
MPhil Candidate

Learning Private Neural Language Modeling
with Attentive Aggregation

Shaoxiong Ji

The University of Queensland

!1

Co-authors: Shirui Pan†, Guodong Long‡, Xue Li∗, Jing Jiang‡, Zi Huang∗

∗ School of ITEE, Faculty of EAIT, The University of Queensland, Australia 
† Faculty of Information Technology, Monash University, Australia

‡ Centre for Artificial Intelligence, FEIT, University of Technology Sydney, Australia

Intro: Federated Learning

✤ Centralized machine
learning

✤ Collect data from clients;

✤ train a centralized model;

✤ make predictions for clients

!2

✓

: centralized model training: user data : user data upload ✓

Intro: Federated Learning

✤ Federated learning: training a shared
global model, from a federation of
participating devices which maintain
control of their own data, with the
facilitation of a central server*.

✤ Real-world mobile applications

✤ suggesting mobile keyboards;

✤ retrieving important notifications;

✤ detecting the spam messages

!3

: local training: model aggregation: protected user data : parameters up/down load

✓ ✓ ✓ ✓ ✓

✓

* Jakub Konečny. Federated Learning: Privacy-Preserving Collaborative Machine Learning without
Centralized Training Data. Trends in Optimization Seminar, University of Washington in Seattle. Jan 30, 2018

Federated Averaging

✤ Federated Optimization

!4

✤ Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282, 2017.  

✤ Federated Averaging

M ←
K

∑
k=1

mk

θt+1 ←
K

∑
k=1

nk

n
θk

t+1

Private Language Modeling

✤ Personalized Keyboard Suggestion

✤ next word prediction

✤ language preference and patterns

✤ Private Neural Language Modeling

✤ protect private content and sensitive
information

!5

Motivation

✤ Simple averaging ignores the
importance of different distributed
clients.

✤ Model importance and knowledge
transferring should be considered.

!6

← ∑

Proposed Method

✤ FedAtt: Attentive Federated Aggregation

!7

argmin
✓t+1

mX

k=1

[
1

2
↵kL(✓t, ✓

k

t+1)
2], (1)

where ✓t is the parameters of the global server model at time
stamp t, ✓

k

t+1 is the parameters of the k-th client model at
time stamp t + 1, L(·, ·) is defined as the distance between
two sets of neural parameters, and ↵k is the attentive weight
to measure the importance of weights for the client models.
The objective is to minimize the weighted distance between
server model and client models by taking a set of self-adaptive
scores as the weights.

To attend the importance of client models, we propose a
novel layer-wise attention mechanism on the parameters of
the neural network models. The attention mechanism in this
paper is quite similar to the soft attention mechanism. Unlike
the popular attention mechanism applied to the data flow,
our proposed attentive aggregation is applied on the learned
parameters of each layer of the neural language models. We
take the server parameters as a query and the client parameters
as keys, and calculate the attention score in each layer of the
neural networks.

Given the parameters in the l-th layer of the server model
denoted as w

l and parameters in the l-th layer of the k-th
client model denoted as w

l

k
, the similarity between the query

and the key in the l-th layer is calculated as the norm of the
difference between two matrices, which is denoted as:

s
l

k
= kwl � w

l

k
kp.

Then, we apply softmax on the similarity to calculate the layer-
wise attention score for the k-th client in Equation 2.

↵
l

k
= softmax(sl

k
) =

e
s
l
k

P
m

k=1 e
s
l
k

(2)

Our proposed attention mechanism on the parameters is layer-
wise. There are attention scores for each layer in the neural
networks. For each model, the attention score is ↵k =
{↵

0
k
, ↵

1
k
, . . . , ↵

l

k
, . . . } in a non-parameter way.

Using the Euclidean distance for L(·, ·) and taking the
derivative of the objective function in Equation 1, we get the
gradient in the form of Equation 3.

r =
mX

k=1

↵k(✓t � ✓
k

t+1) (3)

For the selected group of m clients, we perform gradient
descent to update the parameters of the global model in
Equation 4 as

✓t+1 ✓t � ✏

mX

k=1

↵k(✓t � ✓
k

t+1), (4)

where ✏ is the step size. The full procedure of our proposed
optimization algorithm is described in Algorithm 3. It takes
the server parameters ✓t at time stamp t and client parameters
✓
1
t+1, ..., ✓

m

t+1 at time stamp t + 1, and returns the updated
parameters of the global server.

Algorithm 3 Attentive Federated Optimization
1: k is the ordinal of clients; l is the ordinal of neural layers;

✏ is the stepsize of server optimization
2: Input: server parameters ✓t at t, client parameters

✓
1
t+1, ..., ✓

m

t+1 at t + 1.
3: Output: aggregated server parameters ✓t+1.
4: procedure ATTENTIVE OPTIMIZATION(✓t, ✓

k

t+1)
5: Initialize ↵ = {↵1, . . . , ↵k, . . . , ↵m} . attention for

each clients
6: for each layer l = 1, 2, ... do

7: for each user k do

8: s
l

k
= kwl � w

l

k
kp

9: ↵
l

k
= softmax(sl

k
) = e

slk
Pm

k=1 e
sl
k

10: ↵k = {↵
0
k
, ↵

1
k
, . . . , ↵

l

k
, . . . }

11: ✓t+1 ✓t � ✏
P

m

k=1 ↵k(✓t � ✓
k

t+1)
12: return ✓t+1

The advantage of our proposed layer-wise attentive feder-
ated aggregation and its optimization is as follows: 1) The
aggregation of client models is fine-grained on each layer
of the neural models considering the similarity between the
client model and the server model in the parameter space.
The learned features of each client model can be effectively
selected to to produce a fine-tuned global server model. 2) By
minimizing the expected distance between the client model
and the server model, the learned server model is close to the
client models in the parameter space and can well represent
the federated clients.

C. GRU-based Client Model

The learning process on the client side is model-agnostic.
For different tasks, we can choose appropriate models in
specific situations. In this paper, we use the gated recurrent unit
(GRU) [8] for learning the language modeling on the client
side. The GRU is a well-known and simpler variant of the
Long Short-Term Memory (LSTM) [7], by merging the forget
gate and the input gate into a single gate as well as the cell
state and the hidden state. In the GRU-based neural language
model, words or tokens are firstly embedded into word vectors
denoted as X = {x0, x1, . . . , xt, . . . } and then put into the
recurrent loops. The calculation inside the recurrent module is
as follows:

zt = �(wz · [ht�1, xt]),

rt = �(wr · [ht�1, xt]),

h̃t = tanh(w · [rt ⇤ ht�1, xt]),

ht = (1� zt) ⇤ ht�1 + zt ⇤ h̃t,

where zt is the update gate, rt is the reset gate, ht is the
hidden state, and h̃t is a new hidden state.

D. Differential Privacy

To protect the client’s data from an inverse engineering
attack, we apply the randomized mechanism into federated

✤ Attentive weighted expected distance

1. Considering the relation between the server model and client models and
their weights

2. Optimizing the distance between the server model and client models in
parameter space

argmin
✓t+1

mX

k=1

[
1

2
↵kL(✓t, ✓

k

t+1)
2], (1)

where ✓t is the parameters of the global server model at time
stamp t, ✓

k

t+1 is the parameters of the k-th client model at
time stamp t + 1, L(·, ·) is defined as the distance between
two sets of neural parameters, and ↵k is the attentive weight
to measure the importance of weights for the client models.
The objective is to minimize the weighted distance between
server model and client models by taking a set of self-adaptive
scores as the weights.

