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Abstract

Some scattering problems for the multidimensional biharmonic operator
are studied. The operator is perturbed by first and zero order perturbations,
which maybe complex-valued and singular. We show that the solutions to
direct scattering problem satisfy a Lippmann-Schwinger equation, and that
this integral equation has a unique solution in the weighted Sobolev space
H2
−δ. The main result of this paper is the proof of Saito’s formula, which can

be used to prove a uniqueness theorem for the inverse scattering problem.
The proof of Saito’s formula is based on norm estimates for the resolvent of
the direct operator in H1

−δ.

1 Introduction
We consider the following n-dimensional (n ≥ 2) biharmonic operator

H4u = ∆2u+ ~q · ∇u+ V u, (1)

where ∆ is the Laplacian and · denotes the dot-product x · y =
∑n

j=1 xjyj for
x, y ∈ Cn. The bi-Laplacian is perturbed by first and zero order perturbations,
vector-valued function ~q and a scalar function V , that may be complex-valued.

The motivation to study operators of order 4 appears for example in the study
of elasticity and the theory of vibrations of beams. As a concrete example, the
(linear) beam equation [9]

∂2
tU + ∆2U +mU = 0
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under time-harmonic assumption U(x, t) = u(x)e−iωt results in the equation

∆2u+mu = ω2u.

For scattering in the nonlinear case, see e.g. [20] and the references therein. Other
examples of biharmonic problems include hinged plate configurations, described by
equations of form {

∆2u = f in Ω

u = ∆u = 0 on ∂Ω,

where u satisfies Navier boundary conditions [9] and scattering by grating stacks,
described by the equation ∆2u− β4u = 0 [17].

In terms of inverse problems for bi- and poly-harmonic operators we mention
some solutions to inverse boundary value problems, see e.g., [14] and also [3, 4]. In
these papers the aim is to recover the coefficients ~q and V in operator ∆m+~q ·∇+V ,
m ≥ 2 in some bounded domain Ω ⊂ Rn, n ≥ 3. The main idea is to define the so-
called Dirichlet-to-Neumann map and then to recover the coefficients ~q and V from
it. In [22] it was proved that the Dirichlet-to-Neumann map uniquely corresponds
to ~q and V and also to a second order perturbation F . The motivation for the
approach in the above texts is based on the fundamental papers [24, 25].

The present work is concerned with the following scattering problem for H4

given by{
H4u = k4u, k > 0, u = u0 + usc, u0(x, k, θ) = eik(x,θ),
∂
∂n
f − ikf = o

(
|x|−n−1

2

)
, |x| → ∞, for both f = usc and f = ∆usc,

(2)

where the scattered wave usc should be from some suitable function space. Here
θ ∈ Sn−1 is the angle of incident wave and (·, ·) denotes the usual real inner product.
The second line in (2) is interpreted as an analogue of Sommerfeld’s radiation
condition at infinity for this biharmonic operator. To the best of our knowledge
this radiation condition has not appeared in the literature before. We use it to
reduce (2) to a related integral equation.

The authors were originally motivated to start studying scattering for fourth
order operators by the article of Aktosun and Papanicolaou [2], where the time-
evolution of several scattering coefficients for the 1D biharmonic operator was stud-
ied. In terms of inverse scattering problems for fourth order operator we mention K.
Iwasaki’s results [12, 13]. Iwasaki studied the scattering problem in one-dimension
and considered the inverse problem as a Riemann-Hilbert boundary value problem
with respect to the wavenumber k in the complex cone arg([0, π/4]) \ {0}. Given
certain reflection and connection coefficients he then showed that it is possible to
uniquely recover the potentials ~q and V of the scattering operator. In abstract set-
ting, Kuroda [15] has studied scattering for zero-order perturbations for self-adjoint
operators.
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Let us now turn to (2) and define H0 := ∆2 − k4. Due to the equality H0 =
(−∆ − k2)(−∆ + k2) the operator H4 inherits some Schrödinger-like properties
which allows us to conclude that a fundamental solution to H0 is given by

G+
k (|x|) =

i

8k2

(
|k|

2π|x|

)n−2
2
(
H

(1)
n−2
2

(|k||x|) +
2i

π
Kn−2

2
(|k||x|)

)
.

