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Abstract5

We consider an inverse scattering problem of recovering the unknown co-6

efficients of quasi-linearly perturbed biharmonic operator on the line. These7

unknown complex-valued coefficients are assumed to satisfy some regularity8

conditions on their non-linearity, but they can be discontinuous or singular9

in their space variable. We prove that the inverse Born approximation can10

be used to recover some essential information about the unknown coefficients11

from the knowledge of the reflection coefficient. This information is the jump12

discontinuities and the local singularities of the coefficients.13

1 Introduction14

We consider a quasi-linear differential operator of order four on the line defined by

Q4u := u(4) + q1(x, |u|)u′ + q0(x, |u|)u, (1)

where the complex-valued coefficients q1 and q0 are from function spaces defined
later. These coefficients depend on the spacial variable x and they are also allowed
to depend on the modulus of the function u. A linear counterpart of Q4,

L4u := u(4) + q1(x)u′ + q0(x)u,

has previously gained attention from several authors. In 1988 Iwasaki [5, 6] studied15

the inverse problem of finding the unknown coefficients q0 and q1 as a Riemann-16

Hilbert boundary value problem. The coefficients q0 and q1 were assumed to be17
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real-valued with an exponential type of decay at infinity. Under the assumptions1

that the operator has no spectral or non-spectral singularities and no negative2

eigenvalues he was able to provide a uniqueness theorem for the inverse problem3

when given the so-called reflection and connection coefficients R+ and C+ for all4

k 6= 0 in the rays arg(k) = 0 and arg(k) = π
4
, respectively. More recently, in 20085

Aktosun and Papanicolaou [9] studied the operator L4 with time-evolving coeffi-6

cients. In that work the time-dependence in several related scattering coefficients7

was discussed. This linear operator L4 has also been studied in higher dimensions8

[11, 12]. In [10] the operator L4 was generalized by adding a second-order perturba-9

tion. The method of Born approximation was studied for this linear operator and it10

was proved that Born approximation can be used to recover the local singularities11

of the coefficients.12

The motivation to study non-linear operators of order four can be found, for13

instance, in theory of vibrations of beams and the study of elasticity. For example,14

by looking for the time-harmonic solutions U(x, t) = u(x)e−iωt to the non-linear15

beam equation (cf. [1])16

∂2tU + ∂4xU +mU + |U |p−1U = 0, m > 0,

we arrive at the equation17

u(4) + (m+ |u|p−1)u = ω2u,

where the left-hand-side is of type (1) with q1 ≡ 0. Albeit real-valued, the following
simple model of a suspension bridge from [4] also uses a fourth-order non-linear
equation to model the downward deflection u(x, t). The bridge is understood as a
beam of length L with hinged ends. The deflection u(x, t) is subject to three forces
with the homogeneous Navier boundary conditions

∂2t u+ γ∂4xu = −ku+ +W + f(x, t),

u(0, t) = u(L, t) = ∂2xu(0, t) = ∂2xu(L, t) = 0,

where γ, k and W are constants called Young’s modulus, the spring constant and18

forcing constant, respectively. The function f(x, t) is an external forcing term and19

u+ = max{0, u}.20

The present paper concerns scattering problems for the operator Q4 and we
study only one special set of solutions to the equation Q4u = k4u. More precisely,
the direct scattering problem for Q4 can be formulated by the equation

Q4u = k4u, u = u0 + usc, u0(x, k) = eikx, k ∈ R, (2)

where usc must be outgoing in some sense. Instead of studying directly the equation
(2) we apply the standard theory of ordinary differential equations to obtain an
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integral equation. For k > 0 the kernel of the integral operator(
d4

dx4
− k4 − i0

)−1
=

1

2k2

((
− d2

dx2
− k2 − i0

)−1
−
(
− d2

dx2
+ k2

)−1)
(3)

(or a fundamental solution to operator L0 := d4

dx4
− k4) is given by1

G+
k (|x|) :=

1

4k3
(
ieik|x| − e−k|x|

)
.

This kernel is outgoing in the sense that it satisfies the radiation condition2 (
∂

∂|x|
− ik

)
G+
k (|x|) = o(1), |x| → ∞.

Note that due to (3) our operator inherits some Schrödinger-like properties and this
allows us to use similar techniques as those used to study the non-linear Schrödinger
operator [13, 14]. By convolving this fundamental solution formally with (2) we
obtain the integral equation

u(x, k) = u0(x, k)

−
∫ ∞
−∞

G+
k (|x− y|)(q1(y, |u(y, k)|)u′(y, k) + q0(y, |u(y, k)|)u(y, k))dy. (4)

As it turns out (see Section 3), the solution to this integral equation has the asymp-
totic representation

u(x, k) = a(k)u0(x, k) + o(1), x→ +∞,
u(x, k) = u0(x, k) + b(k)e−ikx + o(1), x→ −∞,

where a(k) and b(k) are called the transmission and reflection coefficients, respec-3

tively. They are defined by4

a(k) := 1− i

4k3

∫ ∞
−∞

e−iky (q1(y, |u|)u′ + q0(y, |u|)u) dy

and5

b(k) := − i

4k3

∫ ∞
−∞

eiky (q1(y, |u|)u′ + q0(y, |u|)u) dy

for sufficiently large k > 0. This asymptotic representation can now be regarded6

as a radiating solution to (4). It turns out that for our purposes it is enough to7

study only the reflection coefficient for sufficiently large k > 0.8
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In this paper we consider the inverse problem of recovering the potential func-1

tions q1 and q0 by the Born approximation method. The reflection coefficient b(k)2

is used to define the inverse Born approximation hB as the Fourier transform of3

ik3

2
√
2π
b(k/2). We show that this approximation recovers the jumps and local sin-4

gularities in the combination h(x) := −1
2
q′1(x, 1) + q0(x, 1), where the derivative5

is taken with respect to x. Our main result is that the difference hB − Re(h) de-6

fines a continuous function (if the imaginary part is smooth enough) and hence the7

singularities of hB coincide with those in h.8

The following notations are used throughout this text. We use C > 0 as a9

generic constant when it is not important to keep track of its precise value. The10

symbol Lp(Ω) is used to denote the p-based Lebesgue space over the set Ω ⊂ R.11

The space of continuous functions vanishing at infinity is denoted by Ċ(R) and the12