To attend the importance of client models, we propose a
novel layer-wise attention mechanism on the parameters of
the neural network models. The attention mechanism in this
paper is quite similar to the soft attention mechanism. Unlike
the popular attention mechanism applied to the data flow,
our proposed attentive aggregation is applied on the learned
parameters of each layer of the neural language models. We
take the server parameters as a query and the client parameters
as keys, and calculate the attention score in each layer of the
neural networks.

Given the parameters in the l-th layer of the server model
denoted as w

l and parameters in the l-th layer of the k-th
client model denoted as w

l

k
, the similarity between the query

and the key in the l-th layer is calculated as the norm of the
difference between two matrices, which is denoted as:

s
l

k
= kwl � w

l

k
kp.

Then, we apply softmax on the similarity to calculate the layer-
wise attention score for the k-th client in Equation 2.

↵
l

k
= softmax(sl

k
) =

e
s
l
k

P
m

k=1 e
s
l
k

(2)

Our proposed attention mechanism on the parameters is layer-
wise. There are attention scores for each layer in the neural
networks. For each model, the attention score is ↵k =
{↵

0
k
, ↵

1
k
, . . . , ↵

l

k
, . . . } in a non-parameter way.

Using the Euclidean distance for L(·, ·) and taking the
derivative of the objective function in Equation 1, we get the
gradient in the form of Equation 3.

r =
mX

k=1

↵k(✓t � ✓
k

t+1) (3)

For the selected group of m clients, we perform gradient
descent to update the parameters of the global model in
Equation 4 as

✓t+1 ✓t � ✏

mX

k=1

↵k(✓t � ✓
k

t+1), (4)

where ✏ is the step size. The full procedure of our proposed
optimization algorithm is described in Algorithm 3. It takes
the server parameters ✓t at time stamp t and client parameters
✓
1
t+1, ..., ✓

m

t+1 at time stamp t + 1, and returns the updated
parameters of the global server.

Algorithm 3 Attentive Federated Optimization
1: k is the ordinal of clients; l is the ordinal of neural layers;

✏ is the stepsize of server optimization
2: Input: server parameters ✓t at t, client parameters

✓
1
t+1, ..., ✓

m

t+1 at t + 1.
3: Output: aggregated server parameters ✓t+1.
4: procedure ATTENTIVE OPTIMIZATION(✓t, ✓

k

t+1)
5: Initialize ↵ = {↵1, . . . , ↵k, . . . , ↵m} . attention for

each clients
6: for each layer l = 1, 2, ... do

7: for each user k do

8: s
l

k
= kwl � w

l

k
kp

9: ↵
l

k
= softmax(sl

k
) = e

slk
Pm

k=1 e
sl
k

10: ↵k = {↵
0
k
, ↵

1
k
, . . . , ↵

l

k
, . . . }

11: ✓t+1 ✓t � ✏
P

m

k=1 ↵k(✓t � ✓
k

t+1)
12: return ✓t+1

The advantage of our proposed layer-wise attentive feder-
ated aggregation and its optimization is as follows: 1) The
aggregation of client models is fine-grained on each layer
of the neural models considering the similarity between the
client model and the server model in the parameter space.
The learned features of each client model can be effectively
selected to to produce a fine-tuned global server model. 2) By
minimizing the expected distance between the client model
and the server model, the learned server model is close to the
client models in the parameter space and can well represent
the federated clients.

C. GRU-based Client Model

The learning process on the client side is model-agnostic.
For different tasks, we can choose appropriate models in
specific situations. In this paper, we use the gated recurrent unit
(GRU) [8] for learning the language modeling on the client
side. The GRU is a well-known and simpler variant of the
Long Short-Term Memory (LSTM) [7], by merging the forget
gate and the input gate into a single gate as well as the cell
state and the hidden state. In the GRU-based neural language
model, words or tokens are firstly embedded into word vectors
denoted as X = {x0, x1, . . . , xt, . . . } and then put into the
recurrent loops. The calculation inside the recurrent module is
as follows:

zt = �(wz · [ht�1, xt]),

rt = �(wr · [ht�1, xt]),

h̃t = tanh(w · [rt ⇤ ht�1, xt]),

ht = (1� zt) ⇤ ht�1 + zt ⇤ h̃t,

where zt is the update gate, rt is the reset gate, ht is the
hidden state, and h̃t is a new hidden state.

D. Differential Privacy

To protect the client’s data from an inverse engineering
attack, we apply the randomized mechanism into federated

Attentive Federated Aggregation

!8

A. Preliminaries of Federated Learning

Federated learning decouples the model training and data
collection [1]. To learn a well generalized model, it uses
model aggregation on the server side, which is similar to the
works on meta-learning by learning a good initialization for
quick adaptation [25], [26] and transfer learning by transfer-
ring knowledge between domains [27]. The basic federated
learning framework comprises two main parts, i.e., server
optimization in Algorithm 1 and local training in Algorithm 2
[1].
Central Model Update. The server firstly chooses a client
learning model and initializes the parameters of the client
learner. It sets the fraction of the clients. Then, it waits for
online clients for local model training. Once the selected
number of clients finishes the model update, it receives the
updated parameters and performs the server optimization. The
parameter sending and receiving consists of one round of
communication. Our proposed optimization is conducted in
Line 9 of Algorithm 1.

Algorithm 1 Optimization for Federated Learning on Cen-
tral Server

1: K is the total number of clients; C is the client fraction;
U is a set of all clients.

2: Input: server parameters ✓t at t, client parameters
✓
1
t+1, ..., ✓

m

t+1 at t + 1.
3: Output: aggregated server parameters ✓t+1.
4: procedure SERVER EXECUTION . Run on the server
5: initialize ✓0

6: for each round t=1, 2, ... do

7: m max(C · K, 1)
8: St {ui | ui 2 U}m

1 . Random set of clients
9: for each client k 2 St on local device do

10: ✓
k

t+1 ClientUpdate(k, ✓t)

11: ✓t+1 ServerOptimization(✓t, ✓
k

t+1)

Private Model Update. Each online selected client receives
the server model and performs secure local training on their
own devices. For the neural language modeling, stochastic
gradient descent is performed to update their GRU-based client
models which is introduced in Section III-C. After several
epochs of training, the clients send the parameters of their
models to the central server over a secure connection. During
this local training, user data can be stored on their own devices.

B. Attentive Federated Aggregation

The most important part of federated learning is the feder-
ated optimization on the server side which aggregates the client
models. In this paper, a novel federated optimization strategy
is proposed to learn federated learning from decentralized
client models. We call this Attentive Federated Aggregation,
or FedAtt for short. It firstly introduces the attention mech-
anism for federated aggregation by aggregating the layer-wise
contribution of neural language models of selected clients to
the global model in the central server. An illustration of our

Algorithm 2 Secure Local Training on Client
1: B is the local mini-batch size; E is the number of local

epochs; � is the momentum term; ⌘ is the learning rate.
2: Input: ordinal of user k, user data X .
3: Output: updated user parameters ✓t+1 at t + 1.
4: procedure CLIENT UPDATE(k, ✓) . Run on the k-th

client
5: B (split user data X into batches)
6: for each local epoch i from 1 to E do

7: for batch b 2 B do

8: zt+1 �zt +rL(✓t)
9: ✓t+1 ✓t � ⌘zt+1

10: send ✓t+1 to server

proposed layer-wise attentive federated aggregation is shown
in Figure 1 where the lower box represents the distributed
client models and the upper box represents the attentive
aggregation in the central server. The distributed client models
in the lower box contain several neural layers. The notations
of “�” and “ ” stand for the layer-wise operation on the
parameters of neural models. This illustration shows only a
single time step. The federated updating uses our proposed
attentive aggregation block to update the global model by
iteration.

