
Time Series Indexing By Dynamic Covering with Cross-Range
Constraints∗

Tao Sun §, Hongbo Liu †, Seán McLoone ‡, Shaoxiong Ji \, Xindong Wu]

§School of Innovation and Entrepreneurship, Dalian University of Technology, China
†Institute of Cognitive Information Technology, Dalian Maritime University, China

‡School of Electronics, Electrical Engineering and Computer Science at Queen’s University Belfast, UK
\Department of Computer Science, Aalto University, Finland

]Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology),

Ministry of Education, China; and Mininglamp Academy of Sciences, Mininglamp Technology, China

Emails: dlutst@dlut.edu.cn; lhb@dlmu.edu.cn; s.mcloone@qub.ac.uk; shaoxiong.ji@aalto.fi; xwu@hfut.edu.cn

Abstract

Time series indexing plays an important role in querying and pattern mining of big data. This paper proposes a
novel structure for tightly covering a given set of time series under the dynamic time warping similarity measure-
ment. The structure, referred to as Dynamic Covering with cross-Range Constraints (DCRC), enables more efficient
and scalable indexing to be developed than current hypercube based partitioning approaches. In particular, a lower
bound of the DTW distance from a given query time series to a DCRC-based cover set is introduced. By virtue of its
tightness, which is proven theoretically, the lower bound can be used for pruning when querying on an indexing tree.
If the DCRC based Lower Bound (LB DCRC) of an upper node in an index tree is larger than a given threshold, all
child nodes can be pruned yielding a significant reduction in computational time. A Hierarchical DCRC (HDCRC)
structure is proposed to generate the DCRC-tree based indexing and used to develop time series indexing and inser-
tion algorithms. Experimental results for a selection of benchmark time series datasets are presented to illustrate the
tightness of LB DCRC, as well as the pruning efficiency on the DCRC-tree, especially when the time series have large
deformations.

Keywords— Time Series; Dynamic Time Warping; Indexing; R-Tree; Dynamic Covering; Cross-Range Constraints

1 Introduction
With the dramatic growth in the volume of data, and the opportunities for data driven decision making afforded by such data,
particularly when it comes to social networks and e-commerce [18, 40], it is vital to have algorithms that are able to efficiently
mine big data [2, 36]. In many practical applications mining of data that is in the form of time series [5, 10] is of interest and
this has led to the development of bespoke approaches for tasks such as pattern discovery and clustering [37, 21, 9], classification
[7, 20], rule discovery [30, 34], and summarisation [13]. As with standard data mining, indexing is a fundamental technique for
efficiently accessing and querying data when performing these tasks [6, 4]. However, when indexing time series data the choice
of similarity measurement is a key consideration [23], particularly when they are not aligned temporally. In these circumstances,
the classical Euclidean distance, as introduced in [1], can result in large differences between two time series even when they are
quite similar in shape [14]. Consequently, dynamic time warping (DTW), which addresses this deficiency, has become a popular
method of measuring the similarity between time series [25, 22, 35, 24].

When indexing big time series datasets performing a direct linear scan of all the time series is generally computationally
intractable and a more considered approach is needed. This usually involves mapping the data to a tree-like structure with
partitions, and then extracting a small number of time series from these partitions for linear scanning [26, 39]. A partition is
defined as a low-complexity structure covering a set of relatively similar time series. For a given query time series, a lower bound
with respect to each partition can then be employed during indexing instead of directly measuring the similarity between the
query time series and each element of the partitions. Using this approach efficient pruning procedures can be implemented,
substantially reducing the computational complexity of indexing, and enabling fast data access and querying [14]. The speed-ups
achievable using time series partitioning very much depend on how the partitions are defined, the approach used to generate
tree-like indexing using these partitions, and the complexity of the lower bound calculation, hence improving on each of these
remains an important area of research, and is the focus of this paper.

∗Published in The VLDB Journal

1

In the classical methods [14, 39, 15], when computing the lower bound of DTW from a query time series q to a set S of time
series, the range [Li, Ui] is computed for each dimension i. The set of dimensional ranges [Li, Ui], i = 1, · · · ,m, define a hyper
rectangular area, denoted by C, which can serve as a partition in an indexing structure. In fact, the lower bound of DTW is exactly
the Hausdorff distance from q to C. However, a partition represented by a hyper rectangle is often not optimal in terms of DTW
distance. With the deformation of the time axis when DTW matching, the volume of partition C can be so large that C might still
include quite dissimilar time series, even if the elements of S are similar, which results in inefficient indexing.

As an alternative to hyper rectangles, we propose the use of Dynamic Covering with Cross-Range Constraints (DCRC) to
partition time series for indexing.

For a given set S, let an approximately central element in terms of the DTW distance be the “reference” time series, denoted c.
DCRC is defined as a series of sets V1, V2, · · · , Vm. Each element of set Vi is a 3-tuple (l, u, p), where p is a dimensional subscript of
reference c, and [l, u] denotes a dimensional range. A tuple (v1,v2, · · ·) over the Cartesian product V1×V2×· · · corresponds to an
m-dimensional hyper rectangle. We only consider tuples satisfying “Alignment”, “Continuity” and “Monotonicity” conditions,
called the ACM-relationship. These tuples under the ACM-relationship correspond to multiple m-dimensional hyper rectangles.

In contrast to the classic method, DCRC proposes a “tight” structure composed of multiple hyper rectangles. For a given set
S of similar time series in terms of DTW distance, any element of the corresponding DCRC must be similar to the elements of S.
The tightness makes it possible to efficiently prune unnecessary samples when partitioning for DTW indexing.

We determine the lower bound of the DTW between a given query time series and the cover set of a given DCRC structure,
denoted as LB DCRC, and then introduce the hierarchical DCRC (HDCRC) structure. This is composed of multiple layers, with
the upper DCRC structure covering all the elements covered by the DCRC structures of its sub-layers. Based on the DCRC and
HDCRC structures, we further present a novel tree-like indexing and its insertion and node splitting algorithms. Given time series
set S and a query time series q, from the root down to its sub-layers in the indexing tree, if the LB DCRC (DCRC based Lower
Bound of DTW) of an upper layer is larger than a given acceptable range query tolerance, then all of its sub-layers are accordingly
pruned, with the result that only a few remaining leaves on the indexing tree need to be sequentially scanned using the DTW
distance. This leads to significant reductions in computational time.

In summary, the novel contributions of the paper are as follows:

(a) We develop the theory of DCRC-based covering of a given set of time series, and prove that a DCRC-based covering has
significantly lower volume than other methods, that is, if all the elements are similar to the reference c, any element of the
corresponding DCRC-based cover set is also similar to c.

(b) The corresponding lower bound of the DTW between a given query time series and a given time series set, namely, LB DCRC
is proposed. This bound outperforms other lower bounds in terms of tightness.

(c) Since the number of feasible ACM-relationships for a given DCRC usually grows exponentially, we propose a novel polyno-
mial time algorithm to compute the lower bound of the DTW between a given query time series and the cover set of a given
DCRC structure.

(d) We then present the hierarchical DCRC (HDCRC) structure, HDCRC-based tree indexing and its insertion and node splitting
algorithms and demonstrate with extensive numerical studies that the proposed DCRC based indexing method performs
efficient pruning for range querying, and outperforms linear scanning and other indexing methods in terms of computational
time.

The remainder of the paper is organized as follows. Related work is reviewed in section 2. The key DCRC concepts and alror-
ithms are introduced in section 3. Then the HDCRC structure and the indexing approach based on the DCRC-tree are developed
in section 4. The relevant theorems on DCRC and HDCRC are presented in section 5. Using benchmark datasets from the UCR
Time Series Classification Archive, experimental results are provided in section 6 to demonstrate the efficiency of our approaches.
Finally, conclusions are provided in section 7.

2 Related Work
DTW is a more robust measure of the similarity between two time series than the Euclidean distance as it takes account of time
axis shifting between time series. Generally, the warping path of DTW is defined by a number of global and/or local constraints.
Two of the most popular global constraints are the Itakura parallelogram [12] and the Sakoe-Chiba band [28]. In contrast to the
traditional form of DTW, this paper adopts the form DTWp [16, 32] to denote the Lp norm of monotonic DTW distance (p = 2).

Despite its limitation with respect to scalability to high dimensional data sets, in recent years DTW has been widely applied,
particularly for high-dimensional data indexing [33] and stream matching [19, 11].

However, since DTW does not obey the triangle inequality, and therefore is not suitable for indexing with a metric access
method, researchers have switched their attention to developing indexing approaches that work with suitability defined DTW
lower bounds, rather than DTW itself. In recent years, many researches have focused on the DTW lower bound.

The idea of using a lower bound function was first proposed by Yi et al. [38]. In their lower bound, denoted as LB Yi, the
maximum and minimum elements of a sequence are used to represent the sequence.

Keogh et al. proposed a lower bound function (denoted as LB Keogh) [14], together with an exact indexing method based
on their lower bound function. For two given time series x and y, let Y be a range series, each entry Yi of which denotes the
i-th envelope, i.e. the range between the minimum and the maximum of the warping window with center yi. In fact, LB Keogh
corresponds to the Hausdorff distance from x to Y .

