. J. R. Soc. Med 2007, 100, 495-498.
https://doi.org/10.1177/014107680710001109
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099400

49. Hemilä, H.; Louhiala, P. Vitamin C for preventing and treating pneumonia.
Cochrane Database Syst. Rev. 2013, CD005532.
https://doi.org/10.1002/14651858.CD005532.pub3
https://helda.helsinki.fi/handle/10138/225862
http://www.mv.helsinki.fi/home/hemila/CP/2013_Coch_Pneu_CD005532.pdf
See references with links:
https://www.mv.helsinki.fi/home/hemila/CP

50. Crandon, J.H.; Lund, C.C. Vitamin C deficiency in an otherwise normal adult. N. Engl. J. Med. 1940, 222, 748-752.
https://doi.org/10.1056/NEJM194005022221802

51. Crandon, J.H. Experimental human scurvy. N. Engl. J. Med. 1940, 223, 353-369.
https://doi.org/10.1056/NEJM194009052231001

52. Lund, C.C.; Crandon, J.H. Human experimental scurvy and the relation of vitamin C deficiency to postoperative pneumonia and to wound healing. JAMA 1941, 116, 663-668.
https://doi.org/10.1001/jama.1941.02820080003002

53. Vitamin C subcommittee. Vitamin C requirement of human adults. Experimental study of vitamin-C deprivation in man. Lancet 1948, 251, 853-858.
https://doi.org/10.1016/S0140-6736(48)90572-8
http://jameslindlibrary.org/wp-data/uploads/2014/07/Medical_Research_Council_Vitamin_C_SUbcommittee_1948.pdf

54. Bartley, W. Vitamin C Requirement of Human Adults; A Report by the Vitamin C Subcommittee of the Accessory Food Factors Committee. Her Majesty’s Stationery Office (HMSO): London, UK, 1953.

55. Krebs, H.A. The Sheffield experiment on the vitamin C requirement of human adults. Proc. Nutr. Soc. 1953, 12, 237-246.
https://doi.org/10.1079/PNS19530054

56. Hodges, R.E. Experimental scurvy in man. Am. J. Clin. Nutr. 1969, 22, 535–548.
https://doi.org/10.1093/ajcn/22.5.535
http://vorga.org/22-5-535.full.pdf

57. Hood, J. Femoral neuropathy in scurvy. N. Engl. J. Med. 1969, 281, 1292-1293.
https://doi.org/10.1056/NEJM196912042812309

58. Hood, J. Sjögren's syndrome in scurvy. N. Engl. J. Med. 1970, 282, 1120-1124.
https://doi.org/10.1056/NEJM197005142822003

59. Hodges, R.E. What's new about scurvy? Am. J. Clin. Nutr. 1971, 24, 383-384.
https://doi.org/10.1093/ajcn/24.4.383

60. Hodges, R.E. Clinical manifestations of ascorbic acid deficiency in man. Am. J. Clin. Nutr. 1971, 24, 432-443.
https://doi.org/10.1093/ajcn/24.4.432

61. Kinsman, R.A.; Hood, J. Some behavioral effects of ascorbic acid deficiency. Am. J. Clin. Nutr. 1971, 24, 455–464.
https://doi.org/10.1093/ajcn/24.4.455

62. Levine, M. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709.
https://doi.org/10.1073/pnas.93.8.3704
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39676

63. Food and Nutrition Board, Institute of Medicine: Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids;
National Academy Press: Washington, DC, USA, 2000; pp. 95–185.
https://www.ncbi.nlm.nih.gov/pubmed/25077263
https://www.ncbi.nlm.nih.gov/books/NBK225483
https://www.nap.edu/catalog/9810/dietary-reference-intakes-for-vitamin-c-vitamin-e-selenium-and-carotenoids

64. Kieffer, P. Multiple organ dysfunction dramatically improving with the infusion of vitamin C: more support for the persistence of scurvy in our "welfare" society. Intensive Care Med. 2001, 27, 448.
https://doi.org/10.1007/s001340000830

65. Holley, A.D. Scurvy: historically a plague of the sailor that remains a consideration in the modern intensive care unit. Intern. Med. J. 2011, 41, 283-285.
https://doi.org/10.1111/j.1445-5994.2010.02413.x

66. Doll, S.; Ricou, B. Severe vitamin C deficiency in a critically ill adult: a case report. Eur. J. Clin. Nutr. 2013, 67, 881-882.
https://doi.org/10.1038/ejcn.2013.42

67. Weinstein, M. An orange a day keeps the doctor away: scurvy in the year 2000. Pediatrics 2001, 108, E55.
http://pediatrics.aappublications.org/content/108/3/e55

68. Duvall, M.G. Pulmonary hypertension associated with scurvy and vitamin deficiencies in an autistic child. Pediatrics 2013, 132, e1699-e1703.
https://doi.org/10.1542/peds.2012-3054

69. Bennett, S.E. Case 22-2018: a 64-year-old man with progressive leg weakness, recurrent falls, and anemia. N. Engl. J. Med. 2018, 379, 282-289.
https://doi.org/10.1056/NEJMcpc1802826

70. Shafar, J. Rapid reversion of electrocardiographic abnormalities after treatment in two cases of scurvy. Lancet 1967, 290, 176-178.
https://doi.org/10.1016/S0140-6736(67)90004-9

71. Singh, D.; Chan, W. Cardiomegaly and generalized oedema due to vitamin C deficiency. Singapore Med. J. 1974, 15, 60-63.
http://smj.sma.org.sg/1501/1501smj11.pdf

72. Meisel, J.L.; McDowell, R.K. Case 39-1995: a 72-year-old man with exertional dyspnea, fatigue, and extensive ecchymoses and purpuric lesions. N. Engl. J. Med. 1995, 333, 1695-1702.
https://doi.org/10.1056/NEJM199512213332508

73. Mertens, M.T.; Gertner, E. Rheumatic manifestations of scurvy: a report of three recent cases in a major urban center and a review. Semin. Arthritis Rheum. 2011, 41, 286-290.
https://doi.org/10.1016/j.semarthrit.2010.10.005

74. Kupari, M.; Rapola, J. Reversible pulmonary hypertension associated with vitamin C deficiency. Chest 2012, 142, 225-227.
https://doi.org/10.1378/chest.11-1857

75. Zipursky, J.S. A rare presentation of an ancient disease: scurvy presenting as orthostatic hypotension. BMJ Case Rep. 2014, 2014, bcr2013201982.
https://doi.org/10.1136/bcr-2013-201982

76. Abbas, F. Reversible right heart failure in scurvy: rediscovery of an old observation. Circ. Heart Fail. 2016, 9, e003497.
https://doi.org/10.1161/CIRCHEARTFAILURE.116.003497

77. Velandia, B. Scurvy is still present in developed countries. J. Gen. Intern. Med. 2008, 23, 1281-1284.
https://doi.org/10.1007/s11606-008-0577-1

78. Woodier, N.; Koytzoumis, V. Scurvy: presentation and skin manifestations of a not so uncommon condition. Emerg. Med. J. 2012, 29, 103.
https://doi.org/10.1136/emermed-2011-200417

79. Bonsall, A. Never surprise a patient with scurvy. Int. J. Dermatol. 2017, 56, 1488-1489.
https://doi.org/10.1111/ijd.13723

80. Lux-Battistelli, C.; Battistelli, D. Latent scurvy with tiredness and leg pain in alcoholics: an underestimated disease three case reports. Medicine (Baltimore) 2017, 96, e8861.
https://doi.org/10.1097/MD.0000000000008861

81. Jiang, A.W. Scurvy, a not-so-ancient disease. Am. J. Med. 2018, 131, e185-e186.
https://doi.org/10.1016/j.amjmed.2017.12.007

82. Hunt, C. The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int. J. Vitam. Nutr. Res. 1994, 64, 212-219.
http://www.mv.helsinki.fi/home/hemila/CP/Hunt_1994_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Hunt_1994_bm.pdf
https://www.ncbi.nlm.nih.gov/pubmed/7814237

83. Fain, O. Scurvy in patients with cancer. BMJ 1998, 316, 1661-1662.
https://doi.org/10.1136/bmj.316.7145.1661
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1113239