Sobolev spaces W k
p (R), for k ∈ N, are the spaces of those functions whose weak13

derivatives up to order k are in Lp(R). In the case where p = 2 and s ∈ R we say14

that f ∈ Hs(R) if the norm15

‖f‖Hs(R) :=

(∫ ∞
−∞

(1 + |ξ|2)s|f̂(ξ)|2dξ
) 1

2

is finite. Here the Fourier transform pair of f is defined by the formulae

f̂(ξ) ≡ F (f)(ξ) :=
1√
2π

∫ ∞
−∞

e−ixξf(x)dx,

F−1(f)(x) :=
1√
2π

∫ ∞
−∞

eixξf(ξ)dξ.

This paper is organized as follows. In Section 2 we establish the existence of16

solutions u = u0 + usc to (4) with the property that usc ∈ W 1
∞(R). In Section17

3 we study the asymptotic behaviour of u at x → −∞ and define the reflection18

coefficient b(k). We also motivate the definition of the inverse Born approximation19

hB. Finally, Section 4 concerns the inverse problem of finding the jumps and20

singularities of h. We also present a numerical example to demonstrate the Born21

approximation visually.22

2 Existence and uniqueness23

In this section we prove that under quite general assumptions the integral equation24

(4) has a unique solution u, when k > 0 is large enough. In the linear case25

[10] a Neumann-type series could be used to construct the solution, but the non-26

linearity disables this approach in the case of operator Q4. Instead, we apply27
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Banach fixed point theorem to prove the existence and uniqueness of the direct1

scattering problem. Our first assumption1 is similar to that in [14].2

Assumption 2.1. Let us assume that the coefficients qj, j = 0, 1, have the follow-3

ing properties4

1. There exists functions αj ∈ L1(R) such that for all a > 0 we find Cj(a) > 05

with the property that |qj(x, s)| ≤ Cj(a)αj(x), for all 0 ≤ s ≤ a.6

2. The coefficients qj have the Lipschitz property in the second variable, that is,7

there exists βj ∈ L1(R) such that for all a > 0 we find C ′j(a) > 0 with the8

property that |qj(x, s1) − qj(x, s2)| ≤ C ′j(a)βj(x)|s1 − s2| for all 0 ≤ s1, s2 ≤9

1 + a.10

Suppose u is a solution to (4) and denote

G′k(x) := (G+
k )′(|x|) = −sgn(x)

4k2
(
eik|x| − e−k|x|

)
. (5)

Then

usc(x, k) = −
∫ ∞
−∞

G+
k (|x− y|) (q1(y, |usc + u0|)(usc + u0)

′

+ q0(y, |usc + u0|)(usc + u0)) dy (6)

and by the Leibniz integral rule

u′sc(x, k) =

−
∫ ∞
−∞

G′k(x− y) (q1(y, |usc + u0|)(usc + u0)
′ + q0(y, |usc + u0|)(usc + u0)) dy.

Now solving (6) for usc is equivalent to solving (4). To do this, pick any ρ > 0 and11

consider the closed ball Bρ(0) := {f ∈ W 1
∞(R) | ‖f‖∞ + ‖f ′‖∞ ≤ ρ}, where ‖ · ‖p12

denotes the usual Lp-norm on the line.13

Theorem 2.2. Under Assumption 2.1, for any ρ > 0 there exists k0 > 0 such that14

the integral equation (6) has a unique solution usc in Bρ(0) ⊂ W 1
∞(R) uniformly in15

k ≥ k0.16

1We implicitly assume that the coefficients qj(x, |u(x, k)|) are measurable (which is the case,
for instance, when qj are measurable in the first variable and continuous in the second variable),
so that it makes sense to talk about integrability.
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Proof. Let us denote1

T (ũ)(x) := −
∫ ∞
−∞

G+
k (|x− y|) (q1(y, |ũ+ u0|)(ũ+ u0)

′ + q0(y, |ũ+ u0|)(ũ+ u0)) dy

for any ũ ∈ W 1
∞(R). Correspondingly,2

(T (ũ))′(x) = −
∫ ∞
−∞

G′k(x− y)(q1(y, |ũ+ u0|)(ũ+ u0)
′ + q0(y, |ũ+ u0|)(ũ+ u0))dy.

We will use Banach fixed-point theorem (see for example [2]) to prove this3

theorem. Since Bρ(0) is a closed subspace in the complete metric space W 1
∞(R), it4

suffices to show that T : Bρ(0)→ Bρ(0) and that T is a contraction.5

Let ũ ∈ Bρ(0). From Assumption 2.1 we get6

|qj(y, |ũ+ u0|)| ≤ Cj(1 + ρ)αj(y), j = 0, 1.