Here H(1)
n−2
2

and Kn−2
2

are the Hankel function of the first kind and Macdonald’s

function of orders n−2
2
. The function G+

k is also the kernel of the integral oper-
ator (∆2 − k4 − i0)−1. By applying the fundamental solution to (1) we obtain a
Lippmann–Schwinger integral equation

u(x, k, θ) = eik(x,θ) −
∫
Rn
G+
k (|x− y|) [~q(y) · ∇u(y, k, θ) + V (y)u(y, k, θ)] dy. (3)

Since u0 = eik(θ,x) is just a bounded function it is more convenient to study the
equivalent integral equation for the scattered wave, namely

usc = −
∫
Rn
G+
k (|x− y|) [~q(y) · ∇(u0 + usc) + V (y)(u0 + usc)] dy

= ũ0 −
∫
Rn
G+
k (|x− y|) [~q(y) · ∇usc + V (y)usc] dy =: ũ0 + Lk(usc), (4)

where ũ0 = Lku0.
The aim of the present text is to study the classical scattering theory for (1)

and in particular to prove an analogue of so-called Saito’s formula. The approach
is similar to scattering theory of Schrödinger operators see e.g., books by Cakoni
and Colton [6] and Eskin [7] and to scattering theory of operators with constant
coefficients, see the classic book of Hörmander [11]. We start by showing that
a solution to the scattering problem (2) indeed also satisfies equation (3). This
translates the study of the scattering problem to the somewhat simpler study of an
integral equation for which we can then show the unique solvability by extending
some well-known estimates for the Schrödinger operator to biharmonic case. This
solution admits the asymptotic representation

u(x, k, θ) = eik(x,θ) − Cn
k
n−7
2 eik|x|

|x|n−1
2

A(k, θ, θ′) + o

(
1

|x|n−1
2

)
, |x| → ∞,

where θ′ ∈ Sn−1 is the angle of measurement and the function

A(k, θ, θ′) =

∫
Rn

e−ik(θ′,y) [~q · ∇u+ V u] dy,
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is called the scattering amplitude. From the point of view of inverse problems we
regard this scattering amplitude as the relevant scattering data. For our purposes
we require the scattering amplitude to be known for all possible incident and mea-
surement angles and all arbitrarily high frequencies (k > 0 large). Then Saito’s
formula is given by the following

Theorem 1.1 (Saito’s formula). Assume that ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn),

where 2δ > n− n
p
and n < p ≤ ∞. Then the limit

lim
k→∞

kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)A(k, θ, θ′)dθdθ′ = 2nπn−1

∫
Rn

β(y)

|x− y|n−1
dy

holds uniformly in x. Here β := −1
2
∇ · ~q + V .

To the best of our knowledge a formula of this type first appeared in [21] for the
Schrödinger operator with real short-range potential |V (x)| ≤ C(1 + |x|)−µ, µ > 1
in R3. This formula has since then been generalized to Schrödinger operators in any
dimensions with more general singular potentials and in some cases to nonlinear
coefficients, see e.g., [18, 10, 23]. The significance of Saito’s formula for inverse
problems is apparent from its corollaries.

Corollary 1.2 (Uniqueness). Let ~q1, V1 and ~q2, V2 be as in Theorem 1.1. If the cor-
responding scattering amplitudes for these coefficients coincide for some sequence
kj → ∞ then the corresponding coefficients β1 and β2 are equal in the sense of
distributions.

Corollary 1.3 (Representation formula). Under the same assumptions as in The-
orem 1.1 we have

β(x) =
Γ
(
n−1

2

)
2n+1π

3n−1
2

lim
k→∞

kn−1

∫
Sn−1×Sn−1

A(k, θ, θ′)|θ − θ′|e−ik(θ−θ′,x)dθdθ′

in the sense of tempered distributions.