… …

- - - -

+

… …

✓
m

t+1✓
k

t+1✓
2
t+1✓

1
t+1

✓t ✓t+1

w
l

1

w1
1

w
L

1 w
L

2

w
l

2

w
1
2 w

1
k

w
l

k

w
L

k

w
1
m

w
l

m

w
L

m

{↵
i

1}L

1
{↵

i

2}L

1
{↵

i

k
}L

1 {↵
i

m
}L

1

w
1

w
l

w
L

w
1

w
l

w
L

Server Model

Client Models

Fig. 1: The illustration of our proposed layer-wise attentive
federated aggregation

The intuition behind the federated optimization is to find
an optimal global model that can generalize the client models
well. In our proposed optimization algorithm, we take it as
finding an optimal global model that is close to the client
models in parameter space while considering the importance
of selected client models during aggregation. The optimization
objective is defined as

The illustration of our proposed layer-wise
attentive federated aggregation

argmin
✓t+1

mX

k=1

[
1

2
↵kL(✓t, ✓

k

t+1)
2], (1)

where ✓t is the parameters of the global server model at time
stamp t, ✓

k

t+1 is the parameters of the k-th client model at
time stamp t + 1, L(·, ·) is defined as the distance between
two sets of neural parameters, and ↵k is the attentive weight
to measure the importance of weights for the client models.
The objective is to minimize the weighted distance between
server model and client models by taking a set of self-adaptive
scores as the weights.

To attend the importance of client models, we propose a
novel layer-wise attention mechanism on the parameters of
the neural network models. The attention mechanism in this
paper is quite similar to the soft attention mechanism. Unlike
the popular attention mechanism applied to the data flow,
our proposed attentive aggregation is applied on the learned
parameters of each layer of the neural language models. We
take the server parameters as a query and the client parameters
as keys, and calculate the attention score in each layer of the
neural networks.

Given the parameters in the l-th layer of the server model
denoted as w

l and parameters in the l-th layer of the k-th
client model denoted as w

l

k
, the similarity between the query

and the key in the l-th layer is calculated as the norm of the
difference between two matrices, which is denoted as:

s
l

k
= kwl � w

l

k
kp.

Then, we apply softmax on the similarity to calculate the layer-
wise attention score for the k-th client in Equation 2.

↵
l

k
= softmax(sl

k
) =

e
s
l
k

P
m

k=1 e
s
l
k

(2)

Our proposed attention mechanism on the parameters is layer-
wise. There are attention scores for each layer in the neural
networks. For each model, the attention score is ↵k =
{↵

0
k
, ↵

1
k
, . . . , ↵

l

k
, . . . } in a non-parameter way.

Using the Euclidean distance for L(·, ·) and taking the
derivative of the objective function in Equation 1, we get the
gradient in the form of Equation 3.

r =
mX

k=1

↵k(✓t � ✓
k

t+1) (3)

For the selected group of m clients, we perform gradient
descent to update the parameters of the global model in
Equation 4 as

✓t+1 ✓t � ✏

mX

k=1

↵k(✓t � ✓
k

t+1), (4)

where ✏ is the step size. The full procedure of our proposed
optimization algorithm is described in Algorithm 3. It takes
the server parameters ✓t at time stamp t and client parameters
✓
1
t+1, ..., ✓

m

t+1 at time stamp t + 1, and returns the updated
parameters of the global server.

Algorithm 3 Attentive Federated Optimization
1: k is the ordinal of clients; l is the ordinal of neural layers;

✏ is the stepsize of server optimization
2: Input: server parameters ✓t at t, client parameters

✓
1
t+1, ..., ✓

m

t+1 at t + 1.
3: Output: aggregated server parameters ✓t+1.
4: procedure ATTENTIVE OPTIMIZATION(✓t, ✓

k

t+1)
5: Initialize ↵ = {↵1, . . . , ↵k, . . . , ↵m} . attention for

each clients
6: for each layer l = 1, 2, ... do

7: for each user k do

8: s
l

k
= kwl � w

l

k
kp

9: ↵
l

k
= softmax(sl

k
) = e

slk
Pm

k=1 e
sl
k

10: ↵k = {↵
0
k
, ↵

1
k
, . . . , ↵

l

k
, . . . }

11: ✓t+1 ✓t � ✏
P

m

k=1 ↵k(✓t � ✓
k

t+1)
12: return ✓t+1

The advantage of our proposed layer-wise attentive feder-
ated aggregation and its optimization is as follows: 1) The
aggregation of client models is fine-grained on each layer
of the neural models considering the similarity between the
client model and the server model in the parameter space.
The learned features of each client model can be effectively
selected to to produce a fine-tuned global server model. 2) By
minimizing the expected distance between the client model
and the server model, the learned server model is close to the
client models in the parameter space and can well represent
the federated clients.

C. GRU-based Client Model

The learning process on the client side is model-agnostic.
For different tasks, we can choose appropriate models in
specific situations. In this paper, we use the gated recurrent unit
(GRU) [8] for learning the language modeling on the client
side. The GRU is a well-known and simpler variant of the
Long Short-Term Memory (LSTM) [7], by merging the forget
gate and the input gate into a single gate as well as the cell
state and the hidden state. In the GRU-based neural language
model, words or tokens are firstly embedded into word vectors
denoted as X = {x0, x1, . . . , xt, . . . } and then put into the
recurrent loops. The calculation inside the recurrent module is
as follows:

zt = �(wz · [ht�1, xt]),

rt = �(wr · [ht�1, xt]),

h̃t = tanh(w · [rt ⇤ ht�1, xt]),

ht = (1� zt) ⇤ ht�1 + zt ⇤ h̃t,

where zt is the update gate, rt is the reset gate, ht is the
hidden state, and h̃t is a new hidden state.

D. Differential Privacy

To protect the client’s data from an inverse engineering
attack, we apply the randomized mechanism into federated

GRU-based Client Learner

✤ Client side: model-agnostic

✤ GRU-based language
modeling

!9

argmin
✓t+1

mX

k=1

[
1

2
↵kL(✓t, ✓

k

t+1)
2], (1)

where ✓t is the parameters of the global server model at time
stamp t, ✓

k

t+1 is the parameters of the k-th client model at
time stamp t + 1, L(·, ·) is defined as the distance between
two sets of neural parameters, and ↵k is the attentive weight
to measure the importance of weights for the client models.
The objective is to minimize the weighted distance between
server model and client models by taking a set of self-adaptive
scores as the weights.

To attend the importance of client models, we propose a
novel layer-wise attention mechanism on the parameters of
the neural network models. The attention mechanism in this
paper is quite similar to the soft attention mechanism. Unlike
the popular attention mechanism applied to the data flow,
our proposed attentive aggregation is applied on the learned
parameters of each layer of the neural language models. We
take the server parameters as a query and the client parameters
as keys, and calculate the attention score in each layer of the
neural networks.

Given the parameters in the l-th layer of the server model
denoted as w

l and parameters in the l-th layer of the k-th
client model denoted as w

l

k
, the similarity between the query

and the key in the l-th layer is calculated as the norm of the
difference between two matrices, which is denoted as:

s
l

k
= kwl � w

l

k
kp.