Using this fact we may estimate

|T (ũ)(x)| ≤ 1

2k3

∫ ∞
−∞

(|q1(y, |ũ+ u0|)||ũ′ + iku0|+ |q0(y, |ũ+ u0|)||ũ+ u0|) dy

≤ C1(1 + ρ)‖α1‖1
2k3

(k + ‖ũ′‖∞) +
C0(1 + ρ)‖α0‖1

2k3
(1 + ‖ũ‖∞)

≤ C1(1 + ρ)‖α1‖1 + C0(1 + ρ)‖α0‖1
2k2

+
C̃ρ
2k3

ρ,

when k ≥ 1 and where we denote C̃ρ := max{C1(1 + ρ)‖α1‖1, C0(1 + ρ)‖α0‖1}.7

Similarly, for the derivative of T (u) we get8

|(T (ũ))′(x)| ≤ C1(1 + ρ)‖α1‖1 + C0(1 + ρ)‖α0‖1
2k

+
C̃ρ
2k2

ρ,

when k ≥ 1. Adding the above inequalities and taking the supremum yields

‖T (ũ)‖W 1
∞(R) ≤

C1(1 + ρ)‖α1‖1 + C0(1 + ρ)‖α0‖1
2k

+
C1(1 + ρ)‖α1‖1 + C0(1 + ρ)‖α0‖1

2k2
+ C̃ρ

(
1

2k2
+

1

2k3

)
ρ

≤ C̃ρ
k

(2 + ρ),

when k ≥ 1. To conclude that T : Bρ(0) → Bρ(0) we need only to show that9

‖T (ũ)‖W 1
∞(R) ≤ ρ. But this happens when k ≥ C̃ρ

(
1 + 2

ρ

)
.10
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It remains to show that T is a contraction. Let ũ, ṽ ∈ W 1
∞(R). Then we estimate

|T (ũ)− T (ṽ)| ≤ 1

2k3

∫ ∞
−∞
|q1(y, |ũ+ u0|)(ũ′ + iku0)− q1(y, |ṽ + u0|)(ṽ′ + iku0)|dy

+
1

2k3

∫ ∞
−∞
|q0(y, |ũ+ u0|)(ũ+ u0)− q0(y, |ṽ + u0|)(ṽ + u0)|dy

≤ 1

2k3

∫ ∞
−∞

(|q1(y, |ũ+ u0|)ũ′ − q1(y, |ṽ + u0|)ṽ′|

+ k|q1(y, |ũ+ u0|)− q1(y, |ṽ + u0|)|) dy

+
1

2k3

∫ ∞
−∞

(|q0(y, |ũ+ u0|)ũ− q0(y, |ṽ + u0|)ṽ|

+ |q0(y, |ũ+ u0|)− q0(y, |ṽ + u0|)|) dy

and by Assumption 2.1

|T (ũ)− T (ṽ)| ≤ C ′1(ρ)‖β1‖1
2k2

‖ũ− ṽ‖∞ +
C1(1 + ρ)‖α1‖1

2k3
‖ũ′ − ṽ′‖∞

+
C ′1(ρ)‖β1‖1

2k3
‖ṽ′‖∞‖ũ− ṽ‖∞

+
C ′0(ρ)‖β0‖1

2k3
‖ũ− ṽ‖∞ +

C0(1 + ρ)‖α0‖1
2k3

‖ũ− ṽ‖∞

+
C ′0(ρ)‖β0‖1

2k3
‖ṽ‖∞‖ũ− ṽ‖∞

≤
C̃ ′ρ
2k2
‖ũ− ṽ‖W 1

∞(R), (7)

where1

C̃ ′ρ := max
{
C0(1 + ρ)‖α0‖1 + (1 + ρ)(C ′0(ρ)‖β0‖1 + C ′1(ρ)‖β1‖1), C1(1 + ρ)‖α1‖1}.

Derivatives are estimated similarly, and we obtain the estimate2

|T (ũ)′ − T (ṽ)′| ≤
C̃ ′ρ
2k
‖ũ− ṽ‖W 1

∞(R).

It means that

‖T (ũ)− T (ṽ)‖W 1
∞(R) ≤

C̃ ′ρ
k
‖ũ− ṽ‖W 1

∞(R). (8)

Finally, fixing some k0 > max
{

1, C̃ ′ρ, C̃ρ

(
1 + 2

ρ

)}
gives that T : Bρ(0) → Bρ(0)3

and is a contraction when k ≥ k0.4
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Remark 2.3. In the sequel we will let ρ > 0 denote a fixed constant, as in Theorem1

2.2. In addition to the existence and the uniqueness of the solution, the proof of2

Banach’s fixed-point theorem (see e.g., [2]) gives us an estimate in terms of the3

first iteration. Starting the iteration scheme from u
(0)
sc := 0 ∈ Bρ(0), the definition4

u
(j)
sc = T (u

(j−1)
sc ) for j = 1, 2, . . . yields5

‖usc − u(j)sc ‖W 1
∞(R) ≤

(
C̃′
ρ

k

)j
1− C̃′

ρ

k

‖u(1)sc ‖W 1
∞(R) ≤

C1(1)‖α1‖1 + C0(1)‖α0‖1
1− C̃′

ρ

k0

×
(C̃ ′ρ)

j

kj+1

for all j = 0, 1, . . ., when k ≥ k0. The second inequality above follows from the
definition of the operator T since we have

|u(1)sc (x, k)| = |T (0)| =
∣∣∣∣∫ ∞
−∞

G+
k (|x− y|)(ikq1(y, 1) + q0(y, 1))eikydy

∣∣∣∣
≤ C1(1)‖α1‖1 + C0(1)‖α0‖1

2k2

and similarly for the derivatives.6

Corollary 2.4. Let us denote uj := u0 +u
(j)
sc . Under Assumption 2.1 the estimates