This paper is organized as follows. In Section 2 we fix some notations and recall
asymptotic formulas for Hankel and Macdonald functions. Then in Section 3 we
show that a solution to (2) satisfies (3). In Section 4 we prove the existence and
the uniqueness of the solution to (3). Several estimates for the solution and its
related operators are given. Section 5 concerns the asymptotic behaviour of the
solution u. In particular, we define the scattering amplitude which is regarded as
the scattering data for the inverse problem. Finally, in Section 6 we give a proof
for Saito’s formula.
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2 Preliminaries
We use the following notations throughout the text. The letter C will be used to
denote a generic constant C > 0 which may have different values from step to step.
The symbol p′ denotes the Hölder conjugate of p, i.e. 1/p′+1/p = 1. The weighted
Lebesgue spaces Lpδ are defined by the norm

‖f‖Lpδ(Rn) :=

(∫
Rn

(1 + |x|)δp|f(x)|pdx
) 1

p

.

The Sobolev spaces are defined by W 1
p,δ(Rn) := {f ∈ Lpδ(Rn) | ∇f ∈ Lpδ(Rn)}. We

say that ~q ∈ W 1
p,δ(Rn), if each scalar-valued component of ~q belongs to W 1

p,δ(Rn)
in the above sense. As usual, in the case of L2

δ-based Sobolev space, we write
W s

2,δ(Rn) =: Hs
δ (Rn).

Later we will need some knowledge about the behaviour of the function G+
k .

We start by recalling that the asymptotic behaviour of Hankel functions is

H(1)
ν (x) =

{
O(|x|−ν), ν > 0,

O(log (2x)), ν = 0

as x→ 0+ (see e.g., [26, 16]). The Macdonald function Kν has the same behaviour
at x→ 0+. Moreover, for all ν ≥ 0

H(1)
ν (x) =

√
2

πx
ei(x− 1

2
νπ− 1

4
π) +O(x−

3
2 ), x→ +∞.

Correspondingly, Macdonald’s function has the asymptotic representation

Kν(x) =

√
π

2x
e−x +O

(
e−x

x
3
2

)
, x→ +∞. (5)

The explicit form of the fundamental solution G+
k allows us to conclude that for

k > 0 the function G+
k behaves like

G+
k (|x|) =

{
O
(

1
k2

(1 + | log (k|x|) |)
)
, n = 2,

O
(

1
k2|x|n−2

)
, n ≥ 3

as k|x| → 0 and

G+
k (|x|) = O

(
k
n−7
2

|x|n−1
2

)
, k|x| → +∞.
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On the other hand, the relations

d

dz
z−νH(1)

ν (z) = −z−νH(1)
ν+1(z),

d

dz
z−νKν(z) = −z−νKν+1(z)

and chain rule imply that

∇G+
k (|x|) = − ix

8k2(2π)
n−2
2

(
k

|x|

)n
2
(
H

(1)
n
2

(k|x|) +
2i

π
Kn

2
(k|x|)

)
for all n ≥ 2. This leads to the asymptotic behaviour

∇G+
k (|x|) =


O
(

1
k2|x|n−1

)
, k|x| → +0,

O

(
k
n−5
2

|x|
n−1
2

)
, k|x| → +∞.

Remark 2.1. In the three dimensional case the fundamental solution G+
k (k > 0)

has a compact explicit representation

G+
k (|x|) =

eik|x| − e−k|x|

8πk2|x|
,

see e.g., [16].

3 From scattering problem to Lippmann-Schwinger
equation

This section is devoted to showing that a solution to the scattering problem (2)
must satisfy the Lippmann-Schwinger equation. The proof is classical and uses
similar techniques as Cakoni and Colton [6] and Eskin [7].