Then, we apply softmax on the similarity to calculate the layer-
wise attention score for the k-th client in Equation 2.

↵
l

k
= softmax(sl

k
) =

e
s
l
k

P
m

k=1 e
s
l
k

(2)

Our proposed attention mechanism on the parameters is layer-
wise. There are attention scores for each layer in the neural
networks. For each model, the attention score is ↵k =
{↵

0
k
, ↵

1
k
, . . . , ↵

l

k
, . . . } in a non-parameter way.

Using the Euclidean distance for L(·, ·) and taking the
derivative of the objective function in Equation 1, we get the
gradient in the form of Equation 3.

r =
mX

k=1

↵k(✓t � ✓
k

t+1) (3)

For the selected group of m clients, we perform gradient
descent to update the parameters of the global model in
Equation 4 as

✓t+1 ✓t � ✏

mX

k=1

↵k(✓t � ✓
k

t+1), (4)

where ✏ is the step size. The full procedure of our proposed
optimization algorithm is described in Algorithm 3. It takes
the server parameters ✓t at time stamp t and client parameters
✓
1
t+1, ..., ✓

m

t+1 at time stamp t + 1, and returns the updated
parameters of the global server.

Algorithm 3 Attentive Federated Optimization
1: k is the ordinal of clients; l is the ordinal of neural layers;

✏ is the stepsize of server optimization
2: Input: server parameters ✓t at t, client parameters

✓
1
t+1, ..., ✓

m

t+1 at t + 1.
3: Output: aggregated server parameters ✓t+1.
4: procedure ATTENTIVE OPTIMIZATION(✓t, ✓

k

t+1)
5: Initialize ↵ = {↵1, . . . , ↵k, . . . , ↵m} . attention for

each clients
6: for each layer l = 1, 2, ... do

7: for each user k do

8: s
l

k
= kwl � w

l

k
kp

9: ↵
l

k
= softmax(sl

k
) = e

slk
Pm

k=1 e
sl
k

10: ↵k = {↵
0
k
, ↵

1
k
, . . . , ↵

l

k
, . . . }

11: ✓t+1 ✓t � ✏
P

m

k=1 ↵k(✓t � ✓
k

t+1)
12: return ✓t+1

The advantage of our proposed layer-wise attentive feder-
ated aggregation and its optimization is as follows: 1) The
aggregation of client models is fine-grained on each layer
of the neural models considering the similarity between the
client model and the server model in the parameter space.
The learned features of each client model can be effectively
selected to to produce a fine-tuned global server model. 2) By
minimizing the expected distance between the client model
and the server model, the learned server model is close to the
client models in the parameter space and can well represent
the federated clients.

C. GRU-based Client Model

The learning process on the client side is model-agnostic.
For different tasks, we can choose appropriate models in
specific situations. In this paper, we use the gated recurrent unit
(GRU) [8] for learning the language modeling on the client
side. The GRU is a well-known and simpler variant of the
Long Short-Term Memory (LSTM) [7], by merging the forget
gate and the input gate into a single gate as well as the cell
state and the hidden state. In the GRU-based neural language
model, words or tokens are firstly embedded into word vectors
denoted as X = {x0, x1, . . . , xt, . . . } and then put into the
recurrent loops. The calculation inside the recurrent module is
as follows:

zt = �(wz · [ht�1, xt]),

rt = �(wr · [ht�1, xt]),

h̃t = tanh(w · [rt ⇤ ht�1, xt]),

ht = (1� zt) ⇤ ht�1 + zt ⇤ h̃t,

where zt is the update gate, rt is the reset gate, ht is the
hidden state, and h̃t is a new hidden state.

D. Differential Privacy

To protect the client’s data from an inverse engineering
attack, we apply the randomized mechanism into federated✤ K. Cho, B. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning

phrase representations using rnn encoder–decoder for statistical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, 2014.  

Differential Privacy

✤ Differential privacy

✤ Randomized mechanism

!10

learning [2]. This ensures differential privacy on the client
side without revealing the client’s data [2]. This differentially
private randomization was firstly proposed to apply on the
federated averaging, where a white noise with the mean of
0 and the standard deviation of � is added to the client
parameters in Equation 5.

✓t+1 = ✓t �
1

m
(

KX

k=1

�✓
k

t+1 + N (0, �2)) (5)

Our proposed attentive federated aggregation can also add
this mechanism smoothly using Equation 6. The randomization
is added in before the clients send the updated parameters to
the server, but it is written in the form of server optimization
for simplicity.

✓t+1 ✓t � ✏

mX

k=1

↵k(✓t � ✓
k

t+1 + �N (0, �2)) (6)

In practice, we add a magnitude coefficient � 2 (0, 1] on
the randomization of normal noise to control the effect of
the randomization mechanism on the performance of federated
aggregation.

IV. EXPERIMENTS

This section describes the experiments conducted to eval-
uate our proposed method. Two baseline methods are com-
pared and additional exploratory experiments are conducted
to further the exploration of the performance of our attentive
method. Our code is available online at https://github.com/
shaoxiongji/fed-att.

A. Datasets

We conduct experiments of neural language modeling ex-
periments on three English language datasets for evaluation
to mimic the real-world scenario of mobile keyboards in
the decentralized applications. They are Penn Treebank [28],
WikiText-2 [29], and the Reddit Comments from Kaggle.
Language modeling is one of the most suitable tasks for
the validation of federated learning. It has a large number
of datasets to test the performance and there is a real-
world application, i.e., the input keyboard application in smart
phones.

Penn Treebank is an annotated English corpus. We use the
data derived from Zaremba et al.2 [30]. The WikiText-2 is
available online3. May 2015 Reddit Comments dataset is a
portion of a large scale dataset of Reddit comments4 from
the popular online community – Reddit. It is available in the
Kaggle Datasets5. We sampled 1‰ of the comments from this
dataset to train our private language model as a representative

2Penn Treebank is available at https://github.com/wojzaremba/lstm/tree/
master/data

3WikiText-2 is available at https://s3.amazonaws.com/research.metamind.
io/wikitext/wikitext-2-v1.zip

4Avaliable at https://www.reddit.com/r/datasets/comments/3bxlg7/i have
every publicly available reddit comment/, retrieved in Dec, 2018

5Reddit Comments dataset is available at https://www.kaggle.com/reddit/
reddit-comments-may-2015

of social networks data. The statistical information, i.e., the
number of tokens in the training, validation, and testing set of
these three datasets is shown in Table I.

TABLE I: Number of tokens in training, validation and testing
sets of three datasets

Dataset # Train # Valid. # Test

Penn Treebank 887,521 70,390 78,669
WikiText-2 2,088,628 217,646 245,569

Reddit Comments 1,784,023 102,862 97,940

Data Partitioning. To mimic the scenario of real-world
private keyboard applications, we perform data partitioning on
these three popular language modeling datasets. At first, we
shuffle the whole dataset. Then, we perform random sampling
without replacement under the independently identical distri-
bution. The whole dataset is partitioned into a certain number
of shards denoted as the number of users or clients. We split
these three datasets into 100 subsets as the user groups of 100
clients to participate in the federated aggregation after local
training.

B. Baselines and Settings

We conducted to several groups experiments for compar-
ison, for example, performance with different model aggre-
gation methods, the scale of client models, communication
cost, and so forth. There are two baselines totally in these
comparisons, i.e., FedSGD and FedAvg. The basic definitions
and settings of baselines and our proposed method are as
follows.

