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Abstract

This paper presents the system description of
team AaltoNLP for SemEval-2022 shared task
11: MultiCoNER. Transformer-based models
have produced high scores on standard Named
Entity Recognition (NER) tasks. However,
accuracy on complex named entities is still
low. Complex and ambiguous named entities
have been identified as a major error source
in NER tasks. The shared task is about multi-
lingual complex named entity recognition. In
this paper, we describe an ensemble approach,
which increases accuracy across all tested lan-
guages. The system ensembles output from
multiple same architecture task-adaptive pre-
trained transformers trained with different ran-
dom seeds. We notice a large discrepancy be-
tween performance on development and test
data. Model selection based on limited devel-
opment data may not yield optimal results on
large test data sets.

1 Introduction

SemEval-2022 shared task 11: MultiCoNER (Mal-
masi et al., 2022b) was about complex Named En-
tity Recognition (NER) in the multilingual context.
Transformer-based models such as BERT (Devlin
et al., 2019) have reached high accuracy in standard
NER tasks. However, the models still struggle with
complex and code-mixed named entities (Meng
et al., 2021; Fetahu et al., 2021). The shared task
tries to address the challenges regarding complex
NER in a multilingual context. Out of the 13 avail-
able tracks, we focus on 5 monolingual tracks. We
build models for Bangla, English, Farsi, German,
and Korean.

Our strategy is to build an ensemble approach to
increase accuracy compared to the baseline model.
To tackle multilingualism, we build an approach
that starts from the same XLM-RoBERTa (Con-
neau et al., 2019) encoder and after fine-tuning,
achieves good performance across languages. We

propose two ensembling approaches: (1) naive en-
sembling and (2) end-to-end (E2E) ensembling.
Naive ensembling is a test-time ensembling where
class scores from individually trained models are
added together. E2E ensembling trains two encoder
models jointly by concatenating their results and
passing the concatenated predictions to the final
layer. In addition to these strategies, we adapt the
encoder model to data context using continued pre-
training (Gururangan et al., 2020).

We discover that naive ensembling produces
good results with few models and by just using
different random seeds for training. We also dis-
cover that performance can drastically vary be-
tween data sets and model selection based on de-
velopment data may not yield good results on large
test sets. Our final rankings are 11th for Farsi, 12th
for Bangla, 13th for German, 15th for Korean, and
25th for English. For each language, our ranking is
on the lower half of the participants. The code for
our submission has been released 1.

2 Background

In NER, complex and ambiguous entities are hard
to classify correctly. Out of the 13 available
tracks, we participated in the monolingual tracks
for Bangla, English, Farsi, German, and Korean.
For training, we used only the competition data sets
(Malmasi et al., 2022a) provided by the organizers.
The task is to detect named entities in given sen-
tences. Figure 1 contains an example of the task
setting. This example can be considered complex,
as Madagascar is ambiguous as it could refer to the
country or the movie.

Transformer-based models (Vaswani et al., 2017)
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) produce state-of-the-art results
on variety of natural language processing (NLP)
tasks including NER. Transformer models trained

1Code is available here https://github.com/
aapop/multiconer_AaltoNLP

https://github.com/aapop/multiconer_AaltoNLP
https://github.com/aapop/multiconer_AaltoNLP
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Figure 1: An example of NER task. A sentence from
the development data set and the corresponding labels.

on multilingual data, such as XLM (Conneau and
Lample, 2019), can be used for cross-lingual tasks.
XLM-RoBERTa (XLM-R) (Conneau et al., 2019)
combines the XLM and RoBERTa architectures
and produces state-of-the-art results across lan-
guages. XLM-R is used as the basis in our system,
which we built on top of.

Gururangan et al. (2020) showed that continu-
ing pretraining of a transformer model with the
domain or task-specific data often increases the
performance. We utilize this finding and apply
task-adaptive pretraining on multilingual models to
increase performance in a specific language.