2

Lemire proposed LB IMPROVED lower bound [16], which imports additional time series x′ from x and Y , and the lower
bound is represented by LB Keogh(x,y) + LB Keogh(y,x′).

Based on the common features of LB Kim, LB Yi and LB Keogh, Zhou and Wong [39] proposed several boundary-based lower
bound functions including a non-elaborate version (denoted as LB Corner) and an elaborate version (denoted as LB ECorner). Li
and Yang [17] proposed two extensions of LB Kim and LB Keogh (denoted respectively as LB NKim and LB NKeogh).

In 2018 Shen et al. proposed a new lower bound (LB NEW) [29]. In contrast to LB Keogh, LB NEW defines Yi as all the
elements of the warping window with center yi, instead of the i-th envelope Yi in LB KEOGH. Therefore, LB NEW is usually
tighter than LB Keogh. Tan et al. [32] proposed the LB ENHANCED lower bound. In this algorithm, Yi is represented by
left bands LW

i or right bandsRW
i , assuring a relatively tight lower bound.

In the traditional time series indexing methods [14], the dataset S of sample time series is stored in an R-tree like structure,
each tree node of which corresponds to a minimal boundary rectangle (MBR) containing a subset of S. Given a query time series
q, retrieving the subset {s ∈ S|DTW (q, s) ≤ ε} involves two steps:

(1) Seach the nodes based on the lower bound between q and MBR in a top-down approach.

(2) All the feasible time series are linear scanned using an efficient method [27].

3 Dynamic Covering with Cross-Range Constraints (DCRC)

3.1 DTW
Given a time series x represented by [x1, x2, · · · , xn], let x(i) denote the i-th entry of x, xi and x(i1 : i2) denote the subsequence
[xi1 , xi1+1, · · · , xi2]. Here, n is the length of the time series, also referred to as its “dimension”.

DTW measures the similarity between two time series [31]. For two given time series x = [x1, x2, · · · , xm] and time series
y = [y1, y2, · · · , yn], let W denote a warping path from x to y. Let (ik, jk) be the k-th element of W and K be the length of
W (1 ≤ k ≤ K). The warping path in DTW is required to satisfy a set of constraints, referred to as alignment, continuity and
monotonicity constraints. These are defined as follows:

(a) (i1, j1) = (1, 1) and (iK , jK) = (m,n);

(b) ik+1 − ik ≤ 1 and jk+1 − jk ≤ 1, k = 1, 2, · · · ,K − 1;

(c) ik+1 − ik ≥ 0 and jk+1 − jk ≥ 0, k = 1, 2, · · · ,K − 1.

The ratio of the width of the Sakoe-Chiba Band to the length of the time series, denoted by λ (0 < λ ≤ 1), imposes an additional
constraint which is defined as follows:

(d) | n
m
ik − jk| ≤ λn, k = 1, 2, · · · ,K.

The DTW path distance is obtained subject to these constraints by solving the dynamic programming problem given in Equ.
(1), where δ(i, j) = (xi − yj)2,

√
µ(i, j) represents the DTW distance between x(1 : i) and y(1 : j), and DTW (x,y) =

√
µ(m,n).

µ(i, j) = min

δ(i, j) + µ(i− 1, j − 1)

δ(i, j) + µ(i− 1, j)

δ(i, j) + µ(i, j − 1)

(1)

3.2 ACM-Relationship
Definition 1 (ACM-Relationship) Considering the Cartesian product P1× P2× · · ·×Pm, where Pi = {1, 2, · · · , n} for i = 1, 2, · · · ,m.
Let R(m,n) denote the relationship on the Cartesian product, each element r[r1, r2, · · · , rm] of which satisfies the Alignment, Continuity
and Monotonicity (ACM-Relationships) as follows.

(a) Alignment. r1 = 1, rm = n;

(b) Continuity. ri+1 − ri ≤ 1 for i = 1, 2, · · · ,m− 1;

(c) Monotonicity. ri+1 − ri ≥ 0 for i = 1, 2, · · · ,m− 1.

Given a time series x[x1, x2, · · · , xn] of length n, and a relationship r[r1, r2, · · · , rm] ∈ R(m,n), let

τ(x, r) = [xr1 , xr2 , · · · , xrm] (2)

Given a time series x[x1, x2, · · · , xm] of length m, and a time series y[y1, y2, · · · , yn] of length n, let
R(x,y) = argmin

r∈R(m,n)

||x, τ(y, r)||

D(x,y) = min
r∈R(m,n)

||x, τ(y, r)||
(3)

3

1

2

3

1 2 3 4 5

• •

• •

•

•

• •

(a) A legal ACM-Relationship

1

2

3

1 2 3 4 5

• •

• •

•

•

• •

(b) A legal ACM-Relationship

1

2

3

1 2 3 4 5

• •

• •

•

•

• •

(c) An illegal ACM-Relationship
as it violates “Monotonicity”

1

2

3

1 2 3 4 5

• •

• •

•

•

• •

(d) An illegal ACM-Relationship
as it violates “Continuity”

Figure 1: Examples of legal and illegal ACM-relationships

In Equ. (3), r is a ACM-Relationship, τ(y, r) is a time series of length m while |y| = n < m, and ||x, τ(y, r)|| is the Euclidian
distance of the two m-length time series x and τ(y, r). D(x,y) is the minimum Euclidian distance with respect to relationship r,
andR(x,y) is the corresponding value of r.

Fig. 1 shows examples of the ACM-relationship. In each sub-figure of Fig. 1, 5 columns correspond to 5 sets P1, P2, · · · , P5,
and the black dots correspond to the elements of Pi. The black dots on the black path represent elements of the Cartesian product
P1× P2× · · · × P5. The two series represented by Figs. 1(a) and 1(b) satisfy the ACM-relationships. However, the two series in
Figs. 1(c) and 1(d) do not satisfy the ACM-relationships.

Algorithm 1 Minimization for ACM-Relationship
Input: A given time series x[x1, x2, · · · , xm] of length m, and a time series y[y1, y2, · · · , yn] of length n(n < m).
Output: r[r1, r2, · · · , rm] = R(x,y) and d = D(x,y).
1: Let µ00 = 0, let µi0 =∞ for i = 1, 2, · · · ,m, and let µ0j =∞ for j = 1, 2, · · · , n;
2: for i = 1 to m, j = 1 to n do
3: Let p = argmin

q∈{j−1,j}
δ(i− 1, q);

4: Let ri−1 = p;
5: Let µij = δ(i, j) + µi−1,p;
6: end for
7: Let rm = n;
8: return r = [r1, r2, · · · , rm], and d =

√
µmn;

3.3 Approximate Subsequence
Let A(i1 : i2) denote the mean of the entries of x(i1 : i2) and let E(i1 : i2) denote the sum of squares of deviations from the mean
of the entries of x(i1 : i2) as defined in Equ. (4).A(i1 : i2) =

∑i2
j=i1

xj

i2−i1+1

E(i1 : i2) =
∑i2

j=i1
(xj −A(i1 : i2))

2
(4)

Definition 2 (Approximate Subsequence) For a given m-length time series x and a given integer n (0 < n < m), the n-length
Approximate Subsequence of x, denoted by AS(x, n) is defined as

AS(x, n) = argmin
|y|=n

D(x,y) (5)

From Definition 2, the approximate subsequence of x is the approximate time series of x. The optimal solution to Equ. (5),
and hence AS(x, n), is obtained by solving the dynamic program:

ν(i, j) = min
k

(ν(k − 1, j − 1) + E(k : i)) (6)

where k ∈ {j, j+1, · · · , i} and ν(i, j) = D2(x(1 : i),AS(x(1 : i), j)). The procedure for computingAS(x, n) is given in Algorithm
2.

3.4 Covering Set
Consider a given set of m-length time series S = {s1, s2, · · · , s|S|}, where si consists of [si1, si2, · · · , sim]. In this section, we focus
on defining a structure that can tightly cover set S using the DTW distance.

4

Algorithm 2 Approximate subsequence for a given time series
Input: m-length time series x.
Output: n-length Approximate subsequence.
1: Initialise an n-length time series y;
2: Let i = m;
3: for j = n down to 1 do
4: Let p = i;
5: Let i = argmin

k
(ν(k − 1, j − 1) + E(k : i));

6: Let y(j) = A(i : p);
7: Let i = i− 1;
8: end for
9: return y

Given a positive integer n (n < m), we define a new structure V to store different dimensional ranges. Assume V = [V1, V2,
· · · , Vm], where each element v of Vi is represented by v(p, l, u). The component p ∈ {1, 2, · · · , n} denotes a dimensional subscript,
and [l, u] denotes an interval on the real line of the p-th dimension. We stipulate that for any given v1,v2 ∈ Vi, v1.p = v2.p if and
only if v1 = v2.

Fig. 2 shows an example of the structure. As shown in Fig. 2(a), the structure is composed of 5 sets V1, V2, · · · , V5, with each
set containing a number of 3-tuples. Take V1 for example in Fig. 2(b). There are two rectangles representing the two 3-tuples. The
upper edge and the lower edge of each rectangle denote the range [v.l,v.u], and the number in the rectangle denotes a subscript
of the reference time series.