1) FedSGD: Federated stochastic gradient descent takes all
the clients for federated aggregation and each client
performs one epoch of gradient descent.

2) FedAvg: Federated averaging samples a fraction of users
for each iteration and each client can take several steps
of gradient descent.

3) FedAtt: Our proposed FedAtt takes a similar setting
as FedAvg, but uses an improved attentive aggregation
algorithm.

We conduct experiments under the setting of federated
learning using the GRU-based private neural language model-
ing with Nvidia GTX 1080 Ti GPU acceleration. The GRU-
based client model firstly takes texts as input, then embeds
them into word vectors and feeds them to the GRU network.
The last fully connected layer takes the output of GRU as
input to predict the next word. The small model uses 300
dimensional word embedding and hidden state of RNN unit.
We deploy models of three scales: small, medium and large
with word embedding dimensions of 300, 650 and 1500,
respectively. Tied embedding is applied to reduce the size
of the model and decrease the communication cost. Tied
embedding shares the weights and biases in the embedding
layer and output layer and greatly reduces the number of
trainable parameters greatly.

learning [2]. This ensures differential privacy on the client
side without revealing the client’s data [2]. This differentially
private randomization was firstly proposed to apply on the
federated averaging, where a white noise with the mean of
0 and the standard deviation of � is added to the client
parameters in Equation 5.

✓t+1 = ✓t �
1

m
(

KX

k=1

�✓
k

t+1 + N (0, �2)) (5)

Our proposed attentive federated aggregation can also add
this mechanism smoothly using Equation 6. The randomization
is added in before the clients send the updated parameters to
the server, but it is written in the form of server optimization
for simplicity.

✓t+1 ✓t � ✏

mX

k=1

↵k(✓t � ✓
k

t+1 + �N (0, �2)) (6)

In practice, we add a magnitude coefficient � 2 (0, 1] on
the randomization of normal noise to control the effect of
the randomization mechanism on the performance of federated
aggregation.

IV. EXPERIMENTS

This section describes the experiments conducted to eval-
uate our proposed method. Two baseline methods are com-
pared and additional exploratory experiments are conducted
to further the exploration of the performance of our attentive
method. Our code is available online at https://github.com/
shaoxiongji/fed-att.

A. Datasets

We conduct experiments of neural language modeling ex-
periments on three English language datasets for evaluation
to mimic the real-world scenario of mobile keyboards in
the decentralized applications. They are Penn Treebank [28],
WikiText-2 [29], and the Reddit Comments from Kaggle.
Language modeling is one of the most suitable tasks for
the validation of federated learning. It has a large number
of datasets to test the performance and there is a real-
world application, i.e., the input keyboard application in smart
phones.

Penn Treebank is an annotated English corpus. We use the
data derived from Zaremba et al.2 [30]. The WikiText-2 is
available online3. May 2015 Reddit Comments dataset is a
portion of a large scale dataset of Reddit comments4 from
the popular online community – Reddit. It is available in the
Kaggle Datasets5. We sampled 1‰ of the comments from this
dataset to train our private language model as a representative

2Penn Treebank is available at https://github.com/wojzaremba/lstm/tree/
master/data

3WikiText-2 is available at https://s3.amazonaws.com/research.metamind.
io/wikitext/wikitext-2-v1.zip

4Avaliable at https://www.reddit.com/r/datasets/comments/3bxlg7/i have
every publicly available reddit comment/, retrieved in Dec, 2018

5Reddit Comments dataset is available at https://www.kaggle.com/reddit/
reddit-comments-may-2015

of social networks data. The statistical information, i.e., the
number of tokens in the training, validation, and testing set of
these three datasets is shown in Table I.

TABLE I: Number of tokens in training, validation and testing
sets of three datasets

Dataset # Train # Valid. # Test

Penn Treebank 887,521 70,390 78,669
WikiText-2 2,088,628 217,646 245,569

Reddit Comments 1,784,023 102,862 97,940

Data Partitioning. To mimic the scenario of real-world
private keyboard applications, we perform data partitioning on
these three popular language modeling datasets. At first, we
shuffle the whole dataset. Then, we perform random sampling
without replacement under the independently identical distri-
bution. The whole dataset is partitioned into a certain number
of shards denoted as the number of users or clients. We split
these three datasets into 100 subsets as the user groups of 100
clients to participate in the federated aggregation after local
training.

B. Baselines and Settings

We conducted to several groups experiments for compar-
ison, for example, performance with different model aggre-
gation methods, the scale of client models, communication
cost, and so forth. There are two baselines totally in these
comparisons, i.e., FedSGD and FedAvg. The basic definitions
and settings of baselines and our proposed method are as
follows.

1) FedSGD: Federated stochastic gradient descent takes all
the clients for federated aggregation and each client
performs one epoch of gradient descent.

2) FedAvg: Federated averaging samples a fraction of users
for each iteration and each client can take several steps
of gradient descent.

3) FedAtt: Our proposed FedAtt takes a similar setting
as FedAvg, but uses an improved attentive aggregation
algorithm.

We conduct experiments under the setting of federated
learning using the GRU-based private neural language model-
ing with Nvidia GTX 1080 Ti GPU acceleration. The GRU-
based client model firstly takes texts as input, then embeds
them into word vectors and feeds them to the GRU network.
The last fully connected layer takes the output of GRU as
input to predict the next word. The small model uses 300
dimensional word embedding and hidden state of RNN unit.
We deploy models of three scales: small, medium and large
with word embedding dimensions of 300, 650 and 1500,
respectively. Tied embedding is applied to reduce the size
of the model and decrease the communication cost. Tied
embedding shares the weights and biases in the embedding
layer and output layer and greatly reduces the number of
trainable parameters greatly.

✤ Attentive Federated Aggregation with Randomization

Experiments

✤ Datasets: Penn Treebank, WikiText-2, Reddit Comments

✤ Data Partitioning: shuffle and sampling

✤ Settings:

✤ 1) FedSGD: Federated stochastic gradient descent takes all the clients for federated
aggregation and each client performs one epoch of gradient descent.

✤ 2) FedAvg: Federated averaging samples a fraction of users for each iteration and
each client can take several steps of gradient descent.

✤ 3) FedAtt: Our proposed FedAtt takes a similar setting as FedAvg, but uses an
improved attentive aggregation algorithm.

!11

Code is available at https://github.com/shaoxiongji/fed-att

https://github.com/shaoxiongji/fed-att

Experiments

!12

C. Results

We conduct experiments on these three datasets and three
federated learning methods. Testing perplexity is taken as the
evaluation metric. Perplexity is a standard measurement for
probability distribution. It is one of the most commonly used
metrics for word-level language modeling. The perplexity of
a distribution is defined as

PPL(x) = 2H(p) = 2�
P

x p(x) log 1
p(x)

where H(p) is the entropy of the distribution p(x). A lower
perplexity stands for a better prediction performance of the
language model.

We take 50 rounds of communication between server and
clients and compare the performance on the validation set
to select the best model, then test the performance on the
testing set to get the testing perplexity. The results of testing
perplexity of all three datasets are shown in Table II. For
FedAvg and FedAtt, we set the client fraction C to be 0.1
and 0.5 within these results. According to the definition of
FedSGD, the client fraction is always 1. As shown in this
table, our proposed FedAtt outperforms FedSGD and FedAvg
in terms of testing perplexity in all the three datasets. When
the client fraction C is 0.1 and 0.5 in the Penn Treebank
and WikiText-2 respectively, our proposed method gains a
significant improvement over its counterparts. We also conduct
experiments on the fine-grained setting of the client fraction C

(from 0.1 to 0.9). When the client fraction is 0.7, our proposed
method obtains the best testing perplexity of 67.59 in the
WikiText-2 dataset.