84. Teixeira, A. Vitamin C deficiency in elderly hospitalized patients. Am. J. Med. 2001, 111, 502.
https://doi.org/10.1016/S0002-9343(01)00893-2
https://www.researchgate.net/publication/11662753_Vitamin_C_deficiency_in_elderly_hospitalized_patients

85. Fain, O. Hypovitaminosis C in hospitalized patients. Eur. J. Intern. Med. 2003, 14, 419-425.
http://dx.doi.org/10.1016/j.ejim.2003.08.006
https://www.researchgate.net/publication/9011213_Hypovitaminosis_C_in_hospitalized_patients

86. Mayland, C.R. Vitamin C deficiency in cancer patients. Palliat. Med. 2005, 19, 17-20.
https://doi.org/10.1191/0269216305pm970oa
https://www.researchgate.net/publication/8041529_Vitamin_C_deficiency_in_cancer_patients

87. Gan, R. Vitamin C deficiency in a university teaching hospital. J. Am. Coll. Nutr. 2008, 27, 428-433.
https://doi.org/10.1080/07315724.2008.10719721
https://www.researchgate.net/publication/23302990_Vitamin_C_Deficiency_in_a_University_Teaching_Hospital

87. Raynaud-Simon, A. Scurvy in hospitalized elderly patients. J. Nutr. Health Aging 2010, 14, 407-410.
https://doi.org/10.1007/s12603-010-0032-y
https://www.researchgate.net/publication/45114787_Scurvy_in_hospitalized_elderly_patients

89. Ravindran, P. Vitamin C deficiency in an Australian cohort of metropolitan surgical patients. Pathology 2018, 50, 654-658.
https://doi.org/10.1016/j.pathol.2018.07.004
https://www.researchgate.net/publication/327355674_Vitamin_C_deficiency_in_an_Australian_cohort_of_metropolitan_surgical_patients

90. MacLennan, W.J.; Hamilton, J.C. The effect of acute illness on leucocyte and plasma ascorbic acid levels. Br. J. Nutr. 1977, 38, 217-223.
https://doi.org/10.1079/BJN19770081

91. Ballmer, P.E. Depletion of plasma vitamin C but not of vitamin E in response to cardiac operations [correction in 1995, 110, 1972]. J. Thor. Cardiovasc. Surg. 1994, 108, 311–320.
https://www.jtcvs.org/article/S0022-5223(94)70013-3/fulltext

92. Borrelli, E. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit. Care Med. 1996, 24, 392-397.
https://doi.org/10.1097/00003246-199603000-00006
https://www.researchgate.net/publication/14574186_Plasma_concentrations_of_cytokines_their_soluble_receptors_and_antioxidant_vitamins_can_predict_the_development_of_multiple_organ_failure_in_patients_at_risk

93. Schorah, C.J. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am. J. Clin. Nutr. 1996, 63, 760-765.
https://doi.org/10.1093/ajcn/63.5.760
https://www.researchgate.net/publication/14585919_Total_Vitamin_C_ascorbic_acid_and_dehydroascorbic_acid_concentrations_in_plasma_of_critically_ill_patients

94. Galley, H.F. Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radic. Biol. Med. 1996, 20, 139-143.
https://doi.org/10.1016/0891-5849(95)02022-5

95.  The reference to 2002 paper (below) was erroneous. The correct reference should have been:

Metnitz GH, et al. Acta Anaesthesiol Scand. 2000 Mar;44(3):236-40
https://www.ncbi.nlm.nih.gov/pubmed/10714834
https://doi.org/10.1034/j.1399-6576.2000.440304.x

    The selection of this wrong reference with a PubMed search was caused by tight dead line when preparing the manuscript:
   
Metnitz, P.G. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit. Care Med. 2002, 30, 2051-2058.    
    https://doi.org/10.1097/00003246-200209000-00016
    https://www.researchgate.net/publication/11105182_Effect_of_acute_renal_failure_requiring_renal_replacement_therapy_on_outcome_in_critically_ill_patients

96. Lassnigg, A. Influence of intravenous vitamin E supplementation in cardiac surgery on oxidative stress: a double-blinded, randomized, controlled study. Br. J. Anaesthesia. 2003, 90, 148–154.
https://doi.org/10.1093/bja/aeg042
https://www.researchgate.net/publication/10942024_Influence_of_intravenous_vitamin_E_supplementation_in_cardiac_surgery_on_oxidative_stress_A_double-blinded_randomized_controlled_study

97. Doise, J.M. Plasma antioxidant status in septic critically ill patients: a decrease over time. Fundam. Clin. Pharmacol. 2008, 22, 203-209.
https://doi.org/10.1111/j.1472-8206.2008.00573.x

98. Evans-Olders, R. Metabolic origin of hypovitaminosis C in acutely hospitalized patients. Nutrition 2010, 26, 1070-1074.
https://doi.org/10.1016/j.nut.2009.08.015
https://www.researchgate.net/publication/40695844_Metabolic_origin_of_hypovitaminosis_C_in_acutely_hospitalized_patients

99. Rodemeister, S. Massive and long-lasting decrease in vitamin C plasma levels as a consequence of extracorporeal circulation. Nutrition 2014, 30, 673–678.
https://doi.org/10.1016/j.nut.2013.10.026
https://www.researchgate.net/publication/259134426_Massive_and_long-lasting_decrease_in_vitamin_C_plasma_levels_as_a_consequence_of_extracorporeal_circulation

100. Katundu, K.G.H. An observational study on the relationship between plasma vitamin C, blood glucose, oxidative stress, endothelial dysfunction and outcome in patients with septic shock. Southern African J. Crit. Care 2016, 32, 21-27.
http://dx.doi.org/10.7196/SAJCC.2016.v32i1.270

101. Carr, A.C. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care. 2017, 21, 300.
https://doi.org/10.1186/s13054-017-1891-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725835

102. Long, C.L. Ascorbic acid dynamics in the seriously ill and injured. J. Surg. Res. 2003, 109, 144-148.
https://doi.org/10.1016/S0022-4804(02)00083-5
https://www.researchgate.net/publication/10849886_Ascorbic_acid_dynamics_in_the_seriously_ill_and_injured

103. Rümelin, A. Early postoperative substitution procedure of the antioxidant ascorbic acid. J. Nutr. Biochem. 2005, 16, 104-108.
https://doi.org/10.1016/j.jnutbio.2004.10.005
https://www.researchgate.net/publication/8051293_Early_postoperative_substitution_procedure_of_the_antioxidant_ascorbic_acid

104. Rümelin, A. Metabolic clearance of the antioxidant ascorbic acid in surgical patients. J. Surg. Res. 2005, 129, 46-51.
https://doi.org/10.1016/j.jss.2005.03.017
https://www.researchgate.net/publication/7675256_Metabolic_Clearance_of_the_Antioxidant_Ascorbic_Acid_in_Surgical_Patients1

105. de Grooth, H.J. Vitamin C pharmacokinetics in critically ill patients: a randomized trial of four iv regimens. Chest 2018, 153, 1368-1377. https://doi.org/10.1016/j.chest.2018.02.025
https://www.researchgate.net/publication/323595550_Vitamin-C_pharmacokinetics_in_critically_ill_patients_a_randomized_trial_of_four_intravenous_regimens

106. Dingchao, H. The protective effects of high-dose ascorbic acid on myocardium against reperfusion injury during and after cardiopulmonary bypass. Thorac. Cardiovasc. Surg. 1994, 42, 276-278.
https://doi.org/10.1055/s-2007-1016504

107. Tanaka, H. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch. Surg. 2000, 135, 326–331.
https://doi.org/10.1001/archsurg.135.3.326
www.talkingaboutthescience.com/studies/Tanaka2000.pdf

108. Eslami, M. Oral ascorbic acid in combination with beta-blockers is more effective than beta-blockers alone in the prevention of atrial fibrillation after coronary artery bypass grafting. Tex. Heart Inst. J. 2007, 34, 268–274.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1995047

109. Colby, J.A. Effect of ascorbic acid on inflammatory markers after cardiothoracic surgery. Am. J. Health-Syst. Pharm. 2011, 68, 1632–1639.
https://doi.org/10.2146/ajhp100703
https://www.researchgate.net/publication/51585731_Effect_of_ascorbic_acid_on_inflammatory_markers_after_cardiothoracic_surgery