For the sake of convenience, we introduce the following notation.

V.n = max{v.p|v ∈ Vm}
V.Pi = {v.p|v ∈ Vi}
V.vj

i = v(p, l, u) s.t. (v ∈ Vi ∧ v.p = j)

V.Lj
i = V.vj

i .l

V.U j
i = V.vj

i .u

(7)

For a given r ∈ R(m,n), let Rectr(V, r), as defined in Equ. (8), be an m-dimensional hyper rectangular range.

Rectr(V, r) = {[x1, · · · , xm] | xi ∈ [Lj
i , U

j
i]} (8)

Fig. 3 illustrates the set in a hyper dimensional rectangle defined in Equ. (8). The first row denotes a matching path of DTW,
the second row illustrates a DCRC structure, and the third row illustrates a 5-dimensional hyper rectangle. The lower and upper
edges of each rectangle denote the corresponding range of each dimension. Take the third column for example. The value of the
first row is 2, and then in the second row, the rectangle with label 2 is selected as the range corresponding to the third row.

Rectr(V, r) corresponds to an m-dimensional cube for a given tuple r, which covers a set of time series. In fact, not all tuples
are permitted; a “legal” tuple r must obey the so-called “ACM”-Relationships.

volume(V) =
n∏
1

(max{v.u− v.l|v.p = j ∧ v ∈ V ∈ V}) (9)

m dimensions

0

5

V1 V2 V3 V4 V5

1
1

2

2

3

2

3 3

(a)

1

•
v.l

• v.u

• v.p

v(p, l, u) ∈ V1

(b)

Figure 2: Illustration of a DCRC structure: (a) A DCRC structure with 5 tuple sets; (b) A tuple v(p, l, u) in set V1.

The structure V stores different dimensional ranges from the given set of time series, from which we can dynamically obtain
a “legal” and “tight” cover of the given set. The “Cover” function is defined by Equ. (10).

Cover(V) = {x | x ∈ Rectr(V, r), r ∈ R(m,n)} (10)

5

D
C
R
C

V

r

R
ec
t r
(V

,d
)

1
1

2

2

3

2

3 3

1 1 2 2 3

1
1 2

2

3

Figure 3: Illustration of hyper rectangle Rectr for 5-dimensional DCRC V

whereCover is a dynamic combination ofRectr(V, r), where r is subject to the ACM-relationship. Hence, we refer to the covering
structure as the “Dynamic Covering with Cross-Range Constraints” (DCRC for short).

3.5 DCRC of Time Series
In this section, a feasible and optimal algorithm for computing the DCRC for a given general set of time series is proposed. The
required steps are set out in detail in Algorithm 3.

For a given set S of similar time series, the number of possible values that can be assigned to a DCRC structure grows
exponentially with the number of their dimension. In our method, the creation of DCRC depends on a so-called reference c time
series, which is understood to be a lower dimensional contour of all the samples of S. The ACM-Relationship rt is just a many-to-
one function from st to c. In fact, the greater the similarity between the reference and the samples, the tighter the DCRC structure.
The relevant theory is established in Theorem 3.

At Line 1, c is the reference time series for set S. To simply the computation, c is assigned to the n-length “Approximate
Subsequence” of sk randomly selected from set S. At Line 4, r is an ACM-Relationship by Algorithm 1. For each dimension i, the
tuple set Vi of V is created or updated by the steps at Lines 5-13.

Table 1 illustrates a sample DCRC structure building procedure. rt corresponds to the matching from st to c satisfying Equ.
(3). Xi is the set of matchings (rti, sti). Yi represents the merged set {(r,Gr)} of Xi such that r ∈ {rti} and Gr = {s|(r, s) ∈ Xi},
and Vi denotes the i-th entry of the DCRC structure.

Table 1: Example of computing a DCRC structure from two 5-length time series and a 3-length reference time series

1 2 3 4 5

c 4.00 6.00 5.00
s1 4.11 4.12 4.13 6.14 5.15
s2 4.21 6.22 6.23 5.24 5.25
s3 4.31 6.32 6.33 6.34 5.35
r1 1(s11 → c1) 1(s12 → c1) 1(s13 → c1) 2(s14 → c2) 3(s15 → c3)
r2 1(s21 → c1) 2(s22 → c2) 2(s23 → c2) 3(s24 → c3) 3(s25 → c3)
r3 1(s31 → c1) 2(s32 → c2) 2(s33 → c2) 2(s34 → c2) 3(s35 → c3)
[Xi] {(1,s11), {(1,s12), {(1,s13), {(2,s14), {(3,s15),

(1,s21), (2,s22), (2,s23), (3,s24), (3,s25),
(1,s31)} (2,s32)} (2,s33)} (2,s34)} (3,s35)}

[Yi] {Y 1
1 {s11,s21,s31}} {Y 1

2 {s12}, {Y 1
3 {s13}, {Y 2

4 {s14,s34}, {Y 3
5 {s15,s25,s35}}

Y 2
2 {s22,s32}} Y 2

3 {s23,s33}} Y 3
4 {s24}}

[Vi] {(1,minY 1
1 ,maxY 1

1)} {(1,minY 1
2 ,maxY 1

2), {(1,minY 1
3 ,maxY 1

3), {(2,minY 2
4 ,maxY 2

4), {(3,minY 3
5 ,maxY 3

5)}
(2,minY 2

2 ,maxY 2
2)} (2,minY 2

3 ,maxY 2
3)} (3,minY 3

4 ,maxY 3
4)}

[Vi] {(1,4.11,4.13)} {(1,4.12,4.12), {(1,4.13,4.13), {(2,6.14,6.34), {(3,5.15,5.35)}
(2,6.22,6.32)} (2,6.23,6.33)} (3,5.24,5.24)}

6

Algorithm 3 DCRC Structure for a Given Set of Time Series
Input: A given reference time series c of n-length;
Input: A given set of m-length time series S = {s1, s2, · · · , sT }, with each element, st, represented by st = [st1, st2,
· · · , stm], where t = 1, 2, · · · , T .

Output: DCRC structure V.
1: If c = nil, let c = AS(sk, n) (n < m) by Algorithm ;
2: Initialise series V = [{}, {}, · · · , {}] of m-length;
3: for t = 1 to T do
4: Let rt = R(st, c) by Algorithm 1;
5: for i = 1 to m do
6: if (rti ∈ V.Pi) then
7: Let v = V.vrti

i ;
8: Let v.l = min(sti,v.l);
9: Let v.u = max(sti,v.u);

10: else
11: Let Vi = Vi ∪ {(rti, sti, sti)};
12: end if
13: end for
14: end for
15: return V

4 Time Series Indexing with DCRC

4.1 DCRC based DTW Lower Bound (LB DCRC)
Given set S of m-length times series and a DCRC structure V determined by Equ. (10), a lower bound of DTW from a given time
series q to the elements of S can be defined as the minimal DTW distance from q to the elements of Cover(V), as defined in Equ.
(11).

LB DCRC(q, S) = min
x∈Cover(V)

DTW (q,x) (11)

The DCRC based lower bound of classic DTW, namely, LB DCRC, is summarized in Algorithm 4. Given the ratio of the width
of the Sakoe-Chiba Band to the length of the time series, denoted by λ, the time complexity for the algorithm is O(λm2n).

Note that, in a given DCRC structure V, the number of feasible relationships grows with the power of m and n, i.e. is O(φmn),
where φ is a positive constant. However, the computation of LB DCRC does not directly enumerate all the relationships, and
achieves polynomial complexity by using dynamic programming.

In Algorithm 4,√aijk represents the lower bound DTW from i-length time series q[1 : i] to j-length DCRC V′(V ′1 , V ′2 , · · · , V ′j),
satisfying V ′l = {v ∈ Vk|v.p ≤ k}, for l = 1, 2, · · · , j. Then aijk is computed by the recursive formula at Line 16.

(0, 0, 0)

(i, 0, 0)

(0, j, 0)

(0, 0, k)

(i, j, k)

(i, j − 1, k − 1)
(i− 1, j − 1, k − 1)

(i− 1, j, k)

(i, j − 1, k)
(i− 1, j − 1, k)

Figure 4: A feasible matching path from (0,0,0) to (i, j, k) for the computation of LB DCRC

We will prove Algorithm 4 satisfies Equ. (11) by Theorem 4 in Sec. 5. In Fig. 4, the dotted line shows a solution for LB DCRC.
The computation of point (i, j, k) depends on the five points (i − 1, j − 1, k), (i − 1, j − 1, k − 1), (i − 1, j, k), (i, j − 1, k) and
(i, j − 1, k − 1). Let (i1, j1, k1), (i2, j2, k2), · · · , (iL, jL, kL) be an optimized path and g [g1, g2, · · · , gm] the optimized time series

7

Algorithm 4 DCRC based lower bound of DTW (LB DCRC)
Input: Set S of m-length times series;
Input: DCRC structure V = [V1, V2, · · · , Vm] satisfying S ⊂ Cover(V);
Input: Ratio λ (0 < λ ≤ 1) of band width to m; an m-length query time series q = [q1, q2, · · · , qm].
Output: LB DCRC(q, S).
1: Let A = [aijk] be an m×m× n-size array, each aijk = +∞ initially;
2: Let B be an empty set;
3: for i = 1 to m, j = 1 to m do
4: if |i− j| ≤ λm then
5: for each k in V.Pj do
6: B = B ∪ (i, j, k);
7: end for
8: end if
9: end for

10: for each (i, j, k) in B do
11: Let η1 = α(i− 1, j − 1, k);
12: Let η2 = α(i− 1, j − 1, k − 1);
13: Let η3 = α(i− 1, j, k);
14: Let η4 = α(i, j − 1, k);
15: Let η5 = α(i, j − 1, k − 1);
16: Let aijk = min(η1, η2, η3, η4, η5) + γ(i, j, k);
17: end for
18: return

√
ammn

19:
20: function α(i, j, k)
21: if i = j = k = 0 then return 0;
22: else if (i, j, k) ∈ B return aijk;
23: else return +∞;
24: end if
25: end function
26:
27: function γ(i, j, k)
28: Let x = qi;
29: Let y0 = V.Lk

j ;
30: Let y1 = V.Uk

j ;
31: if x < y0 return (y0 − x)2;
32: else if x > y1 return (x− y1)2;
33: else return 0;
34: end if
35: end function

8

V

V1

s11 s12 . . . s1n1

V2

s21 s22 . . . s2n1

. . .