TABLE II: Testing perplexity of 50 communication rounds
for federated training using small-scaled GRU network as the
client model

Frac. Methods WikiText-2 PTB Reddit

1 FedSGD 112.45 155.27 128.61

0.1 FedAvg 95.27 138.13 126.49
FedAtt 91.82 115.43 120.25

0.5 FedAvg 79.75 128.24 101.64
FedAtt 69.38 123.00 99.04

We then further our exploration of the four factors in
the WikiText-2 dataset to evaluate the performance of our
proposed method with a comparison of its counterpart FedAvg.
In additional exploratory experiments in the following sub-
sections, we explored the client fraction, the communication
costs, the effect of different randomizations, and the scale of
the models.

D. Client Fraction

In real-world applications of federated learning, some
clients may be offline due to a change in user behavior or
network issues. Thus, it is necessary to choose only a small
number of clients for federated optimization. To evaluate
the effect of the client fraction C on the performance of

our proposed attentive federated optimization, we explore the
testing perplexity with various number of clients. The result is
illustrated in Figure 2 where the client fraction varies from 0.1
to 0.9. The small-scaled neural language model is used in this
evaluation. The testing perplexity fluctuates when the client
fraction increases. There is no guarantee that more clients
results in a better score. Actually, 70% of clients for model
aggregation achieved the lowest perplexity in this experiment.
This result indicates that the number of clients participating
in model aggregation has an impact on the performance. But
our proposed FedAtt can achieve much quite lower perplexity
than FedAvg for all the settings of the client fraction.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
50

60

70

80

90

100

110

95.27

101.01

88.67
85.85

79.75

93.54 92.09
94.02

88.12
91.82

84.99

76.97 75.63

69.38

82.77

67.59

79.57
76.23

Client fraction

T
es
ti
n
g
p
er
p
le
xi
ty

FedAvg FedAtt

Fig. 2: Testing perplexity of 50 communication rounds when
a different number of clients is selected for federated aggre-
gation

E. Communication Cost

Communication cost for parameter uploading and down-
loading between the clients and server is another important
issue for decentralized learning. Communication, both wired
and wireless, depends on Internet bandwidth highly and has
an impact on the performance of federated optimization.
To save the capacity of network communication, decentral-
ized training should be more communication-efficient. Several
approaches apply compression methods to achieve efficient
communication. Our method accelerates the training through
the optimization of the global server as it can converge more
quickly than its counterparts.

To compare the efficiency of communication, we take
the communication rounds during training as the evaluation
metric in this subsection. Three factors are considered, i.e.,
the client fraction, epochs and batch size of client training.
The results are shown in Figure 3 where the small-scaled
language model is used as the client model and 10% of
clients are selected for model aggregation. We set the testing
perplexity for the termination of federated training to be 90.
When the testing perplexity is lower than that threshold,
federated training comes to an end and we take the rounds
of training as the communication rounds. As shown in Figure
3(a), the communication round during training fluctuates when
the number of client increases. Furthermore, our proposed
method is always better than FedAvg with less communication
cost. When the client fraction C chosen is 0.2 and 0.4, our

Testing perplexity of 50 communication
rounds for federated training using small-
scaled GRU network as the client model

C. Results

We conduct experiments on these three datasets and three
federated learning methods. Testing perplexity is taken as the
evaluation metric. Perplexity is a standard measurement for
probability distribution. It is one of the most commonly used
metrics for word-level language modeling. The perplexity of
a distribution is defined as

PPL(x) = 2H(p) = 2�
P

x p(x) log 1
p(x)

where H(p) is the entropy of the distribution p(x). A lower
perplexity stands for a better prediction performance of the
language model.

We take 50 rounds of communication between server and
clients and compare the performance on the validation set
to select the best model, then test the performance on the
testing set to get the testing perplexity. The results of testing
perplexity of all three datasets are shown in Table II. For
FedAvg and FedAtt, we set the client fraction C to be 0.1
and 0.5 within these results. According to the definition of
FedSGD, the client fraction is always 1. As shown in this
table, our proposed FedAtt outperforms FedSGD and FedAvg
in terms of testing perplexity in all the three datasets. When
the client fraction C is 0.1 and 0.5 in the Penn Treebank
and WikiText-2 respectively, our proposed method gains a
significant improvement over its counterparts. We also conduct
experiments on the fine-grained setting of the client fraction C

(from 0.1 to 0.9). When the client fraction is 0.7, our proposed
method obtains the best testing perplexity of 67.59 in the
WikiText-2 dataset.

TABLE II: Testing perplexity of 50 communication rounds
for federated training using small-scaled GRU network as the
client model

Frac. Methods WikiText-2 PTB Reddit

1 FedSGD 112.45 155.27 128.61

0.1 FedAvg 95.27 138.13 126.49
FedAtt 91.82 115.43 120.25

0.5 FedAvg 79.75 128.24 101.64
FedAtt 69.38 123.00 99.04

We then further our exploration of the four factors in
the WikiText-2 dataset to evaluate the performance of our
proposed method with a comparison of its counterpart FedAvg.
In additional exploratory experiments in the following sub-
sections, we explored the client fraction, the communication
costs, the effect of different randomizations, and the scale of
the models.

D. Client Fraction

In real-world applications of federated learning, some
clients may be offline due to a change in user behavior or
network issues. Thus, it is necessary to choose only a small
number of clients for federated optimization. To evaluate
the effect of the client fraction C on the performance of

our proposed attentive federated optimization, we explore the
testing perplexity with various number of clients. The result is
illustrated in Figure 2 where the client fraction varies from 0.1
to 0.9. The small-scaled neural language model is used in this
evaluation. The testing perplexity fluctuates when the client
fraction increases. There is no guarantee that more clients
results in a better score. Actually, 70% of clients for model
aggregation achieved the lowest perplexity in this experiment.
This result indicates that the number of clients participating
in model aggregation has an impact on the performance. But
our proposed FedAtt can achieve much quite lower perplexity
than FedAvg for all the settings of the client fraction.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
50

60

70

80

90

100

110

95.27

101.01

88.67
85.85

79.75

93.54 92.09
94.02

88.12
91.82

84.99

76.97 75.63

69.38

82.77

67.59

79.57
76.23

Client fraction

T
es
ti
n
g
p
er
p
le
xi
ty

FedAvg FedAtt

Fig. 2: Testing perplexity of 50 communication rounds when
a different number of clients is selected for federated aggre-
gation

E. Communication Cost

Communication cost for parameter uploading and down-
loading between the clients and server is another important
issue for decentralized learning. Communication, both wired
and wireless, depends on Internet bandwidth highly and has
an impact on the performance of federated optimization.
To save the capacity of network communication, decentral-
ized training should be more communication-efficient. Several
approaches apply compression methods to achieve efficient
communication. Our method accelerates the training through
the optimization of the global server as it can converge more
quickly than its counterparts.