110. Papoulidis, P. The role of ascorbic acid in the prevention of atrial fibrillation after elective on-pump myocardial revascularization surgery: a single-center experience, a pilot study. Interact. Cardiovasc. Thorac. Surg. 2011, 12, 121–124.
https://doi.org/10.1510/icvts.2010.240473
https://www.researchgate.net/publication/49629658_The_role_of_ascorbic_acid_in_the_prevention_of_atrial_fibrillation_after_elective_on-pump_myocardial_revascularization_surgery_A_single-center_experience_-_a_pilot_study

111. Bjordahl, P.M. Perioperative supplementation with ascorbic acid does not prevent atrial fibrillation in coronary artery bypass graft patients. Am. J. Surg. 2012, 204, 862–867.
https://doi.org/10.1016/j.amjsurg.2012.03.012

112. Donovan, P.C.; Kramer, R.S. Prophylaxis to reduce postoperative atrial fibrillation in cardiac surgery. ClinicalTrials.gov NCT00953212. 2012.
https://clinicaltrials.gov/ct2/show/NCT00953212

113. Dehghani, M.R. Effect of oral vitamin C on atrial fibrillation development after isolated coronary artery bypass grafting surgery: a prospective randomized clinical trial. Cardiol. J. 2014, 21, 492–499.
https://doi.org/10.5603/CJ.a2013.0154
https://journals.viamedica.pl/cardiology_journal/article/view/CJ.a2013.0154/31780

114. Ebade, A. Ascorbic acid versus magnesium for the prevention of atrial fibrillation after coronary artery bypass grafting surgery. Egyptian J. Cardiothoracic Anesthesia. 2014, 8, 59-65.
https://doi.org/10.4103/1687-9090.143259
http://www.ejca.eg.net/article.asp?issn=1687-9090;year=2014;volume=8;issue=2;spage=59;epage=65;aulast=Ebade

115. Fowler, A.A. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J. Transl. Med. 2014, 12, 32.
https://doi.org/10.1186/1479-5876-12-32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937164

116. Sarzaeem, M.; Shayan, N. Vitamin C in prevention of atrial fibrillation after coronary artery bypass graft: double blind randomized clinical trial [in Farsi (Persian)]. Tehran University Med. J. 2014, 71, 787–793.
http://www.mv.helsinki.fi/home/hemila/T14.pdf
The Farsi (Persian) version is available at:
http://tumj.tums.ac.ir/browse.php?a_id=5853&sid=1&slc_lang=en
with a copy at:
http://www.mv.helsinki.fi/home/hemila/Sarzaeem_2014_Farsi.pdf

117. Zabet, M.H. Effect of high-dose ascorbic acid on vasopressor's requirement in septic shock. J. Res. Pharm. Pract. 2016, 5, 94-100.
https://doi.org/10.4103/2279-042X.179569
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843590

118. Alshafey, M.K. Role of ascorbic acid in reduction of the incidence of the atrial fibrillation in patients under beta-blocker and undergoing coronary artery bypass graft operation in early post-operative period. J. Egyptian Soc. Cardio-Thoracic Surgery 2017, 25, 198-203.
https://doi.org/10.1016/j.jescts.2017.04.003
https://pdfs.semanticscholar.org/8d81/55f6d30e7c29b5432922484b831fd0019a06.pdf

119. Antonic, M. Perioperative ascorbic acid supplementation does not reduce the incidence of postoperative atrial fibrillation in on-pump coronary artery bypass graft patients. J. Cardiol. 2017, 69, 98–102.
https://doi.org/10.1016/j.jjcc.2016.01.010

120. Amini, S. Selenium, vitamin C and N-acetylcysteine do not reduce the risk of acute kidney injury after off-pump CABG: a randomized clinical trial. Braz. J. Cardiovasc. Surg. 2018, 33, 129-134.
https://doi.org/10.21470/1678-9741-2017-0071
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985838

121. Mirmohammadsadeghi, M. Preventive use of ascorbic acid for atrial fibrillation after coronary artery bypass graft surgery. Heart Surg. Forum 2018, 21, E415-E417.
https://doi.org/10.1532/hsf.1938
https://www.researchgate.net/publication/328036409_Preventive_Use_of_Ascorbic_Acid_For_Atrial_Fibrillation_After_Coronary_Artery_Bypass_Graft_Surgery

122. Abdoulhossein, D. Effect of vitamin C and vitamin E on lung contusion: a randomized clinical trial study. Ann. Med. Surg. (Lond) 2018, 36, 152-157.
https://doi.org/10.1016/j.amsu.2018.10.026
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240669

123. Sadeghpour, A. Impact of vitamin C supplementation on post-cardiac surgery ICU and hospital length of stay. Anesth. Pain Med. 2015, 5, e25337.
https://doi.org/10.5812/aapm.25337
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350190

124. Montori, V.M.; Guyatt, G.H. Intention-to-treat principle. CMAJ 2001, 165, 1339-1341.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC81628

125. McCoy, C.E. Understanding the intention-to-treat principle in randomized controlled trials. West. J. Emerg. Med. 2017, 18, 1075-1078.
https://doi.org/10.5811/westjem.2017.8.35985

126. DeMets, D.L.; Cook, T. Challenges of non-intention-to-treat analyses. JAMA 2019, 321, 145-146.
https://doi.org/10.1001/jama.2018.19192

127. Friedrich, J.O. Ratio of means for analyzing continuous outcomes in meta-analysis performed as well as mean difference methods. J. Clin. Epidemiol. 2011, 64, 556–564.
https://doi.org/10.1016/j.jclinepi.2010.09.016

128. Friedrich, J.O. The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study. BMC Med. Res. Methodol. 2008, 8, 32.
https://doi.org/10.1186/1471-2288-8-32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430201

129. Hemilä, H. Many continuous variables such as the duration of the common cold should be analyzed using the relative scale. J. Clin. Epidemiol. 2016, 78, 128–129.
http://dx.doi.org/10.1016/j.jclinepi.2016.03.020
https://helda.helsinki.fi/handle/10138/173096
https://www.mv.helsinki.fi/home/hemila/H/2016_L_JCE.pdf

130. Hemilä, H. Duration of the common cold and similar continuous outcomes should be analyzed on the relative scale: a case study of two zinc lozenge trials. BMC Med. Res. Methodol. 2017, 17, 82.
https://doi.org/10.1186/s12874-017-0356-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427521

131. R Core Team. R Project for Statistical Computing, 2019. https://www.r-project.org

132. Higgins, J.P.T. Measuring inconsistency in meta-analysis. BMJ 2003, 327, 557–560.
https://doi.org/10.1136/bmj.327.7414.557
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC192859

133. Englard, S.; Seifter, S. The biochemical functions of ascorbic acid. Annu. Rev. Nutr. 1986, 6, 365–406.
https://doi.org/10.1146/annurev.nu.06.070186.002053

134. Levine, M.; Morita, K. Ascorbic acid in endocrine systems. Vitam. Horm. 1985, 42, 1-64.
http://dx.doi.org/10.1016/S0083-6729(08)60060-6

135. Levine, M. New concepts in the biology and biochemistry of ascorbic acid. N. Engl. J. Med. 1986, 314, 892-902.
https://doi.org/10.1056/NEJM198604033141407
https://www.researchgate.net/publication/262790946_New_Concepts_in_the_Biology_and_Biochemistry_of_Ascorbic_Acid

136. Rice, M.E. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 2000, 23,
209–216.
https://doi.org/10.1016/S0166-2236(99)01543-X
https://www.researchgate.net/publication/12534895_Ascorbate_regulation_and_its_neuroprotective_role_in_the_brain

137. Holowatz, L.A. Ascorbic acid: what do we really NO? J. Appl. Physiol 2011, 111, 1542-1543.
https://doi.org/10.1152/japplphysiol.01187.2011

138. May, J.M. Mechanisms of ascorbic acid stimulation of norepinephrine synthesis in neuronal cells. Biochem. Biophys. Res. Commun. 2012, 426, 148–152.
https://doi.org/10.1016/j.bbrc.2012.08.054
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449284

139. Figueroa-Méndez, R. Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Front. Physiol. 2015, 6, 397.
https://doi.org/10.3389/fphys.2015.00397
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688356