‖u− uj‖∞ ≤
C1(1)‖α1‖1 + C0(1)‖α0‖1

1− C̃′
ρ

k0

×
(C̃ ′ρ)

j

2kj+2
,

‖u′ − u′j‖∞ ≤
C1(1)‖α1‖1 + C0(1)‖α0‖1

1− C̃′
ρ

k0

×
(C̃ ′ρ)

j

2kj+1

hold uniformly in k ≥ k0 for j = 0, 1, . . .. In particular,

‖usc‖∞ ≤
C1(1)‖α1‖1 + C0(1)‖α0‖1

k2
,

when k ≥ 2k0.7

Proof. The estimates follow from inequalities (7) and (8) and Remark 2.3.8

3 Asymptotic behaviour of u at −∞9

Having obtained a solution u to (4) with usc ∈ W 1
∞(R), we study its asymptotic

behaviour. Let us assume here that q1(x, 1) ∈ W 1
1 (R). To motivate the definition

of the inverse Born approximation in Section 4 we first formally define

u(x, k) := u(x,−k) and u′(x, k) := u′(x,−k), (9)
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when k ≤ −k0. These functions are the unique solutions to1

u = u0 −
∫ ∞
−∞

G+
−k(|x− y|)

(
q1(y, |u|)u′ + q0(y, |u|)u

)
dy

for k ≤ −k0. Here the principal part of the above integral operator has the same2

behaviour as the Lippmann-Schwinger equation does.3

Then as x→ −∞ we find that u has the asymptotic representation4

u(x, k) = u0(x, k) + b(k)e−ikx + o(1),

where b(k) is called the reflection coefficient and is defined by5

b(k) := − i

4k3

∫ ∞
−∞

eiky (q1(y, |u|)u′ + q0(y, |u|)u) dy,

when k ≥ k0 and due to (9)

b(k) :=− i

4k3

∫ ∞
−∞

eiky
(
q1(y, |u(y,−k)|)u′(y, k) + q0(y, |u(y,−k)|)u(y, k)

)
dy

= − i

4k3

∫ ∞
−∞

eiky
(
q1(y, |u|)u′ + q0(y, |u|)u

)
dy,

when k ≤ −k0. For simplicity we extend b(k) = 0 if −k0 < k < k0. The property6

(9) implies that b(k) = b(−k).7

Due to Corollary 2.4 it is reasonable to approximate u ≈ u0 and u′ ≈ iku0 for8

large values of k > 0. Correspondingly, Assumption 2.1 gives for both j = 0, 1 that9

|qj(y, |usc + u0|)− qj(y, 1)| ≤ C ′j(ρ)βj(y)|usc|,

so, roughly speaking, qj(y, |u|) ≈ qj(y, 1) for large k > 0. By integrating by parts
we can approximate

b(k) ≈ − i

4k3

∫ ∞
−∞

e2iky (ikq1(y, 1) + q0(y, 1)) dy

=

√
2π

4ik3
F−1

(
q0(·, 1)− 1

2
q′1(·, 1)

)
(2k)

for large k > 0.10

4 Inverse problem11

We are now ready to turn our attention to the inverse problem of finding the jump12

discontinuities and local singularities of the combination q0(x, 1) − 1
2
q′1(x, 1). By13
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using Fourier inversion and our formal equality b(k) = b(−k) for k < 0 on the1

approximation2

b(k) ≈
√

2π

4ik3
F−1

(
q0(·, 1)− 1

2
q′1(·, 1)

)
(2k)

we are motivated to propose the following definition.3

Definition 4.1. The inverse Born approximation of h(x) := q0(x, 1)− 1
2
q′1(x, 1) is4

defined by5

hB(x) = 2 Re

(
i

4π

∫ ∞
2k0

e−ikyk3b

(
k

2

)
dk

)
in the sense of tempered distributions.6

It is worth noting that this definition only uses positive values of k. Recalling7

the iterations uj := u0 + u
(j)
sc we may define a new sequence bj by8

bj(k) := − i

4k3

∫ ∞
−∞

eiky
(
q1(y, |uj|)u′j + q0(y, |uj|)uj

)
dy,

when k ≥ k0 and extend bj by zero onto the interval [0, k0].9

Lemma 4.2. Under Assumption 2.1 we have10

|b(k)− bj(k)| ≤ C
(C̃ ′ρ)

j

kj+4
, j = 0, 1, . . .

for some C > 0 (depending on ρ and the coefficients) which is independent of k11

and j when k ≥ k0.12

Proof. We start by estimating

|b(k)− bj(k)| ≤ 1

4k3

∫ ∞
−∞
|q0(y, |u|)u− q0(y, |uj|)uj|dy

+
1

4k3

∫ ∞
−∞

∣∣q1(y, |u|)u′ − q1(y, |uj|)u′j∣∣ dy =: I0 + I1.

By Assumption 2.1 we have

I0 ≤
1

4k3

∫ ∞
−∞

(C ′0(ρ)|β0(y)||u− uj||u|+ |q0(y, |uj|)||u− uj|) dy

≤ 1

4k3
(C ′0(ρ)‖β0‖1(1 + ρ) + C0(1 + ρ)‖α0‖1) ‖u− uj‖∞ ≤ C

(C̃ ′ρ)
j

kj+5
.
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In the same manner, by using Assumption 2.1 and Corollary 2.4 we can say that

I1 ≤
1

4k3

∫ ∞
−∞

(
C ′1(ρ)|β1(y)||u− uj||u′|+ |q1(y, |uj|)||u′ − u′j|

)
dy

≤ 1

4k3
(
C ′1(ρ)‖β1‖1(k + ρ)‖u− uj‖∞ + C1(1 + ρ)‖α0‖1‖u′ − u′j‖∞

)
≤ C

(C̃ ′ρ)
j

kj+4

for some constant C > 0. Combining the estimates for I0 and I1 gives the claim.1

Corollary 4.3. The reflection coefficient can be obtained as the limit b(k) =2

limj→∞ bj(k) uniformly in k ≥ k0.3

Now the Born approximation is equal to the limit4

hB(ξ) = lim
j→∞

hB,j(ξ)

in the sense of distributions, where5

hB,j(x) = 2 Re

(
i

4π

∫ ∞
2k0

e−ikyk3bj

(
k

2

)
dk

)
is called the inverse Born sequence.6

Lemma 4.4. Under Assumption 2.1, if q1(x, 1) ∈ W 1
1 (R), the first term in the7

inverse Born sequence is8

hB,0(x) = Re(h)(x) +
1

π
p.v.