Lemma 3.1. Let ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn), where 2δ > n− n

p
and n < p ≤

∞. If f ∈ H1
−δ(Rn) then ~q · ∇f + V f ∈ L2

δ(Rn).

Proof. By Hölder’s inequality we obtain

‖V f‖2
L2
δ(Rn) =

∫
Rn

(1 + |x|)2δ|V (x)|2|f(x)|2dx

≤
(∫

Rn
(1 + |x|)4δr|V (x)|2rdx

) 1
r
(∫

Rn
(1 + |x|)−2δr′|f(x)|2r′dx

) 1
r′

.
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We choose 2r = p which implies 2r′ = 2p
p−2

. By the Sobolev embedding theorem we
have the continuous embedding

f ∈ H1
−δ(Rn) ⊂ L

2p
p−2

−δ (Rn),

when p > n, with the norm estimate

‖f‖
L

2p
p−2
−δ (Rn)

≤ c0‖f‖H1
−δ(Rn)

for some constant c0 > 0 depending only on p and n. Since W 1
p,2δ(Rn) ⊂ L∞2δ(Rn)

we conclude that

‖~q · ∇f + V f‖L2
δ(Rn) ≤ ‖~q‖L∞2δ(Rn)‖∇f‖L2

−δ(Rn) + c0‖V ‖Lp2δ(Rn)‖f‖H1
−δ(Rn) <∞.

Lemma 3.2. Let ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn), where 2δ > n− n

p
and n < p ≤

∞. If u = u0 + usc, usc ∈ H4
loc(Rn) ∩H2

−δ(Rn), solves (2) then

lim
R→∞

∫
|y|=R

(|∆usc|2 + |usc|2)dσ(y) ≤ C

for some constant C > 0 and for fixed k > 0.

Proof. By using the radiation condition for usc and ∆usc and then applying Green’s
second identity we calculate (with slight abuse of o-notation)

2ik

∫
|y|=R

(|∆usc|2 + k4|usc|2)dσ(y)

=

∫
|y|=R

(∆usc(ik∆usc)−∆usc(ik∆usc) + k4usc(ikusc)− k4usc(ikusc))dσ(y)

=

∫
|y|=R

(
∆usc

∂

∂n
∆usc −∆usc

∂

∂n
∆usc + k4usc

∂

∂n
usc − k4usc

∂

∂n
usc

)
dσ(y)

+ o(R−
n−1
2 )

∫
|y|=R

(∆usc + ∆usc + k4usc + k4usc)dσ(y)

=

∫
|y|≤R

(∆usc∆
2usc −∆usc∆2usc + k4usc∆usc − k4usc∆usc)dy

+ o(R−
n−1
2 )

∫
|y|=R

(∆usc + ∆usc + k4usc + k4usc)dσ(y).
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Note that ∆2usc − k4usc = −~q · ∇u− V u. Therefore

2ik

∫
|y|=R

(|∆usc|2 + k4|usc|2)dσ(y)

=

∫
|y|≤R

(∆usc(−~q · ∇u− V u)−∆usc(−~q · ∇u− V u))dy

+ o(R−
n−1
2 )

∫
|y|=R

(∆usc + ∆usc + k4usc + k4usc)dσ(y).

Using the Cauchy-Schwartz inequality in both terms gives∫
|y|=R

(|∆usc|2 + |usc|2)dσ(y) ≤ C‖usc‖H2
−δ(Rn)‖~q · ∇u+ V u‖L2

δ(Rn)

+ o(1)

(∫
|y|=R

(|∆usc|2 + |usc|2)dσ(y)

) 1
2

,

where the first term on the right-hand side is finite according to Lemma 3.1. This
inequality then implies the claim.

Theorem 3.3. Let ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn) where 2δ > n− n

p
and n < p ≤

∞. If u = u0 + usc, usc ∈ H4
loc(Rn) ∩H2

−δ(Rn), solves (2) then it also solves (3).