140. Carr, A.C. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? Crit. Care 2015, 19, 418.
https://doi.org/10.1186/s13054-015-1131-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661979

141. Kumar, D. 60 YEARS OF POMC: from POMC and α-MSH to PAM, molecular oxygen, copper, and vitamin C. J. Mol. Endocrinol. 2016, 56, T63-T76.
https://doi.org/10.1530/JME-15-0266
https://www.researchgate.net/publication/287124676_60_YEARS_OF_POMC_From_POMC_and_aMSH_to_PAM_molecular_oxygen_copper_and_vitamin_C

142. Manning, J. Vitamin C promotes maturation of T-cells. Antioxid. Redox Signal. 2013, 19, 2054–2067.
http://dx.doi.org/10.1089/ars.2012.4988
https://www.researchgate.net/publication/233948089_Vitamin_C_Promotes_Maturation_of_T-Cells

143. May, J.M.; Harrison, F.E. Role of vitamin C in the function of the vascular endothelium. Antioxid. Redox Signal. 2013, 19, 2068-2083.
https://doi.org/10.1089/ars.2013.5205
http://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23581713

144. Monfort, A.; Wutz, A. Breathing-in epigenetic change with vitamin C. EMBO Rep. 2013, 14, 337-346.
https://doi.org/10.1038/embor.2013.29
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615655

145. Young, J.I. Regulation of the epigenome by vitamin C. Annu. Rev. Nutr. 2015, 35, 545-564.
https://doi.org/10.1146/annurev-nutr-071714-034228
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506708

146. Camarena, V.; Wang, G. The epigenetic role of vitamin C in health and disease. Cell. Mol. Life. Sci. 2016, 73, 1645-1658.
https://doi.org/10.1007/s00018-016-2145-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805483

147. Ang, A. Vitamin C and immune cell function in inflammation and cancer. Biochem. Soc. Trans. 2018, 46, 1147-1159.
https://doi.org/10.1042/BST20180169
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195639

148. Mandl, J. Vitamin C: update on physiology and pharmacology. Br. J. Pharmacol. 2009, 157, 1097-1110.
https://doi.org/10.1111/j.1476-5381.2009.00282.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743829

149. Padayatty, S.J.; Levine, M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463-493.
https://doi.org/10.1111/odi.12446
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959991

150. Webb, A.L.; Villamor, E. Update: Effects of antioxidant and non-antioxidant vitamin supplementation on immune function. Nutr. Rev. 2007, 65, 181–217.
https://doi.org/10.1111/j.1753-4887.2007.tb00298.x
https://www.researchgate.net/publication/6269642_Update_Effects_of_Antioxidant_and_Non-Antioxidant_Vitamin_Supplementation_on_Immune_Function

151. Carr, A.C. Vitamin C and immune function. Nutrients 2017, 9, 1211.
https://doi.org/10.3390/nu9111211
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707683

152. Wilson, J.X. Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium. Biofactors 2009, 35, 5-13.
https://doi.org/10.1002/biof.7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767105

153. Tyml, K. Vitamin C and microvascular dysfunction in systemic inflammation. Antioxidants (Basel) 2017, 6, E49.
https://doi.org/10.3390/antiox6030049
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618077

154. Harrison, F.E.; May, J.M. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med. 2009, 46, 719-730.
https://doi.org/10.1016/j.freeradbiomed.2008.12.018
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649700

155. Brown, T.M. Neuropsychiatric scurvy. Psychosomatics 2015, 56, 12-20.
https://doi.org/10.1016/j.psym.2014.05.010

156. Carnes, C.A. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res. 2001, 89, E32–E38.
http://dx.doi.org/10.1161/hh1801.097644

157. Kim, H. Vitamin C prevents stress-induced damage on the heart caused by the death of cardiomyocytes, through down-regulation of the excessive production of catecholamine, TNF-α, and ROS production in Gulo(-/-)Vit C-Insufficient mice. Free Radic. Biol. Med. 2013, 65, 573-583.
https://doi.org/10.1016/j.freeradbiomed.2013.07.023

158. Talkhabi, M. Ascorbic acid promotes the direct conversion of mouse fibroblasts into beating cardiomyocytes. Biochem. Biophys. Res. Comm. 2015, 463, 699–705.
https://doi.org/10.1016/j.bbrc.2015.05.127

159. Akolkar, G. Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy. Am. J. Physiol. Heart. Circ. Physiol. 2017, 313, H795-H809.
https://doi.org/10.1152/ajpheart.00253.2017

160. Levin, N.A.; Greer, K.E. Scurvy in an unrepentant carnivore. Cutis 2000, 66, 39-44.
https://www.mdedge.com/dermatology/article/66468/scurvy-unrepentant-carnivore

161. Pangan, A.L.; Robinson, D. Hemarthrosis as initial presentation of scurvy. J. Rheumatol. 2001, 28, 1923-1925.
http://www.jrheum.org/content/28/8/1923

162. Bingham, A.C. A 16-year-old boy with purpura and leg pain. J. Pediatr. 2003, 142, 560-563.
https://doi.org/10.1067/mpd.2003.186

163. Reed, R.M. Captain Ignose to the rescue. Am. J. Med. 2010, 123, 704-706.
https://doi.org/10.1016/j.amjmed.2010.04.003

164. De Luna, R.H. Scurvy: an often forgotten cause of bleeding. Am. J. Hematol. 2003, 74, 85-87.
https://doi.org/10.1002/ajh.10354

165. Patrozou, E.; Opal, S. Scurvy masquerading as infectious cellulitis. Intern. Med. J. 2008, 38, 452-453.
https://doi.org/10.1111/j.1445-5994.2008.01662.x

166. Lau, H. Skin, muscle and joint disease from the 17th century: scurvy. Int. J. Rheum. Dis. 2009, 12, 361-365.
https://doi.org/10.1111/j.1756-185X.2009.01437.x

167. Bernardino, V.R. 2011: the scurvy Odyssey. BMJ Case Rep. 2012, 2012, bcr0220125819.
https://doi.org/10.1136/bcr-02-2012-5819

168. Smith, A.; Di Primio, G.; Humphrey-Murto, S. Scurvy in the developed world. CMAJ 2011, 183, E752-E755.
https://doi.org/10.1503/cmaj.091938

169. Ciccocioppo, R. An unconventional case of scurvy. Eur. J. Clin. Nutr. 2013, 67, 1336-1337.
https://doi.org/10.1038/ejcn.2013.181

170. Fleming, J.D. Pain, purpura and curly hairs. Clin. Exp. Dermatol. 2013, 38, 940-942.
https://doi.org/10.1111/ced.12118

171. Zammit, P. Vitamin C deficiency in an elderly adult. J. Am. Geriatr. Soc. 2013, 61, 657-658.
https://doi.org/10.1111/jgs.12183

172. Kluesner, N.H.; Miller, D.G. Scurvy: malnourishment in the land of plenty. J. Emerg. Med. 2014, 46, 530-502.
https://doi.org/10.1016/j.jemermed.2013.09.027

173. Dufrost, V. Unexpected cause of bleeding. Am. J. Med. 2017, 130, e387-e388.
https://doi.org/10.1016/j.amjmed.2017.03.016

174. Kinlin, L.M. Scurvy as a mimicker of osteomyelitis in a child with autism spectrum disorder. Int. J. Infect. Dis. 2018, 69, 99-102.
https://doi.org/10.1016/j.ijid.2018.02.002

175. Berkram, P. A landlubber with an ancient mariner's leaky vessels. Gastrointest. Endosc. 2007, 66, 1065-1066.
https://doi.org/10.1016/j.gie.2007.03.1036

176. Mitchell, L.V. A historic disease still prevalent today. BMJ 2017, 356, j1013.
https://doi.org/10.1136/bmj.j1013

177. Schuman, R.W.; Rahmin, M.; Dannenberg, A.J. Scurvy and the gastrointestinal tract. Gastrointest. Endosc. 1997, 45, 195-196.
https://doi.org/10.1016/S0016-5107(97)70250-5

178. Blee, T.H. Hemorrhage associated with vitamin C deficiency in surgical patients. Surgery 2002, 131, 408-412.
https://doi.org/10.1067/msy.2002.122373