∫ ∞
−∞

Im(h)(y)

x− y
dy (mod Ċ(R)).

Proof. By integrating by parts in the definition of b0(k/2), we obtain for k ≥ 2k09

that10

b0(k/2) = − 2i

k3

∫ ∞
−∞

eiky
(

ik

2
q1(y, 1) + q0(y, 1)

)
dy =

2
√

2π

ik3
F−1(h)(k).

Let χ[a,b](k) denote the characteristic function of the interval [a, b]. By using Defi-
nition 4.1 we obtain

hB,0(x) = 2 Re

(
i

4π

∫ ∞
2k0

e−ikxk3b0

(
k

2

)
dk

)
= 2 Re

[
F
(
χ[0,∞[F

−1(h)
)

(x)
]

+ h̃(x),

where11

h̃(x) := −2 Re
[
F
(
χ[0,2k0]F

−1(h)
)

(x)
]
∈ C∞(R)

11



as the Fourier transform of a compactly supported distribution. Furthermore,1

h ∈ L1(R) gives that F−1(h) ∈ L∞(R) and χ[0,2k0]F
−1(h) ∈ L1(R). Invoking the2

Riemann-Lebesgue lemma shows that h̃ must vanish at infinity.3

Next, recall that

χ̂[0,∞[(x) =

√
π

2
δ0 −

i√
2π

p.v.
1

x
(10)

in the sense of distributions [8], where χ[0,∞[ is the Heaviside function, p.v. 1
x
is4

the principal value distribution of 1
x
and δ0 is the delta distribution. The Fourier5

transform of the product χ[0,∞[F
−1(h) equals6

F
(
χ[0,∞[F

−1(h)
)

(x) =
1√
2π

(χ̂[0,∞[ ∗ h)(x).

Finally, calculating the above convolution by using (10) gives7

hB,0(x) = 2 Re

(
1

2
h− i

2π
p.v.

1

x
∗ h
)

+ h̃(x),

which simplifies to the claimed representation.8

It follows from Lemma 4.2 that9

b(k) = bj(k) +O

(
1

kj+4

)
, j = 0, 1, . . .

as k → +∞. Since bj is extended by zero onto the interval [0, k0] then after
multiplying by k3 the remainder term of b satisfies∫ ∞

2k0

(1 + k2)s
(
k3O

(
1

kj+4

))2

dk =

∫ ∞
2k0

(1 + k2)sO

(
1

k2j+2

)
dk <∞ (11)

if and only if s < j + 1
2
. It is well known that f̂ ∈ Hs(R) if and only if10 ∫ ∞

−∞
(1 + |x|2)s|f(x)|2dx <∞

and due to the Sobolev embedding theorem Hα(R) ⊂ Ċ(R), when α > 1
2
. The11

above calculations mean that any O(k−5)-terms in bj(k) correspond to continuous12

terms in hB,j for all j = 1, 2, . . .. We have now obtained the following result.13

Lemma 4.5. Under Assumption 2.1 we have that hB − hB,j ∈ Hs(R) for all s <14

j + 1
2
and j = 0, 1, . . ..15

12



Let us add more regularity to the assumption about the non-linearities.1

Assumption 4.6. Denote h1(y) := q1(y, 1) and h0(y) := q0(y, 1). Suppose that
the coefficients q0 and q1 have the following representations:

q0(x, 1 + s) = h0(x) + q∗0(x, s∗0)s,

q1(x, 1 + s) = h1(x) + q∗1(x, 1)s+ q∗∗1 (x, s∗1)
s2

2
,

where |s∗0|, |s∗1| < |s|. Here we assume that h1 ∈ W 1
1 (R), q∗1(x, 1) ∈ L1(R) ∩ Lp(R)2

for some p > 1 and |q∗0(x, s∗0)| ≤ h∗0(x), |q∗∗1 (x, s∗1)| ≤ h∗∗1 (x) uniformly in |s| < s03

for some 0 < s0 ≤ 1 and for some h∗0, h∗∗1 ∈ L1(R).4

Due to Corollary 2.4 the Maclaurin expansion (1 + ω)r = 1 + rω + O(ω2)
shows that we may write |u0 + usc| = 1 + 1

2
(u0usc + u0usc) + O(|usc|2). Combining

Assumption 4.6 with this expansion allows us to linearize the coefficients as

q0(x, |u0 + usc|) = h0(x) + q∗0(x, s∗0)O(|usc|),

q1(x, |u0 + usc|) = h1(x) +
1

2
q∗1(x, 1)(u0usc + u0usc) + q̃1(x)O(|usc|2), (12)

where q̃1(x) = q∗1(x, 1) + q∗∗1 (x, s∗1).5

We now state a helpful result, which will be used in the proof of Lemma 4.8.6

Lemma 4.7. Let Φ ∈ L1(R). Then the functions defined by

x 7→ e−kx
∫ x

−∞
ekyΦ(y)dy and x 7→ ekx

∫ ∞
x

e−kyΦ(y)dy (13)

are bounded and vanish at |x| → +∞ uniformly in k ≥ k0 > 0.7

Proof. We consider only the left integral of (13), the right one can be analysed
similarly. We start with large x > 0 and split the integral as∣∣∣∣e−kx ∫ x

−∞
ekxΦ(y)dy

∣∣∣∣ =

∣∣∣∣∣e−kx
∫ 1

2
x

−∞
ekxΦ(y)dy + e−kx

∫ x

1
2
x

ekxΦ(y)dy

∣∣∣∣∣
≤ e−

1
2
kx

∫ 1
2
x

−∞
|Φ(y)| dy +

∫ x

1
2
x

|Φ(y)| dy.