. . .

VT

sT1 sT2 . . . sTnT

Figure 5: Illustration of Hierarchical DCRC with two layers

in Equ. (11). As jp = jq ⇒ kp = kq(p 6= q), assume r = [r1, r2, · · · , rm] satisfying for ∀(p ∈ {1, 2, · · · ,m} ∃q(jq = p ∧kq = rp), we
have gp ∈ [L

rp
p , U

rp
p] for p = 1, 2, · · · ,m. Furthermore, (i1, j1), (i2, j2), · · · , (iL, jL) is exactly the DTW path between the query

time series q and the optimal solution g.

4.2 Hierarchical DCRC (HDCRC)
Consider a given series of sets S1, S2, · · · , ST , where St (t = 1, 2, · · · , T) is a set of m-length time series; and a given series of
DCRC structures V1, V2, · · · , VT , where Vt.n = n and St ⊆ Cover(Vt) for t = 1, 2, · · · , T .

The problem is how to obtain a DCRC structure V satisfying
⋃T

t=1 St ⊆ Cover(V) and V.n = n′ (n′ ≤ n) according to V1, V2,
· · · , VT only, and not the entire set of elements of S1, S2, · · · , ST . The hierarchical structure is illustrated in Fig. 5. Algorithm 5
sets out the procedure for determining the DCRC structure.

At line 3, the reference time series c of length n′ is converted from the reference x1 of V1 by Algorithm 2. The components of
V are built by the steps from Lines 9-19. For the i-th set in V, if j ∈ Vt.Pi, we have rj ∈ V.Pi.

Algorithm 5 Hierarchical DCRC
Input: Time series c of n′-length
Input: Set (V1, V2, · · · , VT) of m-length DCRC structures, where Vt.n = n(n′ ≤ n) for t = 1, 2, · · · , T .
Output: A DCRC structure V satisfying

⋃T
t=1 Cover (Vt) ⊆ Cover (V) and V.n = n′.

1: if c = nil then
2: Let x1 be the reference time series of Vt.
3: Let c = AS(x1, n

′) by Algorithm 2;
4: end if
5: Initialise V = {V1, V2, · · · , Vm} such that Vi = φ for i = 1, 2, · · · ,m;
6: for t = 1 to T do
7: Let xt be the reference time series of Vt.
8: Let r[r1, r2, · · · , rn] = R(xt, c);
9: for i = 1 to m do

10: for each j in Vt.Pi do
11: Let k = rj ;
12: if (k ∈ V.Pi) then
13: Let V.Lk

i = min(V.Lk
i ,V.L

j
ti);

14: Let V.Uk
i = max(V.Uk

i ,V.U
j
ti);

15: else
16: Let Vi = Vi ∪ {(k,V.Lj

ti,V.U
j
ti)}

17: end if
18: end for
19: end for
20: end for
21: return V

4.3 DCRC-Tree and Relevant Functions
Based on the HDCRC structure, an R-tree [8] like indexing tree, named DCRC-tree, is proposed for efficient querying. Each node
in a DCRC-tree corresponds to a DCRC structure V (See Sec. 3.5), rather than a minimal boundary rectangle (MBR) as used in
R-trees. When searching a time series from the DCRC-tree, we still adopt the classic DTW (with global constraints).

A tree node of the DCRC-tree is represented by tuple N (d, V, c, Parent, Children, Series), where the components are as
defined in Table 2. The relevant basic operators of the DCRC-Tree are given in Table 3.

9

Table 2: Relevant functions of DCRC-Tree
Components Description

d Depth of the tree node
V DCRC structure
c Referent time series
Parent Parent node
Children Child nodes
Series Chiled time series

The implementation of function create dcrc(c, S) utilizes Algorithm 3 with c, S as input parameters. The implementation
of function update dcrc(X, c,x) is derived from lines 5 - 13 in Algorithm 3, with V, c, st replaced by parameters X, c,x. The
implementation of function update hdcrc(X, c,Y) is derived from lines 9 - 19 in Algorithm 5, with V, c,Vt replaced by parameters
X, c and Y.

The implementation of insert series(N , s) is as follows:

(a) IfN .c = nil, thenN .c is assigned to AS(s, |N .c|);
(b) LetN .Series = N .Series ∪ {s};
(c) LetN .V = update dcrc(N .V,N .c, s).

The implementation of insert node(N ,N ′) is as follows:

(a) IfN .c = nil, then letN .c = AS(N ′.c, |N .c|);
(b) LetN .Children = N .Children ∪ {N ′};
(c) LetN .V = update hdcrc(N .V,N .c,N ′.V);
(d) LetN ′.Parent = N .

4.4 Node Splitting and Insertion in a DCRC-Tree
Motivated by the idea of node splitting in R-trees, we develop a node splitting algorithm for DCRC-trees. Let M be the maximal
number of child nodes (not including leaves) of each tree node. There are two cases of node splitting.

The first case is when node N is a leaf node satisfying |N .Series| = M , then it is split into nodes N1 and N2, with both
N1.Series orN2.Series containing M/2 time series. Algorithm 6 details the node splitting algorithm.

The second case is is whenN is a none-leaf node satisfying |N .Children| =M , then it is split into nodesN1 andN2, such that
N1.Children andN2.Children respectively contain M/2 tree nodes. The corresponding node splitting algorithm for the set of tree
nodes is similar to Algorithm 6.

Algorithm 7 summarizes the steps for inserting a time series into a given DCRC-tree. These are similar to the steps used with
R-trees. From the root, the child node with the minimal increasing volume is selected recursively, until the current node is a leaf.
Then, the time series is inserted into the leaf node, and from bottom to top, the parent node is split if the number of its children
exceeds a pre-given maximal limit, and the depth of the tree is less than a pre-given maximal limit. Therefore the leaf nodes might
have a huge number of time series, which are relatively similar to each other in terms of DTW distance.

For R-Tree and DCRC-Tree, consider the tree node covering a set of time series. In a tree node of a R-Tree:

(1) The covering set is a MBR, each i-th component is a range interval derived from the bands with the i-th entry centered.

(2) The volume is the production of each i-th range interval. When the elements are similar, but have large time axis deformation,
we have relatively large volume.

(3) The lower bound DTW to a given query time series, is computed by different Hausdorff-distance-like methods, including
LB Keogh [14], LB NEW [29], LB ENHANCED [32], etc.

In a tree node of a DCRC-Tree:

(1) The covering set is a DCRC structure, each i-th component is a set of tuples, and each tuple is a range interval and a subscript.

(2) The volume is computed a defined in Equ. (9). When the elements are similar, but have large time axis deformation, as long
as the reference time series is similar to these elements, we have relatively small volume.

(3) The lower bound DTW to a given query time series, is computed by LB DCRC using a dynamic programming method.

Hence, the DCRC-Tree based on HDCRC is a tighter structure for covering time series samples, than an R-Tree like structure.
Consequently, this leads to more efficient pruning when performing a query.

