
REGular

Expressions

Part II

http://xkcd.com/208

Advanced Computer Methods for Biologists, May 27, 2008
Michael Wrzaczek, michael.wrzaczek@helsinki.fi

Regex Engine Types

There are two fundamentally different types of regex engines: DFA
(Deterministic Finite Automation) and NFA (Nondeterministic
Finite Automation).

Different programmes and languages use different regex engines.

DFA: awk (most versions), egrep (most versions), MySQL

NFA: GNU Emacs, Java, grep (most versions), less, more, .NET,
PCRE (Perl compatible regular expressions) library, Perl, PHP,
Python, Ruby, sed, Vim

[POSIX NFA: mawk, GNU Emacs (when requested)]
[Hybrid NFA/DFA: Gnu awk, GNU grep/egrep, TCL]

How Does Pattern Matching Work? (NFA and DFA)

Both regex engines follow 2 rules:

1.The match that begins earliest (leftmost) wins.

2. The standard quantifiers (*, +, ? And {m,n} are
greedy.

1. Earliest Match Wins Rule

This rule says, that any match that begins earlier in the
string is always preferred over any plausible match that
begins later.

The match is first attempted at the very beginning of the
string to be searched (just BEFORE the first character).
”attempted” means that every permutation of the entire
(perhaps complex) regex is tested starting right at that
spot. If all possibilities are exhausted and a match is
not found, the complete expression is re-tried starting
from just before the second character. This full retry
occurs at each position in the string until a match is
found. No match is reported only after the full retry has
been attempted at each position all the way to the end of
the string (after the last character).

1. Earliest Match Wins Rule

Trying ORA against FLORAL, the first attempt fails (since
ORA can’t match FLO). The second attempt also fails (ORA
does not match LOR either). The attempt starting at the
third position however matches, so the engine stops and
reports the match. FLORAL.

1. Why Is This Rule Important?

If you don’t know this rule, some search results might
surprise you:

The dragging belly indicates your cat is too fat.

Is you search for ’cat’, the match will be in indicates,
not at the word cat, because indicates appears earlier in
the string. This is not important in cases like grep,
where you just test for the presence of a string, but if
you search AND replace the distinction becomes paramount.

Where will this match in the example above:

fat|cat|belly|your

2. The Standard Quantifiers Are Greedy

Greedy means, that the quantifiers will match as many
characters as possible. They will settle for something
elss than the maximum if they have to, but the always
attempt to match as many times as then can up to the
absolute maximum allowed.

The only time they settle for anything less than their
allowed maximum is when matching too much ends up causing
some later part of the regex to fail.

Example:
\b\w+s\b matches words ending with an ’s’, such as
’regexes’.

The \w+ happily matches the whole word, but if it did,
there would be nothing for the s to match. For the match
to succeed, \w+ must settle for ’regex’ in order for s\b
to be able to match.

2. Greedy Quantifiers: First Come, First Served

What is being captured by the parentheses in this
example:
String: ’Copyright 2003.’
Regex: ^.*([0-9]+)

WHY???

NFA vs. DFA

NFA matches a regex against a
given text!

DFA matches a given text position
for position against the regex to
be searched!

NFA: Regex-directed

NFA matches a regex against a given text!

Consider a regex to(nite|knight|night) against the text
tonight.

Starting with the t, the regular expression is examined
one component at a time and the current text is checked
to see whether it is matched by the current component of
the regex. If it does, the next commponent is checked,
and so on, until ALL components have matched, indicating
that an overall match has been achieved.

In the example, t is matched first. After the successful
match, o is tried and once that matches, the engine moves
on to the next expression which is nite or knight or
night. Now the engine tries each in turn. The successful
match is the last in the example, but the engine won’t
know before it has all three tried out.

DFA: Text-directed

DFA matches a given text position for position against
the regex to be searched!

Consider a regex to(nite|knight|night) against the text
tonight.

The DFA engine, while scanning the string, keeps track of
all matches ”currently in the works”. While matching for
t and o is similar to the NFA engine, the three
alternatives nite, knight and night are evaluate
differently. For every option, the first character is
evaluated and the list of possible matches is updated.
After the engine has reached ton, knight is discarded as
impossible while nite and night are kept as possible
matches. This continues until nite is ruled out and night
is checked until the end to verify the match.