179. Choh, C.T. Unrecognised scurvy. BMJ 2009, 339, b3580.
https://doi.org/10.1136/bmj.b3580

180. Ohta A. Scurvy with gastrointestinal bleeding. Endoscopy 2013, 45(Suppl 2), E147-E148.
https://doi.org/10.1055/s-0032-1326456

181. Poussier, M. Intestinal disorders caused by scurvy. Clin. Res. Hepatol. Gastroenterol. 2014, 38, e39-e40.
https://doi.org/10.1016/j.clinre.2013.08.010

182. DeSantis, J. Scurvy and psychiatric symptoms. Perspect. Psychiatr. Care 1993, 29, 18-22.
https://doi.org/10.1111/j.1744-6163.1993.tb00397.x

183. Shavit, I.; Brown, T.M. Simultaneous scurvy and Wernicke's encephalopathy in a patient with an ascorbate-responsive dyskinesia. Psychosomatics 2013, 54, 181-186.
https://doi.org/10.1016/j.psym.2012.07.009

184. Noble, M. Old disease, new look? A first report of parkinsonism due to scurvy, and of refeeding-induced worsening of scurvy. Psychosomatics 2013, 54, 277-283.
https://doi.org/10.1016/j.psym.2013.02.001

185. Wright, A.D. The neuropsychiatry of scurvy. Psychosomatics 2014, 55, 179-185.
https://doi.org/10.1016/j.psym.2013.10.003

186. Finkle, P. Vitamin C saturation levels in the body in normal subjects and in various pathological conditions. J. Clin. Invest. 1937, 16, 587-593.
https://doi.org/10.1172/JCI100885

187. Lund, C.C. The effect of surgical operations on the level of cevitamic acid in the blood plasma. N. Engl. J. Med. 1939, 221, 123-127.
https://doi.org/10.1056/NEJM193907272210401

188. Abbasy, M.A. Vitamin C and infection: excretion of vitamin C in osteomyelitis. Lancet 1937, 230, 177-180.
https://doi.org/10.1016/S0140-6736(00)87937-4

189. Evans, W. Vitamin C in heart failure. Lancet 1938, 231, 308-309.
https://doi.org/10.1016/S0140-6736(00)62412-1

190. Editorial. Ascorbic acid as a diuretic. Lancet 1944, 244, 6310.
https://doi.org/10.1016/S0140-6736(00)42799-6

191. Hochwald, A. Vitamin C in the treatment of croupous pneumonia [in German]. Dtsch. Med. Wochenschr. 1937, 63, 182–184.
http://www.mv.helsinki.fi/home/hemila/T8.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Hochwald_1937_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Hochwald_1937_bm.pdf

192. Gander, J.; Niederberger, W. Vitamin C in the treatment of pneumonia [in German]. Münch. Med. Wochenschr. 1936, 83, 2074–2077.
http://www.mv.helsinki.fi/home/hemila/T1.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Gander_1936_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Gander_1936_bm.pdf

193. Bohnholtzer, E. Contribution to the question of pneumonia treatment with vitamin C [in German]. Dtsch. Med. Wochenschr. 1937, 63, 1001–1003.
http://www.mv.helsinki.fi/home/hemila/T7.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Bohnholzer_1937_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Bohnholzer_1937_bm.pdf

194. Klenner, F.R. Virus pneumonia and its treatment with vitamin C. South. Med. Surg. 1948, 110, 36–38.
http://www.mv.helsinki.fi/home/hemila/CP/Ch4_Klenner1948VirusPneumonia.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Klenner_1948_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Klenner_1948_bm.pdf
Available via:
http://www.mv.helsinki.fi/home/hemila/klenner.htm

195. Klenner, F.R. Massive doses of vitamin C and the virus diseases. South. Med. Surg. 1951, 113, 101–107.
http://www.mv.helsinki.fi/home/hemila/CP/Ch6_Klenner1951VirusDiseases.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Klenner_1951_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Klenner_1951_bm.pdf
Available via:
http://www.mv.helsinki.fi/home/hemila/klenner.htm

196. Dalton, W.L. Massive doses of vitamin C in the treatment of viral diseases. J. Indiana State Med. Assoc. 1962, 55, 1151–1154.
http://www.ncbi.nlm.nih.gov/pubmed/13883259
http://www.mv.helsinki.fi/home/hemila/CP/Ch20_Dalton_VirusDiseases.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Dalton_1962_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Dalton_1962_bm.pdf

197. Stone, I. The Healing Factor: Vitamin C against Disease. Grosset Dunlap: New York, NY, USA, 1972.
https://www.amazon.com/Healing-Factor-Vitamin-Against-Disease/dp/0448021307
Available via:
http://www.mv.helsinki.fi/home/hemila/klenner.htm

198. Mochalkin, N.I. Ascorbic acid in the complex therapy of acute pneumonia [in Russian].
Voen. Med. Zh. 1970, 9, 17–21.
https://www.ncbi.nlm.nih.gov/pubmed/5515787
http://www.mv.helsinki.fi/home/hemila/T5.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Mochalkin_1970_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Mochalkin_1970_bm.pdf

199. Kimbarowski, J.A. Colored precipitation reaction of the urine according to Kimbarowski as an index of the effect of ascorbic acid during treatment of viral influenza [in German]. Dtsch. Gesundheitsw. 1967, 22, 2413–2418.
https://www.ncbi.nlm.nih.gov/pubmed/5614915
http://www.mv.helsinki.fi/home/hemila/T4.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Kimbarowski_1967_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CP/Kimbarowski_1967_bm.pdf

200. Hemilä, H.; Louhiala, P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2007, CD005532.
https://doi.org/10.1002/14651858.CD005532.pub2
https://www.mv.helsinki.fi/home/hemila/H/HH_2007_CochPneu.pdf
The above Cochrane review (2007) concluded in the Abstract:
https://www.ncbi.nlm.nih.gov/pubmed/17253561
”The prophylactic use of vitamin C to prevent pneumonia should be further investigated in populations who have high incidence of pneumonia, especially if dietary vitamin C intake is low. Similarly, the therapeutic effects of vitamin C should be studied, especially in patients with low plasma vitamin C levels.”

However, the strong evidence indicating that vitamin C influences pneumonia incidence in some contexts was shown one decade even earlier, in 1997, see:
https://www.ncbi.nlm.nih.gov/pubmed/9306475
https://doi.org/10.1097/00006454-199709000-00003
http://www.mv.helsinki.fi/home/hemila/H/HH_1997_PIDJ.pdf

201. Hume, R.; Weyers, E. Changes in leucocyte ascorbic acid during the common cold. Scott. Med. J. 1973, 18, 3–7.
https://doi.org/10.1177/003693307301800102
http://www.mv.helsinki.fi/home/hemila/metabolism/Hume_1973_ch.pdf
http://www.mv.helsinki.fi/home/hemila/metabolism/Hume_1973_bm.pdf

202. Hemilä, H. Vitamin C intake and susceptibility to the common cold. Br. J. Nutr. 1997, 77, 59–72.
http://dx.doi.org/10.1017/S0007114500002889
http://www.mv.helsinki.fi/home/hemila/H/HH_1997_BJN.pdf

203. Bates, C.J.; Schorah, C.J.; Hemilä, H. Vitamin C intake and susceptibility to the common cold: invited comments and reply. Br. J. Nutr. 1997, 78, 857–866.
http://dx.doi.org/10.1079/BJN19970201
http://www.mv.helsinki.fi/home/hemila/H/HH_1997_BJN2.pdf

204. Hemilä, H. Vitamin C supplementation and common cold symptoms: factors affecting the magnitude of the benefit. Med. Hypotheses 1999, 52, 171–178.
http://dx.doi.org/10.1054/mehy.1997.0639
https://helda.helsinki.fi/handle/10138/223761
http://www.mv.helsinki.fi/home/hemila/H/HH_1999_MH.pdf

205. Karlowski, T.R. Ascorbic acid for the common cold: a prophylactic and therapeutic trial. JAMA 1975, 231, 1038–1042.
http://dx.doi.org/10.1001/jama.1975.03240220018013
http://www.mv.helsinki.fi/home/hemila/CC/Karlowski_1975_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CC/Karlowski_1975_bm.pdf
See comments:
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE.pdf
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE2.pdf

https://www.mv.helsinki.fi/home/hemila/karlowski

206. Anderson, T.W. The effect on winter illness of large doses of vitamin C. Can. Med. Assoc. J. 1974, 111, 31–36.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1947567