10

Algorithm 6 Node Splitting for Time Series Set
Input: DCRC-Tree node N (|N .Series| =M , N .d < dmax).
Output: The updated DCRC-Tree nodes N and N ′ after splitting.
1: Let vol = volume(N);
2: Let Xi = create dcrc(N .c, {N .Series[i]}), for i = 1, 2, · · · ,M ;
3: Let j1 = argmin

i

volume(Xi), j2 = argmax
i

volume (Xi);

4: Let x1 = N .Series[j1], and let x2 = N .Series[j2];
5: Let N .Series = φ;
6: Create a new tree node N ′, let |N ′.c| = |N .c|, and |N ′.d = |N .d;
7: insert series(N , x1);
8: if vol < ε then
9: Let N ′.c = N .c;

10: end if
11: insert series(N ′, x2);
12: Let S′ = N .Series− {x1} − {x2};
13: for each s in S’ do
14: Let v1(s) = volume(create dcrc(x1, {x1, s}));
15: Let v2(s) = volume(create dcrc(x2, {x2, s}));
16: Denote ω(s) = v1(s)− v2(s);
17: end for
18: Let y1,y2, · · · ,yM−2 be the permutation of the elements of S′ satisfying |ω(yi)| ≥ |ω(yi+1)| for i = 1, 2, · · · ,M−3;
19: for i = 1 to M − 2 do
20: if |N .Series| =M/2 then
21: insert series(N ′,yi);
22: else if |N ′.Series| =M/2 then
23: insert series(N ,yi);
24: else
25: if ω(s) < 0 then
26: insert series(N ,yi);
27: else
28: insert series(N ′,yi);
29: end if
30: end if
31: end for
32: return N , N ′

11

Algorithm 7 Insertion in a DCRC-tree
Input: Time series s of m-length
Input: Root T of DCRC-tree.
Output: The updated root T after insertion.
1: if T = nil then
2: New a DCRC-tree node T ;
3: insert series(T , s);
4: return T ;
5: end if
6: Let N = T ;
7: while N .Children 6= φ do
8: for each Ni in N .Children do
9: Copy Ni.V to Xi;

10: Let Yi = update dcrc(Xi,Ni.c, {s});
11: end for
12: Let N = N .Children[k], k = argmin

i

volume(Yi);

13: end while
14: insert series(N , s);
15: Let N ′ = nil;
16: if T .d < dmax and |N .Series| =M then
17: Split node N into N and N ′;
18: end if
19: while true do
20: Let Nt = N .Parent;
21: if Nt = nil then
22: if N ′ 6= nil then
23: Create a new node T , let T .Parent = nil;
24: Let T .d = N .d+ 1
25: Let |T .c| = |N .c|/2;
26: insert node(T ,N);
27: insert node(T ,Nb);
28: end if
29: return T ;
30: else
31: if N ′ = nil then
32: Update Nt.V with Nt.Children by Algorithm 5;
33: else
34: insert node(Nt,N ′);
35: if |Nt.Children| =M then
36: Split node N into N and N ′;
37: end if
38: end if
39: Let N = Nt;
40: end if
41: end while

12

Table 3: Relevant functions of DCRC-Tree
Function Input/Output Description

create dcrc
c Reference time series
S Set of time series
- A new DCRC structure built

from S

update dcrc

V Original DCRC structure
c Reference time series
x Newly inserted Time series
- The updated DCRC

structure V after insertion of
x

update hdcrc
X Original DCRC structure
c Reference time series
Y Newly inserted DCRC
- The updated DCRC

structure X after insertion of
Y

insert series
N Original DCRC-Tree Node
s Newly inserted Time series
- The updated DCRC-Tree

node N after insertion of s

insert node
N Original DCRC-Tree Node
N ′ Newly inserted Node
- The updated DCRC-Tree

node N after insertion of N ′

5 Theorems for DCRC
For the algorithms in Secs. 3 and 4.2, we will prove their correctness and efficiency in this section. Theorem 1 assures the DCRC
structure can cover a given set. Theorems 2 and 3 prove the tightness of the DCRC covering. Considering the lower bound of DTW
between a given query time series and a given DCRC structure by Algorithm 4, Theorem 4 proves its correctness and Theorem 5
proves that the hierarchical structure generated by Algorithm 5 is still a DCRC structure, which is used to generate an indexing
tree.

Theorem 1 For a given set S of m-length time series, let V be the return value of Algorithm 3, then S ⊆ Cover(V).

Proof 1 Given st = [st1, st2, · · · , stm] ∈ S where t ∈ {1, 2, · · · , T}, let r[r1, r2, · · · , rm] be the ACM-relationship at line 4 in Algorithm
3. From the loop from lines 5 to 13, we have sti ∈ [Lri

i , U
ri
i] for i = 1, 2, · · · ,m. From r ∈ R(m,n) (defined in Definition 1), and the

definition of Rectr(V, r), st ∈ Rectr(V, r), i.e., st ∈ Cover(V) from Equ. (10).

Lemma 1 Let x1 = [x11, x12, · · · , x1m1], x2 = [x21, x22, · · · , x2m2] be two given time series, of length m1,m2 (m1 ≤ m2), and let y be
a constant. If we have α =

√∑m1
i=1(x1i − y) and β =

√∑m2
i=1(x2i − y), we have DTW 2(x1,x2) ≤ 2dm2/m1e(α2 + β2).

Proof 2 Denote d = DTW (x1, x2). Consider a matching path W of length m2 (might not be a DTW warping path) from x2 to x1, such
as (1, i1), (2, i2), · · · , (m2, im2), where ik = dkm1/m2e. We have d2 ≤

∑m2
k=1 (x1ik − x2k)

2 ≤
∑m2

k=1 2((x1ik − y)
2 +(x2k − y)2). As

ik = dkm1/m2e, we have d2 ≤ 2
∑m2

k=1(x2k− y)
2 +2dm2/m1e

∑m1
k=1(x1k− y)

2 ≤ 2dm2/m1e(α2 +β2). Therefore, DTW 2(x1,x2)
≤ 2dm2/m1e(α2 + β2).

Consider three time series x1 = [x11, x12, · · · , x1m1], x2 = [x21, x22, · · · , x2m2] and y = [y1, y2, · · · , yn] of length m1,m2 and
n, respectively, with n < m1,m2.

Theorem 2 If D(x1,y) = α, D(x2,y) = β (where function D is defined in Equ. (3)), we have DTW (x1,x2) ≤
√

2(m2 − n)(α2 + β2).

Proof 3 Let r1[r11, r12, · · · , r1m] = R(x1,y), let r2[r21, r22, · · · , r2m] = R(x2,y), and let W denote a matching path from x1 to x2,
which is divided into n segments. Let the t-th segment correspond to set Xpt = {k| rpk = t}, and let apt, bpt denote the minimum and
maximum of Xpt, respectively, where p = 1, 2.

Let α2
t =

∑b1t
k=a1t

(x1k − yt)2 and β2
t =

∑b2t
k=a2t

(x2k − yt)2.
We have 1 ≤ |X1t|, |X2t| ≤ m2 − n. From Lemma 1, we have DTW 2(x1(a1t : b1t), x2(a2t : b2t)) ≤ 2dd1/d0e (α2

t + β2
t). Then

DTW 2(x1,x2) ≤
∑n

t=1DTW
2(x1 (a1t : b1t), x2(a2t : b2t)) ≤ 2(m2 − n)

∑n
t=1 (α2

t + β2
t) = 2(m2 − n)(α2 + β2). Then DTW (

x1,x2) ≤
√

2(m2 − n)(α2 + β2).

13

Theorem 3 Considering Algorithm 3, let set S = {s1, s2, · · · , sT } of m-length time series and time series c of n-length be the input
parameters, and let V be the output DCRC structure. Assume D(st, c) ≤ α for ∀t ∈ {1, 2, · · · , T}. If x = [x1, x2, · · · , xm] ∈ Cover(V),
then D(x, c) ≤

√
mα. D is defined in Equ. (3).

Proof 4 Firstly, we will prove that for ∀V.vj
i (assumed v), we have v.l ≥ cj −α and v.u ≤ cj +α, where cj is the j-th entry of c. From the

computation of warping path W at line 4, and the assumption D2(st, c) =
∑m

i=1(sti − cri)
2 ≤ α2, we have cri − α ≤ sti ≤ cri + α. For

each v(V.vj
i), from the assignments at lines 7-9 and 11, we have v.l ≥ cj − α and v.u ≤ cj + α.

If x ∈ Cover(V), there exists a series r = [r1, r2, · · · , rm] ∈ R(m,n) satisfying x ∈ Rectr(V, c). From the definition ofD,D2(x, c) ≤∑m
i=1(xi− cri)

2. From Equ. (8), we have xi ∈ [v.l,v.u]. As v.l ≥ cri −α and v.u ≤ cri +α, thenD2(x, c) ≤
∑m

i=1(xi− cri)
2 ≤ mα2.

Then D(x, c) ≤
√
mα.

From Theorems 2, 3, and Algorithm 3, we can conclude that if the elements of DCRC are all similar to the reference c as
measured by function D, the elements are also similar to each other in terms of the DTW Distance.

Theorem 4 The return value of Algorithm 4 is
LB DCRC(q, S) as defined in Equ. (11).

Proof 5 Firstly, we will prove aijk = min
x

DTW (q(1 : i),x(1 : j)) s.t. x(1 : j) ∈ Cover(Vj) and xj ∈ [Lk
j , U

k
j], where Vj = [V1, V2,

· · · , Vj] and x(1 : j) = [x1, x2, · · · , xj].
Mathematical induction. Assume ai′j′k′ satisfy the above min equation for ∀(i′, j′, k′) ((i′ ≤ i ∧j′ ≤ j ∧k′ ≤ k) ((i′, j′, k′) 6=

(i, j, k))). We will prove aijk also satisfies the above min equation.
In line 16, aijk is recursively represented by the sum of γ(i, j, k) and ai′j′k′ . Considering subscript pair (i′j′) of ai′j′k′ , there are three

cases: (i − 1, j − 1), (i − 1, j) and (i, j − 1). In the case of (i′, j′) = (i − 1, j − 1), from the definition of Cover in Equ. (10) and the
ACM-relationships in Definition 1, we have (k−1) ∈ V.Pj−1 or k ∈ V.Pj−1. The two cases correspond to η1 and η2, respectively. Similarly,
η2, η3, η4 and η5 correspond to the other cases.