Since Φ is integrable both of these terms vanish as x→ +∞ uniformly in k ≥ k0.8

On the other hand, if x < 0 is large in absolute value, then we have directly that9 ∣∣∣∣e−kx ∫ x

−∞
ekxΦ(y)dy

∣∣∣∣ ≤ ∫ x

−∞
|Φ(y)| dy

and this integral vanishes as x→ −∞.10

13



Only the integrability of Φ uniformly in k ≥ k0 is used in the above proof. This1

means that we can let Φ depend on k ≥ k0 as long as it is dominated by some2

integrable function which does not depend on k.3

Now we are ready to prove our main result, that is, the precise calculation4

of the second term of the inverse Born sequence. Heuristically, our aim is to5

show that most parts of b1(k/2) for k ≥ 2k0 are O(k−5), which by (11) shows6

that the parts of hB,1 corresponding to them belong to Hs(R) ⊂ Ċ(R) for all7

1
2
< s < 3

2
. Additionally, the use of Assumption 4.6 results in a linearization that8

yields precisely hB,0 and some additional terms that can be considered separately9

by using properties of the Fourier transform.10

Lemma 4.8. Under Assumptions 2.1 and 4.6 the second term of the inverse Born11

sequence is of the form12

hB,1(x) = Re(h)(x) +
1

π
p.v.

∫ ∞
−∞

Im(h)(y)

x− y
dy (mod Ċ(R)).

Proof. When k ≥ 2k0 we can write

b1(k/2) = − 2i

k3

∫ ∞
−∞

ei
k
2
y (q1(y, |u1|)u′1 + q0(y, |u1|)u1) dy

= − 2i

k3

∫ ∞
−∞

eiky
(

ikq1(y, |u1|)
2

+ q0(y, |u1|)
)

dy

− 2i

k3

∫ ∞
−∞

ei
k
2
y
(
q1(y, |u1|)(u(1)sc )′ + q0(y, |u1|)u(1)sc

)
dy =: I1 + I2,

where (see Remark 2.3)13

u(1)sc (y, k) = −
∫ ∞
−∞

G+
k (|y − z|) (q1(z, 1)u′0 + q0(z, 1)u0) dz

and14

(u(1)sc )′(y, k) =

∫ ∞
−∞

G′k(y − z) (q1(z, 1)u′0 + q0(z, 1)u0) dz.

It is easy to see that15

‖u(1)sc ‖∞ ≤
C

k2
and ‖(u(1)sc )′‖∞ ≤

C

k
.

Consider first the integral I2. By definition16

I2 = − 2i

k3

∫ ∞
−∞

ei
k
2
yq1(y, |u1|)(u(1)sc )′dy − 2i

k3

∫ ∞
−∞

ei
k
2
yq0(y, |u1|)u(1)sc dy =: I ′2 + I ′′2 .

14



Here I ′′2 is estimated by1

|I ′′2 | ≤
2

k3

∫ ∞
−∞
|q0(y, |u1|)||u(1)sc |dy ≤

C

k5

for some C > 0. Then by using the explicit form of (u
(1)
sc )′ we write

I ′2 =
1

k2

∫ ∞
−∞

∫ ∞
−∞

ei
k
2
(y+z)G′k

2

(y − z)q1(y, |u1|)h1(z)dydz

− 2i

k3

∫ ∞
−∞

∫ ∞
−∞

ei
k
2
(y+z)G′k

2

(y − z)q1(y, |u1|)h0(z)dydz =: H1 +H2.

Since |q1(y, |u1|)| ≤ C1(1 + ρ)α1(y) then the second integral H2 = O(k−5). Next
we apply (12) to expand

H1 =
1

k2

∫ ∞
−∞

∫ ∞
−∞

ei
k
2
(y+z)G′k

2

(y − z)h1(y)h1(z)dydz

+
1

2k2

∫ ∞
−∞

∫ ∞
−∞

ei
k
2
(y+z)G′k

2

(y − z)q∗1(y, 1)h1(z)
(
u0u

(1)
sc + u0u

(1)
sc

)
dydz

+
1

k2

∫ ∞
−∞

∫ ∞
−∞

ei
k
2
(y+z)G′k

2

(y − z)q̃1(y)h1(z)O(|u(1)sc |2)dydz =: H ′1 +O(k−5),

where H ′1 denotes the first integral and the rest are O(k−5). The integral H ′12

contains some convenient symmetry. Let us denote3

Qk(y, z) :=
1

k2
G′k

2

(y − z)ei
k
2
(y+z)h1(y)h1(z).

Then Qk is (due to G′k) antisymmetric i.e. Qk(y, z) = −Qk(z, y) and is dominated4

by some function in L1(R × R) uniformly in k ≥ 2k0. This allows us to conclude5

that6

H ′1 =

∫ ∞
−∞

∫ ∞
−∞

Qk(y, z)dydz = 0.

