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100th anniversary of the death of Cantor

Georg Cantor 1845 (Saint Petersburg) — 1918 (Halle).
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• Should we think of second order logic or first order set
theory as the foundation of classical mathematics?
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• Early researchers (Dedekind, Frege, Russell, Hilbert,
Zermelo, Gödel, Mostowski) axiomatized mathematics
using second order logic or its extension simple theory of
types.

• Then ZFC emerged as a first order theory.
• Later philosophers (e.g. S. Shapiro) claimed second order

logic would be better (can characterize mathematical
structures) and first order logic is flawed (cannot
characterize mathematical structures).

• I argue that this view is wrong.
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I claim:

• Zermelo’s and Dedekind’s second order categoricity
results are actually first order at heart.

• The difference betwqeen second order logic or first order
set theory is not as clear as what was previously thought.
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• Second order logic has great power in characterizing
categorically mathematical structures.

• Which structures are second order characterizable?
• For which A is there a second order θ such that for all B:

A ∼= B ⇐⇒ B |= θ

• By early results (Dedekind, Hilbert, Zermelo, et.al.): natural
numbers, real numbers, cumulative hierarchy of sets up to
the first inaccessible, etc.

• In model theory second order logic has seemed all too
strong to develop any interesting theory.
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Sometimes infinitary second order logic can
characterize “all” models.

Theorem (Hyttinen-Kangas-V. 2013)
Let T be a countable complete first order theory and κ an
uncountable cardinal with certain not too uncommon
properties1. Then the following are equivalent:

1. Every model of T of size κ is L2
κω-characterizable.

2. T is superstable, shallow, without DOP or OTOP.

1A regular cardinal such that κ = ℵα, iω1 (|α|+ ω) ≤ κ and 2λ < 2κ for all
λ < κ.
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Theorem (V. 2011)

1. If a model is second order characterizable, its isomorphism
class is ∆2-definable in set theory.

2. A model class is second order definable2 if and only if it is
∆2-definable in set theory.

2More exactly, second order ∆-definable.
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Theorem (V. 2011)

1. Second order validity is Π2-complete in set theory.
2. The second order theory of a second order characterizable

structure is always ∆2 in set theory.

Corollary
Second order validity cannot be second order defined in any
second order characterizable structure.
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• Second order logic is praised for its categoricity results, i.e.
its ability to characterize structures.

• But what is universal second order truth — a problem!
• Best understood in terms of provability i.e. truth in all

Henkin (rather than “full”) models.
• But Henkin models seem to ruin the categoricity results.
• We show that categoricity can be proved for Henkin

models, too, in the form of internal categoricity, which
implies full categoricity in full models.
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• We now demonstrate this in the case of Zermelo’s result
(1930) to the effect that second order ZFC is κ-categorical
for all κ.

• It is (of course) not true that any two Henkin models of
second order ZFC of the same cardinality are isomorphic.
E.g. one can be well-founded and the other
non-well-founded.

11 / 35



• Let us consider the vocabulary {∈1,∈2}, where both ∈1
and ∈2 are binary predicate symbols.

• ZFC(∈1) is the first order Zermelo-Fraenkel axioms of set
theory when ∈1 is the membership relation and formulas
are allowed to contain ∈2, too.

• ZFC(∈2) is the first order Zermelo-Fraenkel axioms of set
theory when ∈2 is the membership relation and formulas
are allowed to contain ∈1, too.

12 / 35



Theorem (V. 2018, extending Zermelo 1930 and D. Martin
(EFI-paper, draft) 2018)
If (M,∈1,∈2) |= ZFC(∈1) ∪ ZFC(∈2), then (M,∈1) ∼= (M,∈2).
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Proof of the Theorem

• We work in ZFC(∈1) ∪ ZFC(∈2).
• We alternate between ∈1-set theory and ∈2-set theory3.

3It is not clear whether ∀x∃y∀z(z ∈1 x ↔ z ∈2 y) is true, but we do not
need this either.
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Proof of the Theorem

• Let tri(x) be the formula ∀t ∈i x∀w ∈i t(w ∈i x). It says
that x is transitive in ∈i -set theory.

• Let TCi(x) be the unique u such that
tri(u) ∧ x ∈i u ∧ ∀v((tri(v) ∧ x ∈i v)→ ∀w ∈i u(w ∈i v))
(i.e. “u is the ∈i -transitive closure of x”).

• Let ϕ(x , y) be the formula ∃fψ(x , y , f ), where ψ(x , y , f ) is
the conjunction of the following formulas (where f (t) and
f (w) are understood in the sense of ∈1):
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Proof of the Theorem

ψ(x , y , f ) :

(1) In the sense of ∈1, the set f is a function with
TC1(x) as its domain.