Ensemble learning is widely used in machine
learning, in which, predictions from several dif-
ferent models are combined. The ensemble learn-
ing method combines multiple weak learners and
provides a strong learner (Mohri, 2012). This
works especially well when the weak learners 2

are diverse and make different errors. Speck
and Ngonga Ngomo (2014) showed that ensemble
methods can significantly increase NER accuracy.
Combining transformer-based model predictions
has been shown to increase NER accuracy (Li et al.,
2020; Zhao et al., 2021; Souza et al., 2020). To
keep applicability on languages with limited num-
ber of pretrained models, our approach is to form an
ensemble model based on training the same model
with different random seeds.

3 System overview

The motivation for our system is to produce an ap-
proach that can be applied across languages. Initial
testing with the baseline system provided by the or-
ganizers suggested that XLM-Rlarge (Conneau et al.,
2019) produces comparable or even better perfor-
mance than tested monolingual pretrained models
for targeted languages. Therefore, we resort to
building on top of a multilingual encoder model
XLM-RLARGE and the provided baseline system.

Inspired by results using task-adaptive pretrain-
ing (Gururangan et al., 2020), we start by training

2also called base models

task-adaptive language models. We hypothesize
that task-adaptive pretraining could provide two
sources of improvement: (1) adapting to the data
domain and (2) improving the capability in the
specific language. Task-adaptive pretraining is con-
ducted for the XLM-RLARGE using the provided
training data, which we prepare for pretraining by
removing labels and constructing line-by-line sen-
tences. The pretraining is applied to each language
separately yielding us five encoder models named
koala/xlm-roberta-large-XX. The XX is replaced
with the corresponding language identifier. The pre-
training is continued from the XLM-Rlarge check-
point with only the preprocessed task data. The pre-
training objective remains the same. The models
are available at the Huggingface model repository
3. In this paper, we refer to the models as koala-
XLM-Rlarge interchangeably for all languages.

After obtaining the enhanced encoder models,
we propose two ensemble learning approaches, i.e.,
naive ensemble and E2E ensemble.

3.1 Naive ensemble
As the first ensemble strategy, we combine predic-
tions from multiple independently trained models
at test time. Randomness and choosing a random
seed can have a significant effect on the model train-
ing and final accuracy. Based on that, our hypothe-
sis was to leverage this randomness to increase the
accuracy.

To ensure applicability in languages, where a
limited number of available models are available,
we train the models using the same architecture
and only vary the random seed associated with
training. The koala-XLM-Rlarge is used as the en-
coder model for each language respectively. Af-
ter the encoder model, we use the linear layer as
the prediction head and apply softmax transforma-
tion to obtain class probabilities. The models were
trained separately and optimized with AdamW op-
timizer (Loshchilov and Hutter, 2018) and negative
log-likelihood loss function (NLLLoss).

The ensembling is conducted during test time.
We simply add the class probabilities together from
each of the models,

y∗ = argmaxj
∑
n

pnj , (1)

where pnj is the probability of model n for the class
j. The predicted class y∗ is the class with the high-
est sum of probabilities. For the ensemble weights,

3https://huggingface.co/koala

https://huggingface.co/koala
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Figure 2: System diagram for the Naive ensemble
model. Each of the models are trained separately with
different random seeds and ensembling conducted at
test time.

we also tried entropy minimized ensemble (Wang
et al., 2021), which is based on the intuition that
good ensemble weights should decrease entropy
(Shannon, 1948; Wang et al., 2020). The algorithm
is elaborated in Algorithm 1. This approach did not

Algorithm 1 Entropy minimization for ensembling

1: Inputs: scores p, uniform weights w0

2: for t in 0, 1, . . . steps = T do
3: Calculate entropy of scores E ←

Entropy(
∑

nw
t
n ∗ pnj)

4: Compute gradient gt = ∇wE
5: Update weights wt+1 ← Update(wt, gt)
6: end for
7: Output: final prediction y∗ =

∑
nw

T
n ∗ pnj

provide noticeable improvement in our tests and
thus, we proceeded with uniform weights.