Proof. Fix a point x ∈ Rn and choose R > 0 so that x ∈ BR(0), where BR(0)
denotes the open ball of radius R centered at origin. Let ε > 0 be such that
Bε(x) ⊂ BR(0) and denote ΩR,ε := BR(0)\Bε(x). Then by Lemma A.1 we calculate∫

ΩR,ε

(usc(y)(∆2
y − k4)G+

k (|x− y|)−G+
k (|x− y|)(∆2 − k4)usc(y))dy

=

∫
ΩR,ε

(usc(y)∆2
yG

+
k (|x− y|)−G+

k (|x− y|)∆2usc(y))dy

=

∫
∂ΩR,ε

[
usc

∂

∂n
∆yG

+
k (|x− y|) + ∆usc

∂

∂n
G+
k (|x− y|)

−G+
k (|x− y| ∂

∂n
∆usc −∆G+

k (|x− y|) ∂
∂n
usc

]
dσ(y)

=

∫
∂ΩR,ε

[
usc

(
∂

∂n
− ik

)
∆yG

+
k (|x− y|) + ∆usc

(
∂

∂n
− ik

)
G+
k (|x− y|)

−G+
k (|x− y|)

(
∂

∂n
− ik

)
∆usc −∆G+

k (|x− y|)
(
∂

∂n
− ik

)
usc

]
dσ(y).
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Letting ε→ 0+ we obtain the equality

usc(x) = −
∫

ΩR

G+
k (|x− y|)(~q · ∇u+ V u)dy

+

∫
∂ΩR

[
usc

(
∂

∂n
− ik

)
∆yG

+
k (|x− y|) + ∆usc

(
∂

∂n
− ik

)
G+
k (|x− y|)

−G+
k (|x− y|)

(
∂

∂n
− ik

)
∆usc −∆G+

k (|x− y|)
(
∂

∂n
− ik

)
usc

]
dσ(y)

Note that for fixed x ∈ Rn and large R > 0 we have G+
k (|x − y|) = O

(
R−

n−1
2

)
(same for ∆G+

k ). Therefore, letting R→ +∞ we see that the latter integral tends
to zero. This follows from Lemma 3.2 and the fact that all usc,∆usc, G

+
k and ∆G+

k

satisfy the radiation condition.

Corollary 3.4. If v ∈ H4
loc(Rn) satisfies the radiation condition at infinity and

fulfils the homogeneous equation ∆2v − k4v = 0, then v = 0.

4 Solution to Lippmann-Schwinger equation
Next we show that when k > 0 the integral equation (4) can be solved by iterations
defined by u(j)

sc = Ljkũ0 for j = 0, 1, . . . We denote by Ĝ+
k the convolution operator

with kernel G+
k . Our first lemma gives the required mapping properties for this

integral operator. Similar estimates for Schrödinger operator are familiar in the
literature and can be met for example in [7] and [19]. The first lemma is analogous
to the limiting absorption principle.

Lemma 4.1. The operator Ĝ+
k maps from L2

δ(Rn) to H2
−δ(Rn) with the estimates

‖Ĝ+
k f‖Hj

−δ(Rn) ≤
C0

k3−j ‖f‖L2
δ(Rn), j = 0, 1, 2

when k > 1 and δ > 1
2
for n ≥ 2. Here the constant C0 only depends on n and δ.

Proof. The claim follows from Agmon’s estimate [1, Appendix A, Remark 2] for
p = 2, δ > 1

2
and k > 1 given by∑

|α|≤4

k3−|α|‖Dαf‖L2
−δ(Rn) ≤ C0‖(∆2 − k4)f‖L2

δ(Rn)

for any f ∈ H4(Rn), where the constant C0 > 0 only depends on n and δ. We use
this result to the opposite direction and take only the terms where |α| equals 0,1
or 2 to get the claim.
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We now proceed to prove norm estimates for the operator Lk.