(2) ∀t ∈1 TC1(x)(f (t) ∈2 TC2(y))

(3) ∀t ∈2 TC2(y)∃w ∈1 TC1(x)(t = f (w))

(4) ∀t ∈1 TC1(x)∀w ∈1 TC1(x)(t ∈1 w ↔ f (t) ∈2 f (w))

(5) f (x) = y
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Proof of the Theorem
Lemma
If ψ(x , y , f ) and ψ(x , y , f ′), then f = f ′.
Proof:
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Proof of the Theorem

Lemma
If ψ(x , y , f ) and x ′ ∈1 x, then ϕ(x ′, f (x ′)).
Proof:
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Proof of the Theorem
Lemma
If ψ(x , y , f ) and y ′ ∈2 y, then there is x ′ ∈1 x such that
f (x ′) = y ′ and ϕ(x ′, y ′).
Proof:
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Proof of the Theorem
Lemma
If ϕ(x , y) and ϕ(x , y ′), then y = y ′.
Proof:
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Proof of the Theorem

Lemma
If ϕ(x , y) and ϕ(x ′, y), then x = x ′.
Proof:
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Proof of the Theorem

Lemma
If ϕ(x , y) and ϕ(x ′, y ′), then x ′ ∈1 x ↔ y ′ ∈2 y.
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Proof of the Theorem

• Let On1(x) be the ∈1-formula saying that x is an ordinal i.e.
a transitive set of transitive sets, and similarly On2(x).

• For On1(α) let V 1
α be the αth level of the cumulative

hierarchy in the sense of ∈1, and similarly V 2
a .
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Proof of the Theorem

Lemma

1. If ϕ(α, y), then On1(α) if and only if On2(y).
2. If α is a limit ordinal then so is y i.e. if
∀u ∈1 α∃v ∈1 α(u ∈1 v), then ∀u ∈2 y∃v ∈2 y(u ∈2 v).

3. Also vice versa.
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Proof of the Theorem

Lemma
Suppose ψ(α, y , f ). If On1(α) (or equivalently On2(y)), then
there is f̄ ⊇ f such that ψ(V 1

α ,V 2
y , f̄ ).
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Proof of the Theorem

Lemma
∀x∃yϕ(x , y) and ∀y∃xϕ(x , y).

Proof: Consider

∀α(On1(α)→ ∃yϕ(α, y)) (1)

∀y(On2(y)→ ∃αϕ(α, y)). (2)

Case 1: (1)∧(2). The claim can be proved.

Case 2: ¬(1)∧¬(2). Impossible!

Case 3: (1)∧¬(2). Impossible!

Case 4: ¬(1)∧(2). Impossible!
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Proof of the Theorem

Lemma
The class defined by ϕ(x , y) is an isomorphism between the
∈1-reduct and the ∈2-reduct.

Proof.
By the previous Lemmas.
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• Zermelo (1930) showed that if (M,∈1) and (M,∈2) both
satisfy the second order Zermelo-Fraenkel axioms, then
(M,∈1) ∼= (M,∈2).

• Zermelo’s result follows from our theorem.
• Note: ZFC(∈1) and ZFC(∈2) are first order theories.
• We allow in these axiom systems formulas from the

extended vocabulary {∈1,∈2}.
• Without this the result is false: there are4 countable

non-isomorphic models of ZFC.

4Assuming there are models of ZFC at all.
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• Note that (M,∈1) and (M,∈2) can be models of V = L,
V 6= L, CH, ¬CH, even of ¬Con(ZF ).

• It is easy to construct such pairs of models using classical
methods of Gödel and Cohen.

• Not all of them can be models of second order set theory.
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• An internal categoricity result.
• A strong robustness result for set theory.
• The model cannot be changed “internally”.
• To get non-isomorphic models one has to go “outside” the

model.
• But going “outside” raises the potential of an infinite

regress of meta theories.
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Continuum Hypothesis (CH)

• What if (M,∈1) |= CH and (M,∈2) |= ¬CH?
• Then either (M,∈1) or (M,∈2) does not satisfy the

Separation Schema or the Replacement Schema if
formulas are allowed to mention the other
membership-relation.
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• A similar result holds for first order Peano arithmetic: If

(M,+1,×1+2,×2) |= P(+1,×1) ∪ P(+2,×2),

then
(M,+1,×1) ∼= (M,+2,×2).

• This extends (and implies) Dedekind’s (1888) categoricity
result for second order Peano axioms.
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• Should we think of second order logic or first order set
theory as the foundation of classical mathematics?

• The answer: We need a new understanding of the
difference between the two. The difference is not as clear
as what was previously thought.

• The nice categoricity results of second order logic can be
seen already on the first order level, revealing their
inherent limitations.
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Thank you!
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