Note that η6 = α(i − 1, j, k − 1) and η7 = α(i, j, k − 1) are excluded. Considering aijk is the lower bound of DTW from q(1 : i) to
x(1 : j). As the optimum x ∈ Cover(V), there exists r = [r1, r2, · · · , rj] ∈ R(j, k) satisfying that xt ∈ V.vrt

t for t = 1, 2, · · · , j. If η6
or η7 is adopted in the computation of aijk, then (j, k − 1) and (j, k) will appear in r1, r2, · · · , rj at the same time, which contradicts the
definition of ACM-Relationship.

Using dynamic programming, aijk also satisfies the minimal assumption. Finally,
√
ammn at line 18 is the minimum of Equ. (11).

Theorem 5 The return value V of Algorithm 5 satisfies
⋃T

t=1 Cover(Vt) ⊆ Cover(V).

Proof 6 For any given s = [s1, s2, · · · , sm] ∈ Cover(Vt), there exists b = [b1, b2, · · · , bm] satisfying s ∈ Rectr(Vt,b), i.e., si ∈
Vt.[L

bi
i , U

bi
i] for i = 1, 2, · · · ,m. In addition, b satisfies the ACM-relationships.

Consider line 8 in Algorithm 5, let r = [r1, r2, · · · , rn]. From Definition 1, we have that r satisfies the ACM-relationships.
The series [rb1 , rb2 , · · · , rbm] can be shown to satisfy the ACM-relationships as follows. As r1 = 1, b1 = 1, rn = n′ and bm = n,

then rb1 = 1 and rbm = n′, i.e., “Alignment” is satisfied. As 0 ≤ ri+1 − ri ≤ 1 for i = 1, 2, · · · , n − 1 and 0 ≤ bi+1 − bi ≤ 1, for
i = 1, 2, · · · ,m− 1, then 0 ≤ rbi+1 − rbi ≤ 1, i.e., “Continuity” and “Monotonicity” are satisfied. From the assignment at lines 12-17, we
have si ∈ V.[L

rbi
i , U

rbi
i], i.e., s ∈ Cover(V).

According to Theorem 5, if the LB DCRC of an upper layer is larger than a given acceptable range query tolerance, then all of
its sub-layers can be pruned to reduce computational load.

6 Experiments
In order to illustrate the effectiveness of our algorithms and indexing structure, experiments are carried out in this section. We
use LB NEW [29] and LB ENHANCED [32] for comparisons. The experiments are divided into two parts, the first part, presented
in Sec. 6.2, provides a comparison of the different DTW lower bounds. In addition, we also perform experiments to analyze the
impact of parameters including the length of time series, the ratio of the width of the Sakoe-Chiba Band to the length of the time
series λ, and acceptable query tolerance ε. The second part, presented in Sec. 6.3, shows the performance of the different index
trees.

6.1 Setup
The datasets selected for our experiments are from the UCR Time Series Classification Archive [3]. Firstly, we compute the average
of the LB DCRC distances from the query time series to the DCRC structure using Algorithm 4. Then we compute the average
DTW from the query time series to all the samples in the dataset S.

The computed LB DCRC and actual DTW values for different λ are shown in Table 4. The average lower bound distance of
LB DCRC is lower than DTW for the 20 datasets. The time series have different length mi. The dimension of V of the DCRC is set
to mi and the dimension of reference r of the DCRC is set to mi/2.

14

Table 4: Average LB DCRC / DTW values for different λ

Dataset Dimension λ=0.2 λ=0.6 λ=1.0

synthetic control 60 2.189/5.757 1.987/5.603 1.987/5.603
Gun Point 150 0.317/0.845 0.287/0.820 0.287/0.820
CBF 128 2.497/4.715 2.413/4.645 2.413/4.645
FaceAll 131 2.196/5.743 1.917/5.616 1.906/5.616
OSULeaf 427 1.416/5.543 1.326/5.411 1.326/5.411
SwedishLeaf 128 0.322/1.306 0.319/1.305 0.319/1.305
50Words 270 7.139/8.897 5.002/6.793 4.866/6.686
Trace 275 10.281/10.864 10.051/10.656 10.051/10.656
MedicalImages 99 1.696/3.545 1.379/3.209 1.363/3.204
ShapeletSim 500 8.148/13.396 8.135/13.396 8.135/13.396
FaceFour 350 4.951/7.250 4.794/7.237 4.794/7.237
Lighting2 637 4.858/8.804 3.828/7.842 3.828/7.842
Lighting7 319 6.770/9.794 5.223/8.268 5.195/8.268
FacesUCR 131 3.696/6.407 3.522/6.361 3.494/6.355
Adiac 176 0.899/1.179 0.899/1.179 0.899/1.179
MoteStrain 84 1.560/4.222 1.478/4.048 1.478/4.048
Fish 463 0.416/0.992 0.416/0.992 0.416/0.992
Plane 144 2.762/3.543 2.698/3.485 2.698/3.485
Car 577 0.663/1.243 0.663/1.243 0.663/1.243
Beef 470 3.112/3.908 3.099/3.894 3.099/3.894

6.2 Distance and Tightness
In terms of distance, we compute the average distance between the query time series, and the candidate set of time series using
four methods: DTW, LB NEW, LB ENHANCED and LB DCRC. Table 5, which shows the results of the average distance when
λ = 0.2, demonstrates that LB DCRC achieves better performance than LB NEW and LB ENHANCED for all datasets.

Definition 3 (Tightness of the DTW Lower Bound) Given a method LB of obtaining a lower bound of DTW, a set S of time series, and
a query time series q, let the tightness of LB for q and S be defined as LB(q,S)

min
s∈S

DTW (s,q)
.

Using this definition, Fig. 6 shows the average tightness of LB NEW, LB ENHANCED, and LB DCRC for different λ (i.e.,
0.2, 0.4, 0.6). From the charts, it is clear that LB DCRC is superior to LB ENHANCED and LB NEW on all datasets. When λ
increases, the tightness of LB NEW and LB ENHANCED decrease significantly. In contrast, the width of the Sakoe-Chiba band
has little impact on LB DCRC, i.e. when time series has relatively large deformation, LB DCRC is still a tight lower bound of
DTW. The dimensions of these datasets are distributed in the range 60 to 637, but this variation in dimension does not impact the
performance of LB DCRC relative to the other methods.

Definition 4 (Pruning Power for a Query Set) Given a candidate data set S of time series, and a query set of time series Q, the pruning
power of LB for set Q is defined as |{q∈Q|LB(q,S}>ε}|

|Q| , where ε is a predefined tolerance.

Given a tolerance ε, higher pruning power means more query time series can be directly excluded after the computation of
the DTW lower bound. Fig. 7 shows a comparison of the pruning power of each approach, with increasing ε. The pruning power
of LB NEW and LB ENHANCED decrease dramatically, while the decline in LB DCRC is much more gradual. Fig. 8 shows the
average pruning power as a function of ε and the average tightness as a function of λ computed over the datasets.

Fig. 9 shows how the tightness changes with the ratio of the Sakoe-Chiba Band for the first 4 datasets employed in our
experiments, while Fig. 10 shows the corresponding variation in pruning power as a function of query tolerance. In all cases the
curves in Figs. 9 and 10 decrease monotonically and LB DCRC substantially outperforms its counterparts.

6.3 Indexing Tree Comparisons
By default, the length of each leave is reduced to 20 by PAA [14]. Let the maximum number of child nodes M = 20 and let the
maximal depth of the tree dmax = 3 in Algorithm 7. For each R-Tree node, the maximum number of child nodes M is set to 20.
The time series for our experiments are randomly selected from the UCR Archive by the random walk method until the resulting
dataset has 1 Gillion bytes. All experiments were optimised and implemented in Ansi C++ and conducted on a 64-bit Win10
operating system with 2.4GHz main frequency, 8 CPUs, 64GB RAM and 4T hard disk.