To compare the efficiency of communication, we take
the communication rounds during training as the evaluation
metric in this subsection. Three factors are considered, i.e.,
the client fraction, epochs and batch size of client training.
The results are shown in Figure 3 where the small-scaled
language model is used as the client model and 10% of
clients are selected for model aggregation. We set the testing
perplexity for the termination of federated training to be 90.
When the testing perplexity is lower than that threshold,
federated training comes to an end and we take the rounds
of training as the communication rounds. As shown in Figure
3(a), the communication round during training fluctuates when
the number of client increases. Furthermore, our proposed
method is always better than FedAvg with less communication
cost. When the client fraction C chosen is 0.2 and 0.4, our

Testing perplexity of 50 communication rounds
when a different number of clients is selected

for federated aggregation

✤ Results ✤ Client Fraction

Experiments

✤ Communication Cost

!13

proposed method saves a half of communication rounds. Then,
we evaluate the effect of the local computation of clients on
the communication rounds. We take the local training epochs
to be 1, 5, 10, 15, and 20 and the local batch size to be
from 10 to 50. We proposed FedAtt to achieve a comparable
communication cost in the comparison of different values of
epoch and the batch size of local training, as shown in Figure
3(b) and Figure 3(c) respectively.

0.2 0.4 0.6 0.8 1
0

5

10

15

20
17

12
11

12

9

12
11 11

12
13

12

6
7

6
7

8
9

6

10
8

Client fraction

C
om

m
u
n
ic
at
io
n
ro
u
n
d
s

FedAvg FedAtt

(a) Rounds vs. client fraction

0 5 10 15 20
0

10

20

30

40

50

60

70
62

17

6 4 2

37

17

6
3 2

Training epochs of clients

C
om

m
u
n
ic
at
io
n
ro
u
n
d
s

FedAvg FedAtt

(b) Rounds vs. epochs

10 20 30 40 50
0

5

10

15

20

25

30

35

17 17

26

31
33

17

12

19
16

25

Batch size of clients

C
om

m
u
n
ic
at
io
n
ro
u
n
d
s

FedAvg FedAtt

(c) Rounds vs. batch size

Fig. 3: Effect of the client fraction, epochs, and batch size
of clients on communication rounds when the threshold of
testing perplexity is set to be 90 and small-scaled GRU-based
language model is used

F. Magnitude of Randomization

The federated learning framework focuses on the privacy
of the input data using distributed training on each client
side to protect the user’s privacy. To further the privacy
preservation of the decentralized training, we evaluate the
magnitude of normal noise in the randomization mechanism
on model parameters. Comparative experiments are conducted
to analyze the effect of the magnitude on the testing perplexity.
The results are shown in Table III with both randomized
and nonrandomized settings. For the randomized version, four
values of magnitude are chosen, i.e., 0.001, 0.005, 0.01, and
0.05.

As shown in the table, a very small noise on both the
methods does not affect the performance. Actually, the testing
perplexity for the randomized setting is slightly better than
the result of nonrandomized setting. With a larger noise, the

performance becomes worse. For our proposed method, the
testing perplexity is always lower than its counterpart FedAvg,
showing that our method can resist a larger noise and can
better preserve privacy to ensure the perplexity of next-word
prediction.

TABLE III: Magnitude of randomization vs. testing perplexity
using a small-scaled model with tied embedding

Randomization FedAvg FedAtt

Nonrandomized � = 0 88.21 77.66

Randomized

� = 0.001 88.17 77.76
� = 0.005 88.36 78.59
� = 0.01 89.74 79.51
� = 0.05 103.17 101.82

G. Scale of Model

Distributed training depends on communication between the
server and clients, and the central server needs to optimize on
the model parameters for the aggregation of the clients models.
Thus, the central server will have a higher communication
cost and computational cost when there are a larger number
of clients and the local models have millions of parameters.

The size of the vocabulary in most language modeling
corpus is very large. To save training costs, the embedding
weights and output weights are tied which can reduce the
number of trainable parameters [17], [18]. We compared three
scales of client models with the word embedding dimensions
of 300, 650 and 1500. Two versions of the tied and untied
models are used. In the tied setting, the dimension of the RNN
hidden state must be the same as the embedding dimension.

The results of the model’s scales on the testing perplexity
are shown in Table IV. The tied large-scale model achieves
the best results for both FedAvg and FedAtt and the tied
model is better than the untied model of the same scale.
Our proposed method achieves lower testing perplexity in
four out of the six settings, i.e., tied and untied small model,
tied medium model, and tied large model. For the other two
settings, the testing perplexity of our method is slightly higher
than FedAvg. Overall, for real-world keyboard applications in
practice, the tied embedding can be used to save the number
of trainable parameters and the communication cost while
achieving a better performance.

V. CONCLUSION

Federated learning provides a promising and practical ap-
proach to learning from decentralized data while protecting the
private data with differential privacy. Efficient decentralized
learning is significant for distributed real-world applications
such as personalized keyboard word suggestion on mobile
phones, providing a better service and protect user’s private
personal data.

To optimize the server aggregation by federated averaging,
we investigated the model aggregation and optimization on the
central server in this paper. We proposed a novel layer-wise

Effect of the client fraction, epochs, and batch size
of clients on communication rounds when the
threshold of testing perplexity is set to be 90 and
small-scaled GRU-based language model is used

Experiments

✤ Randomization

!14

✤ Model Scale
TABLE IV: Testing perplexity of 50 communication rounds
vs. the scale of the model using a tied embedding or untied
embedding model

Model FedAvg FedAtt

Small tied 88.21 77.66
untied 91.25 81.31

Medium tied 103.07 77.41
untied 96.67 96.71

Large tied 77.51 76.37
untied 82.97 83.40

attentive federated optimization for private neural language
modeling which can measure the importance of selected
clients and accelerate the learning process. We partitioned
three popular datasets, i.e., Penn Treebank and WikiText-
2 for the prototypical language modeling task, and Reddit
comments from a real-world social networking website, to
mimic the scenario of word-level keyboard suggestions and
performed a series of exploratory experiments. Experiments
on these datasets show our proposed method outperforms its
counterparts in most settings.

ACKNOWLEDGEMENT

This research is funded by the Australian Government
through the Australian Research Council (ARC) under grants
LP150100671 partnership with Australia Research Alliance
for Children and Youth (ARACY) and Global Business Col-
lege Australia (GBCA).

REFERENCES

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282, 2017.

[2] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially pri-
vate federated learning: A client level perspective. arXiv preprint

arXiv:1712.07557, 2017.
[3] Fei Chen, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated

meta-learning for recommendation. arXiv preprint arXiv:1802.07876,
2018.

[4] Eunice Kim, Jung-Ah Lee, Yongjun Sung, and Sejung Marina Choi.
Predicting selfie-posting behavior on social networking sites: An exten-
sion of theory of planned behavior. Computers in Human Behavior,
62:116–123, 2016.

[5] Kenneth C Arnold, Krzysztof Z Gajos, and Adam T Kalai. On
suggesting phrases vs. predicting words for mobile text composition. In
Proceedings of the 29th Annual Symposium on User Interface Software

and Technology, pages 603–608. ACM, 2016.
[6] Hongmei He, Tim Watson, Carsten Maple, Jörn Mehnen, and Ashutosh

Tiwari. A new semantic attribute deep learning with a linguistic attribute
hierarchy for spam detection. In 2017 International Joint Conference

on Neural Networks (IJCNN), pages 3862–3869. IEEE, 2017.
[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.
[8] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder–decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1724–1734,
2014.

[9] Vadim Popov, Mikhail Kudinov, Irina Piontkovskaya, Petr Vytovtov, and
Alex Nevidomsky. Distributed fine-tuning of language models on private
data. In International Conference on Learning Representation (ICLR),
2018.

