# An extension of a theorem of Zermelo Or Between second and first order logic

#### Jouko Väänänen

Department of Mathematics and Statistics, University of Helsinki

ILLC, University of Amsterdam

May 2018

(日)

1/35

# 100th anniversary of the death of Cantor



Georg Cantor 1845 (Saint Petersburg) — 1918 (Halle).

 Should we think of second order logic or first order set theory as the foundation of classical mathematics?

- Early researchers (Dedekind, Frege, Russell, Hilbert, Zermelo, Gödel, Mostowski) axiomatized mathematics using second order logic or its extension simple theory of types.
- Then ZFC emerged as a first order theory.
- Later philosophers (e.g. S. Shapiro) claimed second order logic would be better (can characterize mathematical structures) and first order logic is flawed (cannot characterize mathematical structures).
- I argue that this view is wrong.

# I claim:

- Zermelo's and Dedekind's second order categoricity results are actually first order at heart.
- The difference betwqeen second order logic or first order set theory is not as clear as what was previously thought.

- Second order logic has great power in characterizing categorically mathematical structures.
- Which structures are second order characterizable?
- For which A is there a second order  $\theta$  such that for all B:

$$\mathcal{A} \cong \mathcal{B} \iff \mathcal{B} \models \theta$$

- By early results (Dedekind, Hilbert, Zermelo, et.al.): natural numbers, real numbers, cumulative hierarchy of sets up to the first inaccessible, etc.
- In model theory second order logic has seemed all too strong to develop any interesting theory.

# Sometimes infinitary second order logic can characterize "all" models.

#### Theorem (Hyttinen-Kangas-V. 2013)

Let T be a countable complete first order theory and  $\kappa$  an uncountable cardinal with certain not too uncommon properties<sup>1</sup>. Then the following are equivalent:

- 1. Every model of T of size  $\kappa$  is  $L^2_{\kappa\omega}$ -characterizable.
- 2. T is superstable, shallow, without DOP or OTOP.

<sup>1</sup>A regular cardinal such that  $\kappa = \aleph_{\alpha}, \exists_{\omega_1}(|\alpha| + \omega) \leq \kappa \text{ and } 2^{\lambda} < 2^{\kappa} \text{ for all } \lambda < \kappa.$ 

#### Theorem (V. 2011)

- 1. If a model is second order characterizable, its isomorphism class is  $\Delta_2$ -definable in set theory.
- 2. A model class is second order definable<sup>2</sup> if and only if it is  $\Delta_2$ -definable in set theory.

<sup>&</sup>lt;sup>2</sup>More exactly, second order  $\Delta$ -definable.

#### Theorem (V. 2011)

- 1. Second order validity is  $\Pi_2$ -complete in set theory.
- 2. The second order theory of a second order characterizable structure is always  $\Delta_2$  in set theory.

#### Corollary

Second order validity cannot be second order defined in any second order characterizable structure.

- Second order logic is praised for its categoricity results, i.e. its ability to characterize structures.
- But what is universal second order truth a problem!
- Best understood in terms of provability i.e. truth in all Henkin (rather than "full") models.
- But Henkin models seem to ruin the categoricity results.
- We show that categoricity can be proved for Henkin models, too, in the form of internal categoricity, which implies full categoricity in full models.

- We now demonstrate this in the case of Zermelo's result (1930) to the effect that second order ZFC is κ-categorical for all κ.
- It is (of course) not true that any two Henkin models of second order ZFC of the same cardinality are isomorphic.
   E.g. one can be well-founded and the other non-well-founded.

- Let us consider the vocabulary {∈1, ∈2}, where both ∈1 and ∈2 are binary predicate symbols.
- ZFC(∈1) is the first order Zermelo-Fraenkel axioms of set theory when ∈1 is the membership relation and formulas are allowed to contain ∈2, too.
- ZFC(∈<sub>2</sub>) is the first order Zermelo-Fraenkel axioms of set theory when ∈<sub>2</sub> is the membership relation and formulas are allowed to contain ∈<sub>1</sub>, too.

Theorem (V. 2018, extending Zermelo 1930 and D. Martin (EFI-paper, draft) 2018) If  $(M, \in_1, \in_2) \models ZFC(\in_1) \cup ZFC(\in_2)$ , then  $(M, \in_1) \cong (M, \in_2)$ .

- We work in  $ZFC(\in_1) \cup ZFC(\in_2)$ .
- We alternate between ∈<sub>1</sub>-set theory and ∈<sub>2</sub>-set theory<sup>3</sup>.

<sup>3</sup> It is not clear whether  $\forall x \exists y \forall z (z \in x \leftrightarrow z \in y)$  is true, but we do not need this either.

- Let tr<sub>i</sub>(x) be the formula ∀t ∈<sub>i</sub> x∀w ∈<sub>i</sub> t(w ∈<sub>i</sub> x). It says that x is transitive in ∈<sub>i</sub>-set theory.
- Let  $\operatorname{TC}_i(x)$  be the unique u such that  $\operatorname{tr}_i(u) \land x \in_i u \land \forall v((\operatorname{tr}_i(v) \land x \in_i v) \to \forall w \in_i u(w \in_i v)))$ (i.e. "u is the  $\in_i$ -transitive closure of x").
- Let φ(x, y) be the formula ∃fψ(x, y, f), where ψ(x, y, f) is the conjunction of the following formulas (where f(t) and f(w) are understood in the sense of ∈<sub>1</sub>):

 $\psi(\mathbf{x}, \mathbf{y}, \mathbf{f})$ :