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

ID of datasets

ti
g
h
tn
es
s

LB NEW LB ENHANCED LB DCRC

(a) λ = 0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

ID of datasets

ti
g
h
tn
es
s

LB NEW LB ENHANCED LB DCRC

(b) λ = 0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

ID of datasets

ti
g
h
tn
es
s

LB NEW LB ENHANCED LB DCRC

(c) λ = 0.6

Figure 6: Comparison of lower bound tightness under different ratios λ of warping windows over the 20 datasets

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

ID of datasets
ti
g
h
tn
es
s

LB NEW LB ENHANCED LB DCRC

(a) ε = 0.1, λ = 0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

ID of datasets

ti
g
h
tn
es
s LB NEW LB ENHANCED LB DCRC

(b) ε = 0.5, λ = 0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

ID of datasets

ti
g
h
tn
es
s LB NEW LB ENHANCED LB DCRC

(c) ε = 1.0, λ = 0.2

Figure 7: Comparison of pruning power under different acceptable tolerances over the 20 datasets

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

ε

p
ru
n
in
g
p
ow

er

LB NEW
LB ENHANCED
LB DCRC

(a) Pruning power as a function of
ε (λ = 1.0)

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

λ

ti
g
h
tn
es
s

LB NEW
LB ENHANCED
LB DCRC

(b) Tightness as a function λ

Figure 8: Pruning power as a function of ε and tightness as a function of λ averaged over the 20 datasets

17

Table 5: Average distance for λ = 0.2

Dataset Dimension DTW LB DCRC LB NEW LB ENHANCED

synthetic control 60 5.757 2.189 0.771 0.942
Gun Point 150 0.845 0.317 0.148 0.154
CBF 128 4.715 2.497 0.168 0.218
FaceAll 131 5.743 2.196 1.112 1.127
OSULeaf 427 5.543 1.416 0.033 0.042
SwedishLeaf 128 1.306 0.322 0.079 0.070
50Words 270 8.897 7.139 0.957 0.406
Trace 275 10.864 10.281 3.951 7.755
MedicalImages 99 3.545 1.696 0.807 0.769
ShapeletSim 500 13.396 8.148 0.075 0.082
FaceFour 350 7.250 4.951 0.340 0.368
Lighting2 637 8.804 4.858 0.014 0.070
Lighting7 319 9.794 6.770 0.749 1.068
FacesUCR 131 6.407 3.696 1.689 1.885
Adiac 176 1.179 0.899 0.710 0.386
MoteStrain 84 4.222 1.560 0.416 0.544
Fish 463 0.992 0.416 0.056 0.060
Plane 144 3.543 2.762 1.088 1.197
Car 577 1.243 0.663 0.020 0.021
Beef 470 3.908 3.112 0.659 1.346

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

λ

ti
g
h
tn
es
s

LB NEW
LB ENHANCED
LB DCRC

(a) Synthetic Control

0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

λ

ti
g
h
tn
es
s

LB NEW
LB ENHANCED
LB DCRC

(b) Gun Point

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

λ

ti
g
h
tn
es
s

LB NEW
LB ENHANCED
LB DCRC

(c) CBF

0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

λ

ti
g
h
tn
es
s

LB NEW
LB ENHANCED
LB DCRC

(d) Face All

Figure 9: The relationship between tightness and warping window for 4 selected datasets

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

ε

p
ru
n
in
g
p
ow

er

LB NEW
LB ENHANCED
LB DCRC

(a) Synthetic Control

0.2 0.4 0.6 0.8 1

5 · 10−2

0.1

0.15

0.2

0.25

0.3

ε

p
ru
n
in
g
p
ow

er

LB NEW
LB ENHANCED
LB DCRC

(b) Gun Point

0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

ε

p
ru
n
in
g
p
ow

er

LB NEW
LB ENHANCED
LB DCRC

(c) CBF

0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2

ε

p
ru
n
in
g
p
ow

er

LB NEW
LB ENHANCED
LB DCRC

(d) Face All
l

Figure 10: The relationship between pruning power and the query tolerance for 4 selected datasets (λ = 1.0)

18

0.2 0.4 0.6 0.8 1

80

90

100

110

120

ε

P
ru

n
in
g
P
ow

er
(%

)
R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(a) Pruning power for varying of
query tolerance ε (λ=0.1)

0.2 0.4 0.6 0.8 1

70

80

90

100

110

120

ε

P
ru

n
in
g
P
ow

er
(%

)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(b) Pruning power for varying of
query tolerance ε (λ=1.0)

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

ε

T
im

e
C
o
n
su
m
p
ti
o
n
(s
ec
)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(c) Computation Time for varying
of query tolerance ε (λ=0.1)

0.2 0.4 0.6 0.8 1

0

20

40

60

ε

T
im

e
C
o
n
su
m
p
ti
o
n
(s
ec
)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(d) Computation Time for varying
of query tolerance ε (λ=1.0)

Figure 11: The impact of query tolerance on indexing performance for λ = 0.1 and λ = 1.0

0.2 0.4 0.6 0.8 1

96

98

100

102

104

λ

P
ru

n
in
g
P
ow

er
(%

)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(a) Pruning power for varying of
warping window λ (ε = 0.1)

0.2 0.4 0.6 0.8 1

70

80

90

100

λ

P
ru

n
in
g
P
ow

er
(%

)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(b) Pruning power for varying of
warping window λ (ε = 1.0)

0.2 0.4 0.6 0.8 1
0

5

10

15

λ
T
im

e
C
o
n
su
m
p
ti
o
n
(s
ec
)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(c) Computation Time for varying
of warping window λ (ε = 0.1)

0.2 0.4 0.6 0.8 1
0

20

40

60

80

λ

T
im

e
C
o
n
su
m
p
ti
o
n
(s
ec
)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(d) Time Consumption for varying
of warping window λ (ε = 1.0)

Figure 12: Indexing performance comparisons with different warping windows when ε = 0.1 and ε = 1.0

For LB NEW and LB ENHANCED, we construct the corresponding index structures as R-trees, while for LB DCRC we use a
DCRC-tree. If the depth of the DCRC-tree in Algorithm 7 reaches the given maximum, time series contained in the leaf nodes will
not be split, i.e., a leaf node might contain a huge number of time series which need to be stored in the same hard disk file.

Fig. 11 compares the performance of the indexing trees as a function of query tolerance. In plots (a) and (b), the horizontal
axis is the query tolerance, and the vertical axis is the pruning power, where the ratio of warping window λ is 0.1 in plot (a), and
1.0 in plot (b). For all the algorithms considered, pruning power decreases with increasing query tolerance because more samples
are accepted. From the two plots, the pruning power of the DCRC-Tree is higher than the others, i.e. LB DCRC has a tighter lower
bound. After querying in the indexing tree(R-Tree or DCRC-Tree), the remaining unpruned time series are sequentially scanned
using the UCR suite method [27].

While searching for a given query time series on the DCRC-tree, visiting the non-leaf nodes only costs about 800 milliseconds
of computation time. Therefore, the querying time cost of linear scanning is decided by the pruning power, more pruning power
leads to lower time cost. Plots (c)(λ = 0.1) and (d)(λ = 1.0) provide a comparison of the computation time for the different
algorithms. Again, DCRC-Tree outperforms the other methods. The curves are all monotonically increasing, which reflects the
fact that as ε increases, more candidate data are retrieved.

Fig. 12 shows the pruning power with varying λ for different indexing structures. In plots (a) and (b), the horizontal axis is
the ratio of warping window λ, and the vertical axis is the pruning power, where the tolerance ε = 0.1 and 1.0 in plots (a)and
(b), respectively. The pruning power decreases with increasing λ, because as the warping window λ increases, the lower bound

10 15 20 25 30

99

99.5

100

100.5

101

Dimension

P
ru

n
in
g
P
ow

er
(%

)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(a) Pruning power for varying of
dimension (λ = 0.1)

10 15 20 25 30

96

98

100

102

Dimension

P
ru

n
in
g
P
ow

er
(%

)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(b) Pruning power for varying of
dimension (λ = 1.0)

10 15 20 25 30

1

1.2

1.4

1.6

1.8

2

Dimension

T
im

e
C
o
n
su
m
p
ti
o
n
(s
ec
)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(c) Computation Time for varying
of dimension (λ = 0.1)

10 15 20 25 30
0

5

10

15

Dimension

T
im

e
C
o
n
su
m
p
ti
o
n
(s
ec
)

R-Ttree(LB NEW)

R-Tree(LB ENHANCED)
DCRC-Tree

(d) Time Consumption for varying
of dimension (λ = 1.0)

Figure 13: Indexing performance comparisons with varying tree node dimension

19

becomes lower so that more candidates are accepted. From the two plots, it is evident that the pruning power of DCRC-Tree is
greater than the other methods.

In plots (c) and (d) (the tolerance ε is set to 0.1 and 1.0, respectively), the DCRC-Tree significantly reduces the number of
candidates, which greatly reduces the time complexity of indexing as only a small part of the dataset needs to be linear scanned.

Due to the computation time cost and “dimensional curse” [8, 14], the node dimension of tree-like indexing structures is
usually set to 20. In Fig. 13, we compare the influence of the tree node dimension on pruning power. In Fig. 13, the horizontal axis
is the node dimension which varies from 10 to 30, and the vertical axis is the pruning power, where ε = 1.0, λ = 0.2 in plot(a),
and λ = 1.0 in plot(b), respectively. The dimensional conversion adopts the PAA algorithm [8, 14] and the unpruned results are
linear scanned [27]. The results show that, as expected, the time consumption increases with increasing dimension, and that the
LB DCRC tree substantially outperforms the other methods across the full range of dimensions considered.

7 Conclusion
Dynamic time warping has become a popular approach for measuring the similarity of time series, with lower bound based tech-
niques used to speed up its application to pruning series in search processes. This paper has presented DCRC as a novel structure
for tightly covering a given set of time series under the DTW distance, and based on this structure proposed the Hierarchical
DCRC (HDCRC) to generate DCRC-tree indexing. We also introduce a lower bound of the DTW distance, which is the distance
between a query time series and a given DCRC-based cover set. The tightness of the lower bound, which we have proven theo-
retically, makes it highly suited to pruning when querying on indexing trees. With the aid of extensive experimental studies we
have illustrated that LB DCRC has more stable performance than competing methods for time series indexing.