This concludes that generally the DFA engine is faster
than the NFA engine

scp –P222 wrzaczek@honkytonk.linux-addict.com:/home/wrzaczek/patternmatch.pl ~/

scp –P222 wrzaczek@honkytonk.linux-addict.com:/home/wrzaczek/dna.fa ~/

scp –P222 wrzaczek@honkytonk.linux-addict.com:/home/wrzaczek/protein.fa ~/

scp –P222 wrzaczek@honkytonk.linux-addict.com:/home/wrzaczek/mailinglist ~/

Download files from the server

(Detailed discussion of the programme will follow in the Perl lectures!)

#!/usr/bin/perl
use strict;
use warnings;

my $file;
my @data;
my $count =1 ;
chomp ($file = <@ARGV>);
open FILE, $file or die "cannot open $file: $!\n";
@data = <FILE>;
for (@data) {

if (m/REGEX/MODIFIERS) {
printf "This is a match (Line %02d, # wrap the line here

File $file): $` --- $& --- $'", $count;
$count++;

} else {
$count++;
next;

}
}

Perl regex-checker

The building blocks: Character Classes (Perl)

Character classes are groups of characters, eg in Perl:

[a-z] uses all characters from a to z while [^a-z]
excludes those

[0-9] uses all digits while [^0-9] excludes them, can
also be written as \d or \D, respectively

\w identifies a part of word character, usually the
same as [a-z0-9_], the exact coverage depends on the
system used, but usually all alphanumericals

\W equals [^a-z0-9_] or [^\w]

\s identifies whitespace characters, often the same as
[\f\b\r\t\v]

\S non-whitespace characters, the same as [^\s]

. stands for every character except newline.

^ anchors a character to the beginning of a string

$ anchors a character to the end of a string

\b anchors a character to a word-boundary (\B does the
opposite)

In Perl, lookahead and lookbehind offer more advanced
possibilities to search for strings followed
or preceeded by particular strings.

Lookahead:
Jeff(?=rey) matches Jeff only, if it is part of Jeffrey

(the same as (?=Jeffrey)Jeff)
Negative lookahead: (?!...)

Lookbehind:
(?<=Jeff)rey matches rey only, if it is part of Jeffrey.
Negative lookbehind: (?<!...)

What does s/(?<=\bJeff)(?=s\b)/’/ do?

Anchors

With quantifiers we are able to specify how many instances of
A certain character or character class we want to match.

Quantifiers can be separated into greedy and non-greedy.
Greedy quantifiers will match everything they can while non-
greedy ones will only match until a given criterium is
matched for the first time.

Greedy quantifiers:

? Matches one or none (”one optional”)
* Matches none or unlimited (”any amount ok”)
+ Matches one or unlimited (”at least one”)

{n} Matches n instances
{m,n} Matches at least m but at most n instances, matches

the maximum possible

Quantifiers

Non-greedy/Lazy quantifiers

These quantifiers only match the minimum required to achieve
a successful match.

?? Matches one or none (”one optional”)
*? Matches none or unlimited (”any amount ok”)
+? Matches one or unlimited (”at least one”)

{m,n}? Matches at least m but at most n instances,
matches the minimum required

Quantifiers

Possessive quantifiers:

They work much the same like greedy quantifiers but they
NEVER give up a successful match.

?+ Matches one or none (”one optional”)
*+ Matches none or unlimited (”any amount ok”)
++ Matches one or unlimited (”at least one”)

{m,n}+ Matches at least m but at most n instances

They are currently only supported by Java and PHP but
mentioned here for completeness. In Perl there are other ways
to mimick the behaviour of possessive quantifiers.

Quantifiers

Within a regex, characters can be grouped using parentheses.

(expression)

Parentheses can be grouping/capturing or grouping/non-
capturing.

(expression) is grouping AND capturing

(?:expression) is grouping but non-capturing

What does grouping mean? Regex components are grouped for
alternation (an OR statement, see below) and quantification.