[10] Yejin Kim, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang. Federated
tensor factorization for computational phenotyping. In Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 887–895. ACM, 2017.
[11] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Tal-

walkar. Federated multi-task learning. In Advances in Neural Informa-

tion Processing Systems, pages 4427–4437, 2017.
[12] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint

arXiv:1610.05492, 2016.
[13] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vo-

jnovic. QSGD: Communication-efficient SGD via gradient quantization
and encoding. In Advances in Neural Information Processing Systems,
pages 1709–1720, 2017.

[14] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran
Chen, and Hai Li. Terngrad: Ternary gradients to reduce communication
in distributed deep learning. In Advances in Neural Information

Processing Systems, pages 1509–1519, 2017.
[15] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and

Sanjeev Khudanpur. Recurrent neural network based language model. In
Eleventh Annual Conference of the International Speech Communication

Association, 2010.
[16] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and

Yonghui Wu. Exploring the limits of language modeling. arXiv preprint

arXiv:1602.02410, 2016.
[17] Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word

vectors and word classifiers: A loss framework for language modeling.
arXiv preprint arXiv:1611.01462, 2016.

[18] Ofir Press and Lior Wolf. Using the output embedding to improve
language models. In Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 2,

Short Papers, volume 2, pages 157–163, 2017.
[19] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models

of visual attention. In Advances in neural information processing

systems, pages 2204–2212, 2014.
[20] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural

machine translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473, 2014.
[21] Thang Luong, Hieu Pham, and Christopher D Manning. Effective

approaches to attention-based neural machine translation. In Proceedings

of the 2015 Conference on Empirical Methods in Natural Language

Processing, pages 1412–1421, 2015.
[22] Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. Abcnn:

Attention-based convolutional neural network for modeling sentence
pairs. Transactions of the Association of Computational Linguistics,
4(1):259–272, 2016.

[23] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Ed-
uard Hovy. Hierarchical attention networks for document classification.
In Proceedings of the 2016 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language

Technologies, pages 1480–1489, 2016.
[24] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and

Chengqi Zhang. Disan: Directional self-attention network for rnn/cnn-
free language understanding. arXiv preprint arXiv:1709.04696, 2017.

[25] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. arXiv preprint

arXiv:1703.03400, 2017.
[26] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-

learning algorithms. arXiv preprint arXiv:1803.02999, 2018.
[27] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE

Transactions on Knowledge and Data Engineering, 22(10):1345–1359,
2010.

[28] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini.
Building a large annotated corpus of english: The Penn Treebank.
Computational linguistics, 19(2):313–330, 1993.

[29] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.
Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

[30] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329, 2014.

proposed method saves a half of communication rounds. Then,
we evaluate the effect of the local computation of clients on
the communication rounds. We take the local training epochs
to be 1, 5, 10, 15, and 20 and the local batch size to be
from 10 to 50. We proposed FedAtt to achieve a comparable
communication cost in the comparison of different values of
epoch and the batch size of local training, as shown in Figure
3(b) and Figure 3(c) respectively.

0.2 0.4 0.6 0.8 1
0

5

10

15

20
17

12
11

12

9

12
11 11

12
13

12

6
7

6
7

8
9

6

10
8

Client fraction

C
om

m
u
n
ic
at
io
n
ro
u
n
d
s

FedAvg FedAtt

(a) Rounds vs. client fraction

0 5 10 15 20
0

10

20

30

40

50

60

70
62

17

6 4 2

37

17

6
3 2

Training epochs of clients

C
om

m
u
n
ic
at
io
n
ro
u
n
d
s

FedAvg FedAtt

(b) Rounds vs. epochs

10 20 30 40 50
0

5

10

15

20

25

30

35

17 17

26

31
33

17

12

19
16

25

Batch size of clients

C
om

m
u
n
ic
at
io
n
ro
u
n
d
s

FedAvg FedAtt

(c) Rounds vs. batch size

Fig. 3: Effect of the client fraction, epochs, and batch size
of clients on communication rounds when the threshold of
testing perplexity is set to be 90 and small-scaled GRU-based
language model is used

F. Magnitude of Randomization

The federated learning framework focuses on the privacy
of the input data using distributed training on each client
side to protect the user’s privacy. To further the privacy
preservation of the decentralized training, we evaluate the
magnitude of normal noise in the randomization mechanism
on model parameters. Comparative experiments are conducted
to analyze the effect of the magnitude on the testing perplexity.
The results are shown in Table III with both randomized
and nonrandomized settings. For the randomized version, four
values of magnitude are chosen, i.e., 0.001, 0.005, 0.01, and
0.05.

As shown in the table, a very small noise on both the
methods does not affect the performance. Actually, the testing
perplexity for the randomized setting is slightly better than
the result of nonrandomized setting. With a larger noise, the

performance becomes worse. For our proposed method, the
testing perplexity is always lower than its counterpart FedAvg,
showing that our method can resist a larger noise and can
better preserve privacy to ensure the perplexity of next-word
prediction.

TABLE III: Magnitude of randomization vs. testing perplexity
using a small-scaled model with tied embedding

Randomization FedAvg FedAtt

Nonrandomized � = 0 88.21 77.66

Randomized

� = 0.001 88.17 77.76
� = 0.005 88.36 78.59
� = 0.01 89.74 79.51
� = 0.05 103.17 101.82

G. Scale of Model

Distributed training depends on communication between the
server and clients, and the central server needs to optimize on
the model parameters for the aggregation of the clients models.
Thus, the central server will have a higher communication
cost and computational cost when there are a larger number
of clients and the local models have millions of parameters.

The size of the vocabulary in most language modeling
corpus is very large. To save training costs, the embedding
weights and output weights are tied which can reduce the
number of trainable parameters [17], [18]. We compared three
scales of client models with the word embedding dimensions
of 300, 650 and 1500. Two versions of the tied and untied
models are used. In the tied setting, the dimension of the RNN
hidden state must be the same as the embedding dimension.

The results of the model’s scales on the testing perplexity
are shown in Table IV. The tied large-scale model achieves
the best results for both FedAvg and FedAtt and the tied
model is better than the untied model of the same scale.
Our proposed method achieves lower testing perplexity in
four out of the six settings, i.e., tied and untied small model,
tied medium model, and tied large model. For the other two
settings, the testing perplexity of our method is slightly higher
than FedAvg. Overall, for real-world keyboard applications in
practice, the tied embedding can be used to save the number
of trainable parameters and the communication cost while
achieving a better performance.

V. CONCLUSION

Federated learning provides a promising and practical ap-
proach to learning from decentralized data while protecting the
private data with differential privacy. Efficient decentralized
learning is significant for distributed real-world applications
such as personalized keyboard word suggestion on mobile
phones, providing a better service and protect user’s private
personal data.

To optimize the server aggregation by federated averaging,
we investigated the model aggregation and optimization on the
central server in this paper. We proposed a novel layer-wise

Magnitude of randomization vs. testing
perplexity using a small-scaled model with

tied embedding

Testing perplexity of 50 communication rounds
vs. the scale of the model using a tied

embedding or untied embedding model

Conclusion

✤ This paper introduces the attention mechanism to
aggregate multiple distributed models

✤ A novel layer-wise soft attention to capturing the
“attention” among many local models’ parameters is
proposed.

✤ Experiments of next word prediction show a
comparable performance in terms of perplexity and
communication rounds

!15

!16

Q&A

shaoxiong.ji@uq.edu.au
https://shaoxiongji.github.io/

Contacts