Our ensemble model consists of four distinct
models. The number of four models was chosen as
a compromise on the trade-off between accuracy
and inference time. The model system is illustrated
in Figure 2.

3.2 E2E ensemble

Our second ensemble strategy centered around the
idea of jointly training the models. The idea is
to include sub-networks (encoder models) in the
model, ensemble their predictions, and optimize
the loss function jointly. Our system uses koala-
XLM-Rlarge and XLM-Rbase as the encoder models.

The input data is passed to both encoder models.
After that, we apply linear and softmax layers. For
the second encoder model, the linear layer outputs
2 ∗ num classes scores. We made this deci-

Input sentence

Token predictions

koala-XLM-RLARGE XLM-RBASE

Linear + softmax Linear + softmax

Class scores Scores (2*num_classes)(Concatenation)

Linear

CRF

Figure 3: System diagram for the E2E ensemble model.

sion to add variation between the two sub-networks.
The choice to use twice the amount of parameters
was arbitrary. We tried a different number of pa-
rameters but the performance seemed similar.

After outputting the scores from the two sub-
networks, the scores are concatenated together.
Also, summation was tested when using same-sized
outputs, but concatenation seemed to perform bet-
ter. After that, the concatenated scores are passed
to linear and CRF layers. The architecture of E2E
ensemble model is illustrated in Figure 3.

The E2E ensemble model consists of two sub-
networks. We tried using also three and four sub-
networks but adding more models did not improve
the performance. Therefore, we settled on using
two sub-networks, which also help with the com-
putational burden. We experimented with different
sub-network architectures and noticed that using
different encoder models provided the best perfor-
mance despite varying the linear layer size. Also,
using koala-XLM-Rlarge instead of XLM-Rbase as
the second sub-network did not improve accuracy.
Hence, the smaller model was used.

The model was optimized using AdamW opti-
mizer with Viterbi loss as the loss function.

4 Experimental setup

Our experimental setup was based on the provided
baseline model (Malmasi et al., 2022b) and the data
splits (Malmasi et al., 2022a). Models were trained



only using the training data and the best model was
selected based on performance on development
data. After selecting the best model, we did not do
any training with development data. For continued
pretraining, we preprocessed the training data. The
data were converted from CoNLL format into line-
by-line text. Hence, we removed the labels and
reconstructed the sentences into a single line of
text data.

We selected suitable hyperparameters based on
performance on the development data. We selected
two learning rates, first for the encoder model and
a second one for all subsequent layers (decoder).
We set the encoder learning rate to 10−6 and the de-
coder learning rate to 10−3. To prevent overfitting,
we used a dropout rate of 0.1. We also used early
stopping with development data. The training was
stopped when accuracy on development data had
not increased in the last three epochs. We selected
batch size based on the hardware constraints. For
baselines and sub-models in the naive ensemble,
we used batch size 64. For E2E ensemble, batch
size is 20.

The main Python libraries we used are PyTorch,
PyTorch Lightning, AllenNLP, and Transformers.
Further details available in the repository 4.

The performance in this shared task is evaluated
using prediction accuracy on unseen test data set.
The teams are ranked by their macro-averaged F1
classification score.

5 Results

The official metrics were based on the evaluation
phase with test data. The participants were ranked
by their Macro F1 scores. The performance of built
models on test data is shown in Table 1. The best
score is bolded and is the model used for ranking.
It can be seen that the naive ensemble model per-
forms better than the best individual model across
all languages. E2E ensemble model shows mixed
results and performance varies run by run. It out-
performs naive ensemble on Korean and Farsi test
data.