(expression){1,3}

What is capturing? One of the most common uses of parentheses
is to ”pluck” data from a string. The text matched by a
parenthesized subexpression is made available after the
match. Eg in Perl as the special variables $1, $2, etc…

Grouping

Atomic grouping is indicated in Perl using:

(?>...)

Perl saves all states it goes through during matching. In the
case of atomic grouping, matching proceeds normally within
the group, but after a successful match, all saved states
from within the group are discarded.

This is generally a feature to make matching more efficient
and faster. If you are sure, that you do not need saved
states from a group, you can use atomic grouping.

In some cases however, it can change the results of your
match.

What does this do: (?>.*?)

Answer: this is a quite complex way of achieving nothing
Try to explain why (hint: what kind of quantifier is used?)

Atomic grouping

The pipe character | allows to use alternatives for matches.

(expression1|expression2)

m/at(?:1|2)g\d{5}/i

What will this match?

At1g09970
at2G34520
AT1g38750.1

At4g23160
At3g33500.2

Alternation

In Perl, a regex starts with m (for match; the m can be
omitted in some cases). The actual regex is delimited by 2
forward slashes.

m/regex/
However, Perl allows you to pick your own pair of delimiters
for your expression:

m!...!
m,...,
m{...} s{...}{...} s{...}!...!
m<...> s<...><...>
m[...] s[...][...]
m(...) s(...)(...)
s|...|...|
qr#...#

m identifies a regex for matching
s uses regexes for substitutions
qr accepts a regex just like m and s but allows you to save

it as a variable

The syntax of a Perl regex

After the regular expression in Perl, we can use so-called
modifiers.

/i case insensitive

/s Lets . Match also newline (\n)

/m Let the anchors ^ and $ match next to embedded
newlines (\n)

/x Ignore (most) whitespace characters and allow
comments within the patterns

/o Compile the pattern only once

/g Globally find all matches (matching as many times
as possible within the string). In a list context,
m/.../g returns a list of all matches found.

/gc Allow continued search after a failed /g match

Modifiers for Perl regexes

You have seen, that some characters are associated with
special functions either als character class, quantifiers or
delimiters.

What if you want to literally match one of those characters?

You have to ESCAPE them! Eg:

. Will match any character (except newline \n in Perl)

\. Will match .

\ Indicates that the following letter serves as a
special character (modifier, character class, etc)

\\ Will match an actual backslash \.

About the special characters

Breaking down a regex in several lines with whitespace in
between can be very helpful in writing clear and
understandable regular expressions. Consider a regex to
search for a hostname:

my $hostnameregex = qr/[-a-z0-9]+(?:\.[-a-z0-9]+)*\.(?:com|org|net|fi)/i;

The x modifier in Perl can be very useful

my $hostnameregex = qr/[-a-z0-9]+(?:\.[-a-z0-9]+)*\.(?:com|org|net|fi)/i;

This can be better written as:
my $hostnameregex = qr{

[-a-z0-9]+ # the first part at least once
(?:\.[-a-z0-9]+)* # the second part not or unlimited
\.(?:com|org|net|fi) # the ending exactly once

}ix;

Now we combine this for a full URL:
my $httpurl = qr{

http:// $hostnameregex \b # the hostname
(?:

/ [-a-z0-9_:\@&?=+,.!/~*’%\$]* # optional path
(?<![.,?!]) # not allowed at the end

)?
}ix;

The x modifier in Perl can be very useful

Note: within a character class, special symbols do not need to
be escaped. However, in the above example the @ and $ are special.
Perl uses @ and $ to identify variables and interprets them in
that way even within character classes. Therefore they need to be
escaped!

Regular expressions are a quite complicated topic, we barely
scratched the surface here. We did not address different
types of regex engines and we also did not touch the topic of
the performance and efficiency of regular expressions.

Suggested further reading:

Mastering Regular Expressions
Jeffrey E. F. Friedl, O’Reilly

THE regex bible! Covers almost
every aspect of regular
expressions.

Regular Expressions Pocket Reference
Tony Stubblebine, O’Reilly
A quick and good reference to regexes in most Unix tools and scripting
languages. Requires however understanding of regular expressions.

Where to go from here?

Michael Wrzaczek, michael.wrzaczek@helsinki.fi