Our future research will focus on multivariate time series, an increasingly important topic in time series data mining, with the
view to extending the DCRC structure to cover the set of multivariate time series. Since multivariate time series have both variable-
based and time-based dimensions, we will endeavor to explore a new way to represent multivariate time series appropriately.

Acknowledgements
The authors sincerely thank the editors and the anonymous reviewers for the very helpful and kind comments that have enhanced
the presentation of our paper. The authors would also like to thank the UCR time series classification archive and Prof. Keogh
for providing the datasets used in the study. This work is supported in part by the National Natural Science Foundation of China
(Grant Nos. 61751205, 91746209, 61772102).

References
[1] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search in sequence databases. In Proceedings of

International Conference on Foundations of Data Organization and Algorithms, pages 69–84, Boston, MA, 1993. Springer.

[2] C. L. Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges, techniques and technologies: A survey on
big data. Information Sciences, 275:314–347, 2014.

[3] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann
Ratanamahatana, Yanping Chen, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, and Gustavo Batista. The
UCR time series classification archive, 2018.

[4] Jonathon Edstrom, Dongliang Chen, Yifu Gong, Jinhui Wang, and Na Gong. Data-pattern enabled self-recovery low-power
storage system for big video data. IEEE Transactions on Big Data, 5(1):95–105, 2019.

[5] Philippe Esling and Carlos Agon. Time-series data mining. ACM Computing Surveys, 45(1):12:1–34, 2012.

[6] Tak-Chung Fu. A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1):164–181, 2011.

[7] Josif Grabocka, Martin Wistuba, and Lars Schmidt-Thieme. Fast classification of univariate and multivariate time series
through shapelet discovery. Knowledge and Information Systems, 49(2):429–454, 2016.

[8] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In ACM Sigmod International Conference on
Management of Data, pages 47–57, New York, NY, 1984. ACM.

[9] Hong He and Yonghong Tan. Unsupervised classification of multivariate time series using VPCA and fuzzy clustering with
spatial weighted matrix distance. IEEE Transactions on Cybernetics, 50(3):1096–1105, 2020.

[10] Jilin Hu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. Risk-aware path selection with time-varying, uncertain travel
costs: A time series approach. VLDB Journal, 27(2):179–200, 2018.

[11] Andrey Ignatov. Real-time human activity recognition from accelerometer data using convolutional neural networks. Applied
Soft Computing, 62:915–922, 2018.

[12] Fumitada Itakura. Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 23(1):67–72, 1975.

20

[13] Janusz Kacprzyk, Anna Wilbik, and Sawomir Zadrożny. Linguistic summarization of time series using a fuzzy quantifier
driven aggregation. Fuzzy Sets and Systems, 159(12):1485–1499, 2008.

[14] Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and Information
Systems, 7(3):358–386, 2005.

[15] Eamonn Keogh, Li Wei, Xiaopeng Xi, Michail Vlachos, Sang-Hee Lee, and Pavlos Protopapas. Supporting exact indexing of
arbitrarily rotated shapes and periodic time series under Euclidean and warping distance measures. VLDB Journal, 18(3):611–
630, 2009.

[16] Daniel Lemire. Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recognition, 42:2169–2180, 2009.

[17] Hailin Li and Libin Yang. Extensions and relationships of some existing lower-bound functions for dynamic time warping.
Journal of Intelligent Information Systems, 43(1):59–79, 2014.

[18] Qing Li, Yan Chen, Jun Wang, Yuanzhu Chen, and Hsin Chun Chen. Web media and stock markets: A survey and future
directions from a big data perspective. IEEE Transactions on Knowledge and Data Engineering, 30(2):381–399, 2018.

[19] Su-Chen Lin, Mi-Yen Yeh, and Ming-Syan Chen. Non-overlapping subsequence matching of stream synopses. IEEE Transac-
tions on Knowledge and Data Engineering, 30(1):101–114, 2018.

[20] Mingqin Liu, Xiaoguang Zhang, and Guiyun Xu. Continuous motion classification and segmentation based on improved
dynamic time warping algorithm. International Journal of Pattern Recognition and Artificial Intelligence, 32(2):1850002, 2018.

[21] Karl Øyvind Mikalsen, Filippo Maria Bianchi, Cristina Soguero-Ruiz, and Robert Jenssen. Time series cluster kernel for
learning similarities between multivariate time series with missing data. Pattern Recognition, 76:569–581, 2018.

[22] Tanmoy Mondal, Nicolas Ragot, Jean-Yves Ramel, and Umapada Pal. Comparative study of conventional time series match-
ing techniques for word spotting. Pattern Recognition, 73:47–64, 2018.

[23] Usue Mori, Alexander Mendiburu, and Jose A. Lozano. Similarity measure selection for clustering time series databases.
IEEE Transactions on Knowledge and Data Engineering, 28(1):181–195, 2016.

[24] Abdullah Mueen, Nikan Chavoshi, Noor Abu-El-Rub, Hossein Hamooni, Amanda Minnich, and Jonathan MacCarthy.
Speeding up dynamic time warping distance for sparse time series data. Knowledge and Information Systems, 54(1):237–263,
2018.

[25] Abdullah Mueen and Eamonn Keogh. Extracting optimal performance from dynamic time warping. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 2129–2130, New York, NY, 2016.
ACM.

[26] Sanghyun Park, Dongwon Lee, and Wesley W. Chu. Fast retrieval of similar subsequences in long sequence databases. In
Proceedings of 1999 Workshop on Knowledge and Data Engineering Exchange, pages 60–67, Chicago, IL, 1999. IEEE.

[27] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria,
and Eamonn Keogh. Searching and mining trillions of time series subsequences under dynamic time warping. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 262–270, New York, NY, 2012.
ACM.

[28] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 26(1):43–49, 1978.

[29] Yilin Shen, Yanping Chen, Eamonn Keogh, and Hongxia Jin. Accelerating time series searching with large uniform scaling.
In Proceedings of the 2018 SIAM International Conference on Data Mining, pages 234–242, Bologna, Italy, 2018. SIAM.

[30] Nguyen Thanh Son and Duong Tuan Anh. Discovery of time series k-motifs based on multidimensional index. Knowledge
and Information Systems, 46(1):59–86, 2016.

[31] Tao Sun, Hongbo Liu, Hong Yu, and C. L. Philip Chen. Degree-pruning dynamic planning approaches to central time series
through minimizing dynamic time warping distance. IEEE Transactions on Cybernetics, 47(7):1719–1729, 2017.

[32] Chang Wei Tan, Fran?ois Petitjean, and Geoffrey Webb. Elastic bands across the path: A new framework and method to
lower bound DTW. In Proceedings of the 2019 SIAM International Conference on Data Mining, pages 522–530, Alberta, Canada,
05 2019. SIAM.

[33] Chang Wei Tan, Geoffrey I. Webb, and François Petitjean. Indexing and classifying gigabytes of time series under time
warping. In Proceedings of the 2017 SIAM International Conference on Data Mining, pages 282–290, Houston, TX, 2017. SIAM.

[34] Zhiyi Tan, Yanfeng Wang, Ya Zhang, and Jun Zhou. A novel time series approach for predicting the long-term popularity of
online videos. IEEE Transactions on Broadcasting, 62(2):436–445, 2016.

[35] Jingren Tang, Hong Cheng, Yang Zhao, and Hongliang Guo. Structured dynamic time warping for continuous hand trajec-
tory gesture recognition. Pattern Recognition, 80:21–31, 2018.

[36] Xindong Wu, Xingquan Zhu, Gongqing Wu, and Wei Ding. Data mining with big data. IEEE Transactions on Knowledge and
Data Engineering, 26(1):97–107, 2014.

[37] Youxi Wu, Yao Tong, Xingquan Zhu, and Xindong Wu. NOSEP: Nonoverlapping sequence pattern mining with gap con-
straints. IEEE Transactions on Cybernetics, 48(10):2809–2822, 2018.

21

[38] Byoung-Kee Yi, Hosagrahar Visvesvaraya Jagadish, and Christos Faloutsos. Efficient retrieval of similar time sequences
under time warping. In Proceedings of the 14th International Conference on Data Engineering, pages 201–208, Orlando, FL, 1998.
IEEE.

[39] Mi Zhou and Man Hon Wong. Boundary-based lower-bound functions for dynamic time warping and their indexing. Infor-
mation Sciences, 181(19):4175–4196, 2011.

[40] Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis Palpanas, and Johannes Gehrke. Generating data series query work-
loads. VLDB Journal, 27(6):823–846, 2018.

22

	Introduction
	Related Work
	Dynamic Covering with Cross-Range Constraints (DCRC)
	DTW
	ACM-Relationship
	Approximate Subsequence
	Covering Set
	DCRC of Time Series

	Time Series Indexing with DCRC
	DCRC based DTW Lower Bound (LB_DCRC)
	Hierarchical DCRC (HDCRC)
	DCRC-Tree and Relevant Functions
	Node Splitting and Insertion in a DCRC-Tree

	Theorems for DCRC
	Experiments
	Setup
	Distance and Tightness
	Indexing Tree Comparisons

	Conclusion