We noticed a rather large discrepancy in accura-
cies between the development and test data set. The
details of model performance on development data
are presented in Table 2. Compared to the results
on test data, the performance on development data
was significantly better. The discrepancies between

4https://github.com/aapop/multiconer_
AaltoNLP/blob/master/requirements.txt

Model en ko fa de bn
XLM-Rlarge 0.639 0.589 0.515 0.695 0.465
koala-XLM-Rlarge 0.653 0.590 0.527 0.695 0.476
Naive ensemble 0.669 0.610 0.569 0.714 0.518
E2E ensemble 0.623 0.618 0.589 0.678 0.511
Final rank 25 15 11 13 12

Table 1: Macro F1 scores and final ranking on test data.

Model en ko fa de bn
XLM-Rlarge 0.830 0.802 0.756 0.870 0.763
koala-XLM-Rlarge 0.829 0.805 0.745 0.861 0.758
Naive ensemble 0.841 0.824 0.764 0.864 0.782
E2E ensemble 0.821 0.811 0.764 0.856 0.755

Table 2: Macro F1 scores on development data.

performance on development and test data suggest
that model selection on such limited development
data yields sub-optimal results.

Our systems suffer with some of the classes.
As can be seen from Figures 4 and 5, PROD and
CW classes have significantly lower accuracy than
other classes. Performance on GRP, LOC, and PER
classes is much higher. Our systems suffer with
the no-tag-class O, which has the majority of the
misclassifications.

5.1 Task-adaptive pretraining

We hypothesized that task-adaptive pretraining
would adapt the multilingual encoder model into
the data and language domains. We tested the per-
formance by training the model four times using
different random seeds and comparing the average
micro F1 score between XLM-Rlarge and koala-
XLM-Rlarge models. The results of task-adaptive
pretraining are elaborated in Table 3. The improve-
ments on this task are small and compared to the
original paper, in which, the accuracy increase was
considerably larger on some data sets. For German,
the accuracy even decreased significantly. The de-
crease is mainly caused by random variation as one
of the four models for koala-XLM-Rlarge achieved
only accuracy of 0.81 when all other models (XLM-
Rlarge and koala-XLM-Rlarge) were in the range of
0.85− 0.88.

Model en ko fa de bn
XLM-Rlarge 0.836 0.788 0.757 0.873 0.738
koala-XLM-Rlarge 0.837 0.793 0.761 0.850 0.746
Improvement 0.1% 0.6% 0.5% -2.6% 1.1%

Table 3: Average micro F1 scores for four models.
Models trained with different random seeds.

https://github.com/aapop/multiconer_AaltoNLP/blob/master/requirements.txt
https://github.com/aapop/multiconer_AaltoNLP/blob/master/requirements.txt
https://huggingface.co/koala
https://huggingface.co/koala
https://huggingface.co/koala
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Figure 4: Confusion matrix of Farsi Naive ensemble
model normalized on the true labels.
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Figure 5: Confusion matrix of Farsi E2E ensemble
model normalized on the true labels.

EMEA Steps Lr Batch size F1
No - - - 0.782
Yes 10 10 3 0.779
Yes 10 100 3 0.776
Yes 10 500 3 0.777
Yes 25 10 1 0.771
Yes 30 15 3 0.775
Yes 100 10 3 0.777

Table 4: EMEA ensemble for Bangla

5.2 EMEA

As discussed earlier, we tried to improve our en-
sembling strategy using entropy minimization. The
results are reported in Table 4. Despite testing
different approaches, no sign of improvement is
present. The testing was conducted on the Bangla
development data set. Our setting differs from the
original authors as we are not using off-the-shelf
language adapters. We probably have too few mod-
els and they are not diverse enough.

6 Conclusion

From our efforts, we conclude that naive ensem-
bling improves accuracy with just four models of
the same architecture trained with different ran-
dom seeds. The ensemble of four models out-
performs the best individual model across all the
tested languages. The E2E ensemble model can
provide good accuracy, but the results vary dras-
tically between runs. Task-adaptive pretraining,
which has in some cases improved accuracy signif-
icantly, yielded only a slight improvement in this
task. We also notice a large difference between
performance in development and test data. With
such limited development data and a large test set,
model selection on solely development data yields
sub-optimal results. More attention should be paid
to model selection and model’s generalizability.
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