Theorem 4.2. Let ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn) where 2δ > n − n

p
and n <

p ≤ ∞. Then the following properties are satisfied

1. The function ũ0 belongs to H2
−δ(Rn) with the estimates

‖ũ0‖Hj
−δ(Rn) ≤

C1

k2−j , j = 0, 1, 2

2. The operator Lk : H1
−δ(Rn) → H2

−δ(Rn) is bounded and satisfies the norm
estimates

‖Lkf‖Hj
−δ(Rn) ≤

C2

k3−j ‖f‖H1
−δ(Rn), j = 0, 1, 2

for k > 1 and for some C1, C2 > 0 independent of k.

Proof. In view of Lemma 4.1 we consider only the case j = 0 and the estimates for
derivatives follow. We apply Lemma 4.1 to estimate

‖ũ0‖L2
−δ(Rn) = ‖Ĝ+

k (~q · ∇u0 + V u0)‖L2
−δ(Rn) ≤

C0

k3
‖~q · ∇u0 + V u0‖L2

δ(Rn)

≤ C0

k3

(
k‖~q‖L2

δ(Rn) + ‖V ‖L2
δ(Rn)

)
≤ C1

k2
,

where the constant C0 > 0 comes from Lemma 4.1 and C1 := C0(‖~q‖L2
δ(Rn) +

‖V ‖L2
δ(Rn)). Next, suppose that f ∈ H1

−δ(Rn). By Lemmata 3.1 and 4.1 we see
that

‖Lkf‖L2
−δ(Rn) ≤

C0

k3

(
‖~q‖L∞2δ(Rn)‖∇f‖L2

−δ(Rn) + c0‖V ‖Lp2δ(Rn)‖f‖H1
−δ(Rn)

)
≤ C2

k3
‖f‖H1

−δ(Rn),

where C2 := C0(‖~q‖L∞2δ(Rn) + c0‖V ‖Lp2δ(Rn)). The proof is then finished.

Corollary 4.3. Let ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn) where n < p ≤ ∞ and

2δ > n− n
p
. Then there exists a constant k0 > 1 such that the function usc(x, k, θ)

defined by the series

usc(x, k, θ) =
∞∑
j=0

Ljkũ0(x, k, θ) (6)

solves integral equation (4) uniquely in H2
−δ(Rn), when k ≥ k0. Moreover,

‖usc‖H1
−δ(Rn) ≤

C

k
,

when k ≥ k0 is large enough.
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Proof. We show that

‖Ljkũ0‖H1
−δ(Rn) ≤

C1(C2)j

k2j+1
, j = 0, 1, . . .

By Theorem 4.2 the claim holds for j = 0. Suppose then that the claim is proved
for some j > 0. By induction hypothesis

‖Lj+1
k ũ0‖H1

−δ(Rn) ≤
C2

k2
‖Ljkũ0‖H1

−δ(Rn) ≤
C2

k2
· C1(C2)j

k2j+1
=
C1(C2)j+1

k2(j+1)+1
,

so the claim holds for all j = 0, 1, . . . We may now choose any k0 > max{1,
√
C2}

to conclude that the series (6) converges in H1
−δ(Rn). Because the operator Lk is

linear and maps continuously in H1
−δ(Rn) the series solves (4). Similar calculation

shows that usc ∈ H2
−δ(Rn).

To verify the uniqueness of the solution, suppose that ũ and ṽ are solutions to
(4). Then by Theorem 4.2 we have

‖ũ− ṽ‖H1
−δ(Rn) ≤

C2

k2
‖ũ− ṽ‖H1

−δ(Rn).

Our assumption k ≥ k0 >
√
C2 means that C2

k2
≤ C2

k20
< 1 and therefore ũ = ṽ in

H2
−δ(Rn) ⊂ H1

−δ(Rn).

With these results the limiting absorption principle can be extented for the full
operator H4.

Corollary 4.4. Let ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn) with n < p ≤ ∞ and 2δ >

n− n
p
. Then the operator

Ĝp := lim
ε→0+

(H4 − k4 − iε)−1

exists in the uniform operator topology from L2
δ(Rn) to H1

−δ(Rn) with the norm
estimates

‖Ĝpf‖Hj
−δ(Rn) ≤

C

k3−j ‖f‖L2
δ(Rn), j = 0, 1,

for k > 0 large enough.