15



It remains to consider the integral I1. We use (12) to expand

I1 = − 2i

k3

∫ ∞
−∞

eiky
(

ikq1(y, |u1|)
2

+ q0(y, |u1|)
)

dy

= − 2i

k3

∫ ∞
−∞

eiky
(

ik

2
h1(y) + h0(y)

)
dy

+
1

2k2

∫ ∞
−∞

eikyq∗1(y, 1)
(
u0u

(1)
sc + u0u

(1)
sc

)
dy

− 2i

k3

∫ ∞
−∞

eiky
(
q∗0(y, s∗0)O(|u(1)sc |) +

ikq̃1(y)

2
O(|u(1)sc |2)

)
dy

=: b0

(
k

2

)
+ J +O(k−5),

where J denotes the second integral of this expansion. As in the proof of Lemma1

4.4 we have2

b0

(
k

2

)
=

2
√

2π

ik3
F−1(h)(k),

when k ≥ 2k0. To conclude that J yields a continuous term in hB,1 we split the3

integral into two parts4

J =
1

2k2

∫ ∞
−∞

eikyq∗1(y, 1)u0u
(1)
sc dy +

1

2k2

∫ ∞
−∞

eikyq∗1(y, 1)u0u
(1)
sc dy =: J1 + J2.

Then J1 can further be split as

J1 =
i

2k4

∫ ∞
−∞

ei
3k
2
yq∗1(y, 1)

∫ ∞
−∞

(
iei

k
2
|y−z| − e−

k
2
|y−z|

)
q1(z, 1)ei

k
2
zdzdy

− 1

2k2

∫ ∞
−∞

ei
3k
2
yq∗1(y, 1)

∫ ∞
−∞

G+
k
2

(|y − z|)q0(z, 1)ei
k
2
zdzdy

=
1

2k4

∫ ∞
−∞

ei
3k
2
yq∗1(y, 1)

∫ ∞
−∞

e−i
k
2
|y−z|h1(z)e−i

k
2
zdzdy

− i

2k4

∫ ∞
−∞

ei
3k
2
yq∗1(y, 1)

∫ ∞
−∞

e−
k
2
|y−z|h1(z)e−i

k
2
zdzdy +O(k−5)

=: J ′1 + J ′′1 +O(k−5).

Next the inner integral in J ′1 is divided into two parts with respect to the region of
integration on ]−∞, y] and ]y,∞[ and then integrated by parts with respect to z

16



to get

J ′1 =
1

2k4

∫ ∞
−∞

eikyq∗1(y, 1)Q(y)dy +
1

2ik5

∫ ∞
−∞

eikyq∗1(y, 1)h1(y)dy

+
1

2ik5

∫ ∞
−∞

e2ikyq∗1(y, 1)

∫ ∞
y

e−ikzh′1(z)dzdy =: J̃ ′1(k) +O(k−5),

where J̃ ′1 denotes the first integral and1

Q(y) :=

∫ y

−∞
h1(z)dz.

In the last step we used the fact that h1 ∈ W 1
1 (R) ⊂ L1(R) ∩ L∞(R) to conclude

that the last two integrals are O(k−5). Because Q ∈ L∞(R) then Assumption
4.6 about q∗1(·, 1) gives that q∗1(·, 1)Q ∈ L1(R) ∩ Lp(R) and the Hausdorff-Young
inequality (see, e.g., [7]) implies that k4J̃ ′1(k) ∈ Lr([2k0,∞[) for some 1 < r < ∞.
Now Hölder’s inequality gives that

k3J̃ ′1(k) ∈ L1([2k0,∞[). (14)

Next, dividing the inner integral in J ′′1 into two parts and then integrating by
parts with respect to z gives

J ′′1 (k) = − i

(1− i)k5

∫ ∞
−∞

eikyq∗1(y, 1)h1(y)dy

+
i

(1− i)k5

∫ ∞
−∞

ei
3k
2
yq∗1(y, 1)e−

k
2
y

∫ y

−∞
e
k
2
ye−i

k
2
zh′1(z)dzdy

− i

(1 + i)k5

∫ ∞
−∞

eikyq∗1(y, 1)h1(y)dy

− i

(1 + i)k5

∫ ∞
−∞

ei
3k
2
yq∗1(y, 1)e

k
2
y

∫ ∞
y

e−
k
2
ye−i

k
2
zh′1(z)dzdy.

The application of Lemma 4.7 in second and fourth integrals shows that all of the2

above integrals are O(k−5).3

The term J2 can be calculated similarly. We first split

J2 =
1

2k4

∫ ∞
−∞

ei
k
2
yq∗1(y, 1)

∫ ∞
−∞

ei
k
2
|y−z|h1(z)ei

k
2
zdzdy

+
i

2k4

∫ ∞
−∞

ei
k
2
yq∗1(y, 1)

∫ ∞
−∞

e−
k
2
|y−z|h1(z)ei

k
2
zdzdy +O(k−5)

=: J ′2(k) + J ′′2 (k) +O(k−5).

17



As before, in J ′2 we split the inner integral into two parts and integrate by parts
with respect to z to get

J ′2 =
1

2k4

∫ ∞
−∞

eikyq∗1(y, 1)Q(y)dy − 1

2ik5

∫ ∞
−∞

eikyq∗1(y, 1)h1(y)dy

− 1

2ik5

∫ ∞
−∞

q∗1(y, 1)

∫ ∞
y

eikzh′1(z)dzdy =: J̃ ′2(k) +O(k−5).