207. Anderson, T.W. Vitamin C and the common cold: a double-blind trial. Can. Med. Assoc. J. 1972, 107, 503-508.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1940935
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1941144 Erratum 1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1941189 Erratum 2

208. Ludvigsson, J. Vitamin C as a preventive medicine against common colds in children. Scand. J. Infect. Dis. 1977, 9, 91-98.
https://www.ncbi.nlm.nih.gov/pubmed/897573
http://www.mv.helsinki.fi/home/hemila/CC/Ludvigsson_1977_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CC/Ludvigsson_1977_bm.pdf

209. Hemilä, H. Vitamin C and sex differences in respiratory tract infections. Respir. Med. 2008, 102, 625–626.
http://dx.doi.org/10.1016/j.rmed.2007.12.011
https://www.mv.helsinki.fi/home/hemila/H/2008_L_RespMed.pdf

210. Tyrrell, D.A. A trial of ascorbic acid in the treatment of the common cold. Br. J. Prev. Soc. Med. 1977, 31, 189-191.
http://dx.doi.org/10.1136/jech.31.3.189
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC479021

211. Baird, I.M. The effects of ascorbic acid and flavonoids on the occurrence of symptoms normally associated with the common cold. Am. J. Clin. Nutr. 1979, 32, 1686–1690.
http://dx.doi.org/10.1093/ajcn/32.8.1686
https://www.researchgate.net/publication/22678083_The_effects_of_ascorbic_acid_and_flavonoids_on_thc_occurence_of_symptoms_normally_associated_with_the_common_cold

212. Constantini, N.W. The effect of vitamin C on upper respiratory infections in adolescent swimmers: a randomized trial. Eur. J. Pediatr. 2011, 170, 59–63.
http://dx.doi.org/10.1007/s00431-010-1270-z
http://hdl.handle.net/10138/144198
https://www.mv.helsinki.fi/home/hemila/H/HH_2011_EurJPediatr.pdf

213. Panagiotou, O.A. Comparative effect sizes in randomised trials from less developed and more developed countries: meta-epidemiological assessment. BMJ 2013, 346, f707.
http://dx.doi.org/10.1136/bmj.f707
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570069

214. Wang, Z.J. The effect of intravenous vitamin C infusion on periprocedural myocardial injury for patients undergoing elective percutaneous coronary intervention. Can. J. Cardiol. 2014, 30, 96–101.
http://dx.doi.org/10.1016/j.cjca.2013.08.018

215. Spoelstra-de Man, A.M.E. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit. Care 2018, 22, 70.
http://dx.doi.org/10.1186/s13054-018-1996-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861638

216. Angus, D.C. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840-851.
https://doi.org/10.1056/NEJMra1208623

217. Wilson, J.X. Evaluation of vitamin C for adjuvant sepsis therapy. Antioxid. Redox Signal. 2013, 19, 2129-2140.
https://doi.org/10.1089/ars.2013.5401
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869437

218. Oudemans-van Straaten, H.M. Vitamin C revisited. Crit. Care 2014, 18, 460.
https://doi.org/10.1186/s13054-014-0460-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423646

219. Berger, M.M. Vitamin C supplementation in the critically ill patient. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 193-201.
https://doi.org/10.1097/MCO.0000000000000148
https://www.researchgate.net/publication/271591452_Vitamin_C_supplementation_in_the_critically_ill_patient

220. Marik, P.E. Hydrocortisone, ascorbic acid and thiamine (HAT therapy) for the treatment of sepsis: focus on ascorbic acid. Nutrients 2018, 10, 1762.
https://doi.org/10.3390/nu10111762
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265973

221. Moskowitz, A. Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation. Crit. Care. 2018, 22, 283.
https://doi.org/10.1186/s13054-018-2217-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206928

222. Amrein, K. Vitamin therapy in critically ill patients: focus on thiamine, vitamin C, and vitamin D. Intensive Care Med. 2018, 44,
1940-1944.
https://doi.org/10.1007/s00134-018-5107-y
https://www.researchgate.net/publication/323649692_Vitamin_therapy_in_critically_ill_patients_focus_on_thiamine_vitamin_C_and_vitamin_D

223. Spoelstra-de Man, A.M.E. Vitamin C: should we supplement? Curr. Opin. Crit. Care 2018, 24, 248-255.
https://doi.org/10.1097/MCC.0000000000000510
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039380

224. Zhang, M. Vitamin C provision improves mood in acutely hospitalized patients. Nutrition 2011, 27, 530–533.
http://dx.doi.org/10.1016/j.nut.2010.05.016
https://www.researchgate.net/publication/45507873_Vitamin_C_provision_improves_mood_in_acutely_hospitalized_patients

225. Wang, Y. Effects of vitamin C and vitamin D administration on mood and distress in acutely hospitalized patients. Am. J. Clin. Nutr. 2013, 98, 705–711.
http://dx.doi.org/10.3945/ajcn.112.056366
https://www.researchgate.net/publication/251878612_Effects_of_vitamin_C_and_vitamin_D_administration_on_mood_and_distress_in_acutely_hospitalized_patients

226. Padayatty, S.J. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann. Intern. Med. 2004, 140, 533–537.
https://doi.org/10.7326/0003-4819-140-7-200404060-00010
https://www.researchgate.net/publication/8632637_Vitamin_C_Pharmacokinetics_Implications_for_Oral_and_Intravenous_Use

227. Levine, M. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv. Nutr. 2011, 2, 78-88.
https://doi.org/10.3945/an.110.000109
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065766

228. Padayatty, S.J. Vitamin C: intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS One 2010, 5, e11414.
https://doi.org/10.1371/journal.pone.0011414
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898816

229. Mikirova, N. Effect of high-dose intravenous vitamin C on inflammation in cancer patients. J. Transl. Med. 2012, 10, 189.
https://doi.org/10.1186/1479-5876-10-189
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480897

230. Schencking, M. Intravenous vitamin C in the treatment of shingles: results of a multicenter prospective cohort study. Med. Sci. Monit. 2012, 18, CR215-CR224.
https://doi.org/10.12659/MSM.882621
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560828

231. Pourmatroud, E. Intravenous ascorbic acid (vitamin C) administration in myomectomy: a prospective, randomized, clinical trial. Arch. Gynecol. Obstet. 2012, 285, 111-115.
https://doi.org/10.1007/s00404-011-1897-7
https://www.researchgate.net/publication/50908203_Intravenous_ascorbic_acid_vitamin_C_administration_in_myomectomy_A_prospective_randomized_clinical_trial

232. Hoffer, L.J. High-dose intravenous vitamin C combined with cytotoxic chemotherapy in patients with advanced cancer: a phase I-II clinical trial. PLoS One 2015, 10, e0120228.
https://doi.org/10.1371/journal.pone.0120228
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388666

233. Jeon, Y. Effect of intravenous high dose vitamin C on postoperative pain and morphine use after laparoscopic colectomy: a randomized controlled trial. Pain Res. Manag. 2016, 2016, 9147279.
https://doi.org/10.1155/2016/9147279
https://www.researchgate.net/publication/309587012_Effect_of_Intravenous_High_Dose_Vitamin_C_on_Postoperative_Pain_and_Morphine_Use_after_Laparoscopic_Colectomy_A_Randomized_Controlled_Trial

234. Kim, M.S. A study of intravenous administration of vitamin C in the treatment of acute herpetic pain and postherpetic neuralgia. Ann. Dermatol. 2016, 28, 677-683.
https://doi.org/10.5021/ad.2016.28.6.677
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125947

235. Nauman, G. Systematic review of intravenous ascorbate in cancer clinical trials. Antioxidants (Basel) 2018, 7, E89.
https://doi.org/10.3390/antiox7070089
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071214

236. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c332.
https://doi.org/10.1136/bmj.c332
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844940

237. Hill, C.L. Discrepancy between published report and actual conduct of randomized clinical trials. J. Clin. Epidemiol. 2002, 55, 783-786.
https://doi.org/10.1016/S0895-4356(02)00440-7