Proof. Consider the equation Ĝpf = Ĝ+
k f − Ĝ

+
k (~q · ∇ + V )Ĝpf in H1

−δ(Rn). By
(formally) applying this equation repeatedly we obtain

Ĝpf = Ĝ+
k f +

∞∑
j=1

(
−Ĝ+

k (~q · ∇+ V )
)j
Ĝ+
k f = Ĝ+

k f +
∞∑
j=1

LjkĜ
+
k f.
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The convergence of this series in H1
−δ follows from the estimates of Theorem 4.2

and the norm estimates follow from those of Ĝ+
k , so there exists a unique solution.

Then it is straight-forward to confirm that Ĝp satisfies (H4 − k4)Ĝp = I.

Remark 4.5. The previous proof yields a useful identity

usc = −Ĝ+
k (~q · ∇u+ V u) = −Ĝp(~q · ∇u0 + V u0).

Proposition 4.6. Suppose n = 2 or 3 and let ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn),

with 2δ > n− n
p
and n < p ≤ ∞. Then the operator Lk maps W 1

∞(Rn) to W 1
∞(Rn)

with the estimates

‖Lkf‖L∞(Rn) ≤
C

k2
‖f‖W 1

∞(R3) and ‖∇Lkf‖L∞(R3) ≤
C

k
‖f‖W 1

∞(Rn)

for k ≥ 1.

Proof. We start from the case n = 3 and choose some f ∈ W 1
∞(R3). Then a direct

estimation by using Remark 2.1 yields

|Lkf(x)| ≤ 1

4πk2

∫
R3

|~q(y)|
|x− y|

dy‖∇f‖L∞(R3)

+
1

4πk2

∫
R3

|V (y)|
|x− y|

dy‖f‖L∞(R3).

For the gradient of Lkf we have

∂

∂xi
Lkf(x) = −

∫
R3

xi − yi
8πk2|x− y|3

(
(ik|x− y| − 1)ei|k||x−y|+

+(k|x− y|+ 1)e−|k||x−y|
)

[~q(y) · ∇f(y) + V (y)f(y)] dy,

so that

|∇Lkf(x)| ≤
√

3

4πk

∫
R3

|~q(y)|
|x− y|

dy‖∇f‖L∞(R3) +

√
3

4πk

∫
R3

|V (y)|
|x− y|

dy‖f‖L∞(R3)

+

√
3

4πk2

∫
R3

|~q(y)|
|x− y|2

dy‖∇f‖L∞(R3) +

√
3

4πk2

∫
R3

|V (y)|
|x− y|2

dy‖f‖L∞(R3).

These integrals converge uniformly in x when n < p ≤ ∞, which yields the claim
in R3.

Consider next the case n = 2. Suppose that f ∈ W 1
∞(R2). Then by using the

asymptotic representation obtained in Section 2 we get

|Lkf(x)| ≤ C

k2

∫
k|x−y|<1

(1 + | log(k|x− y|)|)|~q · ∇f + V f |dy

+
C

k2

∫
k|x−y|>1

|~q · ∇f + V f |√
k|x− y|

dy =: I1 + I2.

12



Since ~q, V ∈ L1(R2) then I2 satisfies the claim. In the first integral we may use
Hölder’s inequality to get

I1 ≤
C

k2

(
‖~q‖Lp(R2)‖∇f‖L∞(R2) + ‖V ‖Lp(R2)‖f‖L∞(R2)

)
×
(∫

k|x−y|<1

(1 + | log(k|x− y|)|)p′dy
) 1

p′

=
C

k
2+ 2

p′
‖f‖W 1

∞(R2)

(∫
|z|<1

(1 + | log(|z|)|)p′dy
) 1

p′

.