By the same argument as for J̃ ′1 we have that k3J̃ ′2 ∈ L1([2k0,∞[). The term J ′′21

can be calculated similarly as J ′′1 to obtain another O(k−5) term.2

To finish the proof we combine the results into the formula3

b1

(
k

2

)
= b0

(
k

2

)
+ J̃ ′1(k) + J̃ ′2(k) +O(k−5), k ≥ 2k0,

where k3J̃ ′1(k) and k3J̃ ′2(k) are in L1([2k0,∞[). Now using4

hB,1(x) = 2 Re

(
i

4π

∫ ∞
2k0

e−ikxk3b1

(
k

2

)
dk

)
and Lemma 4.4 on the first term b0 gives the claimed explicit representation and an5

additional Ċ-term. Since k3J̃ ′1(k) and k3J̃ ′2(k) are integrable outside the origin the6

application of the Riemann-Lebesgue lemma shows that the corresponding parts of7

hB,1 are continuous and vanish at infinity. Finally, using (11) to the O(k−5)-part8

of b1 completes the proof.9

Theorem 4.9. The inverse Born approximation hB of h is of the form10

hB(x) = Re(h)(x) +
1

π
p.v.

∫ ∞
−∞

Im(h)(y)

x− y
dy (mod Ċ(R)).

Proof. Since b(k) = bj(k)+O(1/kj+4), then Definition 4.1 and (11) imply for j = 111

that12

hB(x) = hB,1(x) (modHs(R))

for all s < 3
2
. Then Lemma 4.8 gives the claimed representation.13

The preceding theorem already gives us some information about the unknown14

coefficients q0 and q1. The principal value integral appearing in Theorem 4.9 is15

precisely the Hilbert transform of the imaginary part of h. By using the mapping16

properties of the Hilbert transform (see, e.g., [3]) one can recover information about17

h even if the coefficients are complex-valued. If Im(h) has some regularity in the18

sense that Im(h) ∈ Hr(R), r > 1
2
, we can use the Fourier transform and Sobolev19

embedding theorems to prove the following result, which justifies our claim about20

the solution to the inverse problem of recovering jumps and singularities of h.21

18



Corollary 4.10. Let q0 and q1 satisfy Assumptions 2.1 and 4.6. If Im(h) ∈ Hr(R)1

for some r > 1
2
or if h is just real-valued, then the difference hB − Re(h) is a2

continuous function. In particular, any jumps and singularities contained in Re(h)3

can be recovered by calculating hB.4

Remark 4.11. The non-linearity is only present in this recovery at point 1. Suppose5

that q1(x, 1) = q0(x, 1) ≡ 0. Then u0(x, k) = eikx solves equation (4) uniquely and6

reflection coefficient b(k) ≡ 0, that is, there is no reflection. This shows that, e.g.7

non-linearities of type q(x, |u|) = f(x)(1−|u|p), p > 0, give trivial results regardless8

of f(x). Also scaling u0 by a constant c > 0 and doing appropriate changes to the9

assumptions through-out the text changes the reconstruction to correspond to the10

function h(x, c).11

Numerical example12

Finally, to illustrate the method we give a numerical example. We consider the13

operator14

Q4u = u(4) + q1|u|2u′ + q0
|u|2

1 + |u|2
u

with two non-linearities, first-order cubic non-linearity and zero-order saturation15

type non-linearity, both of which have applications in physics. Here we choose the16

scatterers17

q0(x) =
i

2
χ[0, 1

2
](x), q1(x) =


x+ 5

2
, when − 5

2
< x < −2,

−x− 3
2
, when − 2 ≤ x < −3

2
,

0, otherwise

and note that q1 ∈ W 1
1 (R), q0 ∈ L1(R), where q0 is pure imaginary when it is18

non-zero.19

With these potentials we are able to calculate the required Hilbert transform in
closed form, thus we expect to recover the (discontinuous and singular) combination

Re(h)(x) +
1

π

∫ ∞
−∞

Im(h)(y)

x− y
dy

= −1

2

(
χ[− 5

2
,−2[(x)− χ[−2,− 3

2
[(x)
)

+
1

4π
log

(
|x|
|x− 1

2
|

)
. (15)

The numerical computation is done by following [10]. Figure 1 presents the un-20

known coefficients with the red line indicating the real coefficient q1 and the black21

dashed line indicating the imaginary part q0. Figure 2 depicts the numerically22

reconstructed combination of the coefficients in the red line compared with the23

19



actual unknown value (15) plotted in the black dashed line. This example shows1

that numerically we are able to recover the jumps and singularities in non-linear2

complex coefficients quite accurately.3

Conclusion4

The direct and inverse scattering problems for the first-order quasi-linear pertur-5

bation of the one-dimensional biharmonic operator in the frequency domain with6

singular coefficients (in the space coordinate) were considered. It is assumed that7

the non-linearities depend on the modulus of the wave and that they are complex-8

valued. The linear case and many well-known (in physics) types of non-linearities9

are included in the considerations. Under some additional regularity conditions10

(Lipschitz with certain Taylor-type expansions) for the non-linearities the classical11

inverse scattering Born approximation is justified for this non-linear operator of12

order 4.13

Note that in principle one could consider many types of data, namely (at least)14

the transmission, reflection and connection coefficients in both directions ±∞ on15

the line. For our purposes only part of this data alone is sufficient for recovering es-16

sential information about the unknown coefficients of our operator. More precisely,17

the Born approximation only requires the reflection coefficient (which corresponds18

to the asymptotic of the reflected wave at −∞) to be known for arbitrarily high19

frequencies. Under this limited data we proved the recovery of the jump discon-20

tinuities and infinite singularities of the coefficients in the space coordinate when21

the non-linearity is at point 1. These results generalize the well-known results for22

the linear and non-linear Schrödinger operator on the line. The considered method23

(Born approximation) also has natural generalization for the multi-dimensional24

case.25
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Figure 1: Coefficients q1 and q0
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Figure 2: Numerical reconstruction (red) and the unknown combination (black)
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