238. Devereaux, P.J. An observational study found that authors of randomized controlled trials frequently use concealment of randomization and blinding, despite the failure to report these methods. J. Clin. Epidemiol. 2004, 57, 1232–1236.
https://doi.org/10.1016/j.jclinepi.2004.03.017

239. Mhaskar, R. Published methodological quality of randomized controlled trials does not reflect the actual quality assessed in protocols. J. Clin. Epidemiol. 2012, 65, 602-609.
https://doi.org/10.1016/j.jclinepi.2011.10.016

240. Hrobjartsson, A.; Gøtzsche, P.C. Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. N. Engl. J. Med. 2001, 344, 1594-1602.
https://doi.org/10.1056/NEJM200105243442106
https://www.researchgate.net/publication/11966295_Is_the_Placebo_Powerless_An_Analysis_of_Clinical_Trials_Comparing_Placebo_with_No_Treatment

241. Jahan, K. Effect of ascorbic acid in the treatment of tetanus. Bangladesh Med. Res. Counc. Bull. 1984, 10, 24–28.
https://www.ncbi.nlm.nih.gov/pubmed/6466264
https://www.mv.helsinki.fi/home/hemila/CT/Ch29_JahanTetanus.pdf
http://www.mv.helsinki.fi/home/hemila/CT/Jahan_1984_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CT/Jahan_1984_bm.pdf

242. Du, W.D. Therapeutic efficacy of high-dose vitamin C on acute pancreatitis and its potential mechanisms. World J. Gastroenterol. 2003, 9, 2565-2569.
http://dx.doi.org/10.3748/wjg.v9.i11.2565
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656542

243. Hemilä, H.; Koivula, T. Vitamin C for preventing and treating tetanus. Cochrane Database Syst. Rev. 2013, CD006665.
http://dx.doi.org/10.1002/14651858.CD006665.pub3
https://helda.helsinki.fi/handle/10138/225863
http://www.mv.helsinki.fi/home/hemila/CT/2013_Coch_Tetanus_CD006665.pdf
See references with links:
https://www.mv.helsinki.fi/home/hemila/CT

244. Dey, P.K. Efficacy of vitamin C in counteracting tetanus toxin toxicity. Naturwissenschaften 1966, 53, 310.
http://dx.doi.org/10.1007/BF00712228
http://www.mv.helsinki.fi/home/hemila/CT/Ch21_DeyTetanus.pdf
http://www.mv.helsinki.fi/home/hemila/CT/Dey_1966_ch.pdf
http://www.mv.helsinki.fi/home/hemila/CT/Dey_1966_bm.pdf

245. Clemetson, C.A.B. Barlow’s disease. Med. Hypotheses 2002, 59, 52-56.
http://dx.doi.org/10.1016/S0306-9877(02)00114-7

246. Hemilä, H.; Kaprio, J. Modification of the effect of vitamin E supplementation on the mortality of male smokers by age and dietary vitamin C. Am. J. Epidemiol. 2009, 169, 946-953.
http://dx.doi.org/10.1093/aje/kwn413
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661323

247. Sisto, T. Pretreatment with antioxidants and allopurinol diminishes cardiac onset events in coronary artery bypass grafting. Ann. Thorac. Surg. 1995, 59, 1519-1523.
https://doi.org/10.1016/0003-4975(95)00197-S
https://www.researchgate.net/publication/15427027_Pretreatment_with_antioxidants_and_allopurinol_diminishes_cardiac_onset_events_in_coronary_artery_bypass_grafting

248. Galley, H.F. The effects of intravenous antioxidants in patients with septic shock. Free Radic. Biol. Med. 1997, 23, 768-774.
https://doi.org/10.1016/S0891-5849(97)00059-2
https://www.researchgate.net/publication/13925731_The_Effects_of_Intravenous_Antioxidants_in_Patients_With_Septic_Shock

249. Nathens, A.B. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann. Surg. 2002, 236, 814-822.
http://dx.doi.org/10.1097/00000658-200212000-00014
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1422648

250. Crimi, E. The beneficial effects of antioxidant supplementation in enteral feeding in critically ill patients: a prospective, randomized, double-blind, placebo-controlled trial. Anesth. Analg. 2004, 99, 857-863.
http://dx.doi.org/10.1213/01.ANE.0000133144.60584.F6
http://www.ccmpitt.com/ebm/nutrition/NUT-RCT%20antioxidants%20C%20and%20E%20in%20Enetral%20feeding%20critically%20i.pdf
https://www.researchgate.net/publication/258173522_The_Beneficial_Effects_of_Antioxidant_Supplementation_in_Enteral_Feeding_in_Critically_Ill_Patients_A_Prospective_Randomized_Double-Blind_Placebo-Controlled_Trial

251. Berger, M.M. Influence of early antioxidant supplements on clinical evolution and organ function in critically ill cardiac surgery, major trauma, and subarachnoid hemorrhage patients. Crit. Care 2008, 12, R101.
http://dx.doi.org/10.1186/cc6981
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575590

252. Barbosa, E. Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: a randomized, double-blind, placebo-controlled pilot study. J. Burn Care Res. 2009, 30, 859-866.
http://dx.doi.org/10.1097/BCR.0b013e3181b487a8
https://www.researchgate.net/publication/26753577_Supplementation_of_Vitamin_E_Vitamin_C_and_Zinc_Attenuates_Oxidative_Stress_in_Burned_Children_A_Randomized_Double-Blind_Placebo-Controlled_Pilot_Study

253. Howe, K.P. Mechanical ventilation antioxidant trial. Am. J. Crit. Care 2015, 24, 440-445.
http://dx.doi.org/10.4037/ajcc2015335

254. Collier, B.R. Impact of high-dose antioxidants on outcomes in acutely injured patients. JPEN J. Parenter. Enteral Nutr. 2008, 32, 384-388.
http://dx.doi.org/10.1177/0148607108319808

255. Giladi, A.M. High-dose antioxidant administration is associated with a reduction in post-injury complications in critically ill trauma patients. Injury 2011, 42, 78-82.
http://dx.doi.org/10.1016/j.injury.2010.01.104
https://www.researchgate.net/publication/41423780_High-dose_antioxidant_administration_is_associated_with_a_reduction_in_post-injury_complications_in_critically_ill_trauma_patients

256. Kahn, S.A. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review. J. Burn Care Res. 2011, 32, 110-117.
http://dx.doi.org/10.1097/BCR.0b013e318204b336
https://www.researchgate.net/publication/49658561_Resuscitation_After_Severe_Burn_Injury_Using_High-Dose_Ascorbic_Acid_A_Retrospective_Review

257. Bedreag, O.H. Influence of antioxidant therapy on the clinical status of multiple trauma patients; a retrospective single center study. Rom. J. Anaesth. Intensive Care 2015, 22, 89-96.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505380

258. Marik, P.E. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest 2017, 151, 1229-1238.
http://dx.doi.org/10.1016/j.chest.2016.11.036
https://static1.squarespace.com/static/57313085a3360c6b87c17029/t/5937624ae6f2e1c6ae177ae6/1496801870388.pdf

259. Balakrishnan, M. Hydrocortisone, vitamin C and thiamine for the treatment of sepsis and septic shock following cardiac surgery. Indian J. Anaesth. 2018, 62, 934-939.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299773

260. Kim, W.Y. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: propensity score-based analysis of a before-after cohort study. J. Crit. Care 2018, 47, 211-218.
http://dx.doi.org/10.1016/j.jcrc.2018.07.004
https://www.researchgate.net/publication/326216930_Combined_vitamin_C_hydrocortisone_and_thiamine_therapy_for_patients_with_severe_pneumonia_who_were_admitted_to_the_intensive_care_unit_Propensity_score-based_analysis_of_a_before-after_cohort_study

261. Hemilä, H. Spectacular reduction in the mortality of acutely injured patients by the administration of vitamins C and E and selenium [reply in 2009, 33, 449]. JPEN J. Parenter. Enteral Nutr. 2009, 33, 447-448.
http://dx.doi.org/10.1177/0148607108328520
https://helda.helsinki.fi/handle/10138/16985
http://www.mv.helsinki.fi/home/hemila/H/2009_L_JPEN.pdf