- (1) In the sense of  $\in_1$ , the set *f* is a function with  $TC_1(x)$  as its domain.
- (2)  $\forall t \in \operatorname{TC}_1(x)(f(t) \in \operatorname{TC}_2(y))$
- (3)  $\forall t \in_2 \operatorname{TC}_2(y) \exists w \in_1 \operatorname{TC}_1(x) (t = f(w))$
- (4)  $\forall t \in TC_1(x) \forall w \in TC_1(x) (t \in w \leftrightarrow f(t) \in f(w))$ (5) f(x) = y

Lemma If  $\psi(x, y, f)$  and  $\psi(x, y, f')$ , then f = f'. Proof:



Lemma If  $\psi(x, y, f)$  and  $x' \in_1 x$ , then  $\varphi(x', f(x'))$ . Proof:



#### Lemma If $\psi(x, y, f)$ and $y' \in_2 y$ , then there is $x' \in_1 x$ such that f(x') = y' and $\varphi(x', y')$ . Proof:



Lemma If  $\varphi(x, y)$  and  $\varphi(x, y')$ , then y = y'. Proof:



Lemma If  $\varphi(x, y)$  and  $\varphi(x', y)$ , then x = x'. Proof:



Lemma If  $\varphi(x, y)$  and  $\varphi(x', y')$ , then  $x' \in x \leftrightarrow y' \in y$ .



- Let On<sub>1</sub>(x) be the ∈<sub>1</sub>-formula saying that x is an ordinal i.e. a transitive set of transitive sets, and similarly On<sub>2</sub>(x).
- For On<sub>1</sub>(α) let V<sup>1</sup><sub>α</sub> be the α<sup>th</sup> level of the cumulative hierarchy in the sense of ∈<sub>1</sub>, and similarly V<sup>2</sup><sub>a</sub>.

#### Lemma

- 1. If  $\varphi(\alpha, y)$ , then  $On_1(\alpha)$  if and only if  $On_2(y)$ .
- 2. If  $\alpha$  is a limit ordinal then so is y i.e. if  $\forall u \in_1 \alpha \exists v \in_1 \alpha (u \in_1 v)$ , then  $\forall u \in_2 y \exists v \in_2 y (u \in_2 v)$ .

< ロ > < 同 > < 回 > < 回 > .

24/35

3. Also vice versa.

Lemma

Suppose  $\psi(\alpha, y, f)$ . If  $On_1(\alpha)$  (or equivalently  $On_2(y)$ ), then there is  $\overline{f} \supseteq f$  such that  $\psi(V_{\alpha}^1, V_y^2, \overline{f})$ .



Lemma  $\forall x \exists y \varphi(x, y) \text{ and } \forall y \exists x \varphi(x, y).$ 

Proof: Consider

$$\forall \alpha (\mathrm{On}_{1}(\alpha) \to \exists y \varphi(\alpha, y)) \tag{1}$$

$$\forall \mathbf{y}(\operatorname{On}_{2}(\mathbf{y}) \to \exists \alpha \varphi(\alpha, \mathbf{y})).$$
<sup>(2)</sup>

**Case 1:**  $(1) \land (2)$ . The claim can be proved.

**Case 2:**  $\neg$ (1) $\land \neg$ (2). Impossible!

**Case 3:** (1) $\land \neg$ (2). Impossible!

**Case 4:**  $\neg$ (1) $\land$ (2). Impossible!



#### Lemma

The class defined by  $\varphi(x, y)$  is an isomorphism between the  $\in_1$ -reduct and the  $\in_2$ -reduct.

#### Proof.

By the previous Lemmas.

- Zermelo (1930) showed that if (M, ∈<sub>1</sub>) and (M, ∈<sub>2</sub>) both satisfy the second order Zermelo-Fraenkel axioms, then (M, ∈<sub>1</sub>) ≃ (M, ∈<sub>2</sub>).
- Zermelo's result follows from our theorem.
- Note:  $ZFC(\in_1)$  and  $ZFC(\in_2)$  are first order theories.
- We allow in these axiom systems formulas from the extended vocabulary {∈1, ∈2}.
- Without this the result is false: there are<sup>4</sup> countable non-isomorphic models of *ZFC*.

<sup>&</sup>lt;sup>4</sup>Assuming there are models of *ZFC* at all.

- Note that  $(M, \in_1)$  and  $(M, \in_2)$  can be models of V = L,  $V \neq L$ , CH,  $\neg CH$ , even of  $\neg Con(ZF)$ .
- It is easy to construct such pairs of models using classical methods of Gödel and Cohen.
- Not all of them can be models of second order set theory.

- An internal categoricity result.
- A strong robustness result for set theory.
- The model cannot be changed "internally".
- To get non-isomorphic models one has to go "outside" the model.
- But going "outside" raises the potential of an infinite regress of meta theories.

# Continuum Hypothesis (CH)

- What if  $(M, \in_1) \models CH$  and  $(M, \in_2) \models \neg CH$ ?
- Then either (*M*, ∈<sub>1</sub>) or (*M*, ∈<sub>2</sub>) does not satisfy the Separation Schema or the Replacement Schema if formulas are allowed to mention the other membership-relation.

A similar result holds for first order Peano arithmetic: If

$$(M,+_1,\times_1+_2,\times_2)\models P(+_1,\times_1)\cup P(+_2,\times_2),$$

then

$$(M,+_1,\times_1)\cong (M,+_2,\times_2).$$

• This extends (and implies) Dedekind's (1888) categoricity result for *second order* Peano axioms.

- Should we think of second order logic or first order set theory as the foundation of classical mathematics?
- The answer: We need a new understanding of the difference between the two. The difference is not as clear as what was previously thought.
- The nice categoricity results of second order logic can be seen already on the first order level, revealing their inherent limitations.

# Thank you!