262. Cathcart, R.F. Vitamin C, titrating to bowel tolerance, anascorbemia, and acute induced scurvy. Med. Hypotheses 1981, 7, 1359–1376.
http://dx.doi.org/10.1016/0306-9877(81)90126-2
Available via:
http://www.mv.helsinki.fi/home/hemila/klenner.htm
See also:
http://www.mv.helsinki.fi/home/hemila/CP/Luberoff_1978_ch.pdf

263. Buehner, M. Oxalate nephropathy after continuous infusion of high-dose vitamin C as an adjunct to burn resuscitation. J. Burn Care Res. 2016, 37, e374-e379.
https://doi.org/10.1097/BCR.0000000000000233
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933579

264. Chalmers, T.C. Effects of ascorbic acid on the common cold: an evaluation of the evidence. Am. J. Med. 1975, 58, 532–536.
https://dx.doi.org/10.1016/0002-9343(75)90127-8
http://www.mv.helsinki.fi/home/hemila/reviews/Chalmers_1975_ch.pdf
http://www.mv.helsinki.fi/home/hemila/reviews/Chalmers_1975_bm.pdf

The Chalmers review has been extensively cited in journal articles and textbooks, see:
http://www.mv.helsinki.fi/home/hemila/Chalmers1975CitedBy.htm

Thomas Chalmers was a very influential physician:
http://www.nytimes.com/1995/12/29/nyregion/dr-thomas-c-chalmers-a-president-of-mt-sinai-dies-at-78.html
https://en.wikipedia.org/wiki/Thomas_C._Chalmers
http://www.jameslindlibrary.org/articles/thomas-c-chalmers-1917-1995
https://circulatingnow.nlm.nih.gov/2014/12/18/thomas-c-chalmers-clinical-research-pragmatist
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878827 David Sackett describes in this paper that Thomas Chalmers' 1955 clinical trial report changed his career and led to the emergence of the EBM movement
https://doi.org/10.1136/bmj.g371 According to Richard Smith and Drummond Rennie, Thomas Chalmers was one of the "three individuals from an earlier generation [who] were particularly important in inspiring" the EBM movement
http://annals.org/aim/fullarticle/709574/tributes-thomas-chalmers
http://annals.org/aim/fullarticle/709576/tributes-thomas-chalmers
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1335248
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1335469
https://doi.org/10.1016/S0140-6736(96)90369-4
https://doi.org/10.1001/jama.1996.03540080078041
https://doi.org/10.1016/S0197-2456(96)90026-4
https://doi.org/10.1016/S0197-2456(97)82189-7
https://doi.org/10.1177/0141076815586354
https://doi.org/10.1177/0141076815606279

265. Hemilä, H. Do vitamins C and E affect respiratory infections?
University of Helsinki: Helsinki, Finland, 2006; pp. 21-45, 59-66.
https://hdl.handle.net/10138/20335
see also:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793763
https://www.mv.helsinki.fi/home/hemila/reviews/chalmers

https://www.mv.helsinki.fi/home/hemila/reviews/dykes

266. Council of Scientific Affairs, American Medical Association. Vitamin preparations as dietary supplements and as therapeutic agents. JAMA 1987, 257, 1929–1936.
https://doi.org/10.1001/jama.1987.03390140099035
http://www.mv.helsinki.fi/home/hemila/reviews/AMA_1987.pdf

267. Dykes, M.H.M.; Meier, P. Ascorbic acid and the common cold: evaluation of its efficacy and toxicity. JAMA 1975, 231, 1073–1079.
https://dx.doi.org/10.1001/jama.1975.03240220051025
http://www.mv.helsinki.fi/home/hemila/reviews/Dykes_1975_ch.pdf
http://www.mv.helsinki.fi/home/hemila/reviews/Dykes_1975_bm.pdf

Paul Meier was a very famous statistician, eg:
http://en.wikipedia.org/wiki/Paul_Meier_(statistician)
https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator
http://garfield.library.upenn.edu/classics1983/A1983QS51100001.pdf
https://doi.org/10.1136/bmj.d5507
https://doi.org/10.1016/S0140-6736(11)61438-4
https://doi.org/10.2105/AJPH.2012.300778
https://doi.org/10.1191/1740774504cn011xx
http://bulletin.imstat.org/2011/12/obituary-paul-meier-1924%E2%80%932011/
http://www.nytimes.com/2011/08/13/health/13meier.html
https://news.uchicago.edu/article/2011/08/11/paul-meier-statistician-who-helped-change-clinical-research-1924-2011
http://articles.latimes.com/2011/aug/22/local/la-me-paul-meier-20110822
https://www.telegraph.co.uk/news/obituaries/medicine-obituaries/8804883/Paul-Meier.html

268. Pauling, L. Ascorbic acid and the common cold: evaluation of its efficacy and toxicity. Part I. Medical Tribune 1976, 17, 18-19.
http://www.mv.helsinki.fi/home/hemila/pauling/Pauling_1976_MT_1.pdf

269. Pauling, L. Ascorbic acid and the common cold. Part II. Medical Tribune 1976, 17, 37-38.
http://www.mv.helsinki.fi/home/hemila/pauling/Pauling_1976_MT_2.pdf

270. Chalmers, T.C. Dissent to the preceding article by H. Hemilä. J. Clin. Epidemiol. 1996, 49, 1085.
https://dx.doi.org/10.1016/0895-4356(96)00190-4

271. Hemilä, H. To the dissent by Thomas Chalmers. J. Clin. Epidemiol. 1996, 49, 1087.
https://dx.doi.org/10.1016/0895-4356(96)00191-6
https://helda.helsinki.fi/handle/10138/225873
http://www.mv.helsinki.fi/home/hemila/H/HH_1996_JCE2.pdf

272. Richards, E. The politics of therapeutic evaluation: the vitamin C and cancer controversy. Soc. Stud. Sci. 1988, 18, 653-701.
https://doi.org/10.1177/030631288018004004
https://www.researchgate.net/publication/313577764_The_Politics_of_Therapeutic_Evaluation_The_Vitamin_C_and_Cancer_Controversy

273. Richards, E. Vitamin C and Cancer: Medicine or Politics?
St. Martins Press: New York, NY, USA, 1991.
http://www.springer.com/gp/book/9781349096060
https://link.springer.com/book/10.1007/978-1-349-09606-0
https://www.palgrave.com/us/book/9781349096060
https://www.amazon.com/Vitamin-C-Cancer-Medicine-Politics/dp/0312052421
https://doi.org/10.1038/353125a0
https://doi.org/10.1086/356441
https://doi.org/10.1080/08109029208629523
https://doi.org/10.1016/0165-6147(92)90029-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2399293
https://www.newscientist.com/article/mg13518295-400-review-the-trials-and-tribulations-of-vitamin-c

274. Segerstråle, U. Beleaguering the cancer establishment. Science 1992, 255, 613–615.
https://doi.org/10.1126/science.255.5044.613
https://www.jstor.org/stable/2876833

275. Goodwin, J.S. Battling quackery: attitudes about micronutrient supplements in American Academic medicine. Arch. Intern. Med. 1998, 158, 2187–2191.
https://doi.org/10.1001/archinte.158.20.2187
https://www.researchgate.net/publication/13467491_Battling_Quackery_Attitudes_About_Micronutrient_Supplements_in_American_Academic_Medicine
www.mv.helsinki.fi/home/hemila/safety/Goodwin_1998_p2188.pdf

276. Goodwin, J.S. Failure to recognize efficacious treatments: a history of salicylate therapy in rheumatoid arthritis. Persp. Biol. Med. 1981, 31, 78-92.
https://doi.org/10.1353/pbm.1981.0053
https://muse.jhu.edu/article/404496/pdf

277. Goodwin, J.S. The tomato effect: rejection of highly efficacious therapies. JAMA 1984, 251, 2387–2390.
https://dx.doi.org/10.1001/jama.1984.03340420053025
https://www.researchgate.net/publication/16827181_The_Tomato_effect_Rejection_of_highly_efficacious_therapies
www.mv.helsinki.fi/home/hemila/birkhauser/Goodwin_1984.pdf

278. Louhiala, P.; Hemilä, H. Can CAM treatments be evidence-based? Focus Altern. Complement. Ther. 2014, 19, 84–89.
https://dx.doi.org/10.1111/fct.12110
https://helda.helsinki.fi/handle/10138/228056
https://www.mv.helsinki.fi/home/hemila/H/HH_2014_FACT.pdf