The above integral converges when 1 ≤ p′ <∞, that is, 1 < p ≤ ∞, and therefore
the claim holds also for I1. The gradient of Lkf can be estimated straight-forwardly
as

|∇Lkf(x)| ≤ C

k2

∫
k|x−y|<1

|~q · ∇f + V f |
|x− y|

dy

+
C

k

∫
k|x−y|>1

|~q · ∇f + V f |√
k|x− y|

dy =: J1 + J2.

Again, J2 clearly satisfies the claimed estimate. In the term J1 Hölder’s inequality
yields

J1 ≤
C

k2
‖f‖W 1

∞(R2)

(∫
k|x−y|<1

1

|x− y|p′
dy

) 1
p′

=
C

k
1+ 2

p′
‖f‖W 1

∞(R2)

(∫
|z|<1

1

|z|p′
dz

) 1
p′

.

This integral converges when 1 ≤ p′ < 2, or 2 < p ≤ ∞, concluding the proof.

Corollary 4.7. Let n = 2 or 3 and ~q ∈ W 1
p,2δ(Rn), V ∈ Lp2δ(Rn) with 2δ > n + n

p

and n < p ≤ ∞. Then there exists k′0 > 0 such that the unique solution u to (3) is
bounded uniformly in k ≥ k′0.

Proof. The proof is essentially the same as the proof of Corollary 4.3, but uses the
estimates of Proposition 4.6.

5 Asymptotics for Lippmann-Schwinger equation
Let us first prove an elementary fact about an integral that appears in the sequel.
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Lemma 5.1. Let ψ ∈ L1(Rn) and 0 < a < 1. Then

e−k|x|
∫
|y|≤|x|a

ek(θ′,y)ψ(y)dy = o(1), |x| → +∞

for all θ′ ∈ Sn−1 and fixed k > 0.

Proof. For all θ′ ∈ Sn−1 and y ∈ Rn it holds that (θ′, y) ≤ |(θ′, y)| ≤ |y|. Therefore
ek(θ′,y) ≤ ek|y|. Then we estimate the integral∣∣∣∣e−k|x| ∫

|y|≤|x|a
ek(θ′,y)ψ(y)dy

∣∣∣∣ ≤ e−k|x|
∫
|y|≤|x|a

ek|y||ψ(y)|dy

≤ e−k|x|ek|x|
a

∫
|y|≤|x|a

|ψ(y)|dy ≤ e−k|x|ek|x|
a‖ψ‖L1(Rn).

Since 0 < a < 1 then

e−k|x|ek|x|
a

= e−k(|x|−|x|a) = o(1), |x| → +∞.

This concludes the proof.

Next we study the asymptotic behaviour of the solution u obtained in the
previous section.

Theorem 5.2. Let ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn) with 2δ > n− n

p
and n < p ≤

∞. Then for fixed k > 0 the solution u(x, k, θ) to (3) admits the representation

u(x, k, θ) = eik(x,θ) − Cn
k
n−7
2 eik|x|

|x|n−1
2

A(k, θ, θ′) + o

(
1

|x|n−1
2

)
, |x| → ∞,

if n = 2 or 3. The same representation holds for any n ≥ 4 if we assume in
addition that ~q and V are compactly supported. The constant Cn is given by

Cn :=
ie−in−1

4
π

4(2π)
n−1
2

.

The function A(k, θ′, θ) is called the scattering amplitude and is defined by

A(k, θ, θ′) =

∫
Rn

e−ik(θ′,y) [~q · ∇u+ V u] dy,

where θ′ = x
|x| is the direction of observation.
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Proof. We begin the proof along the lines of [10, Lemma 3.1]. Let 0 < a < 1 be a
parameter, so that we can decide its value to suit our interests later. Since

usc(x, k, θ) = −
∫
Rn
G+
k (|x− y|) [~q · ∇u+ V u] dy

we can divide the region of integration in two parts as |y| ≤ |x|a and |y| > |x|a. In
the former case we apply the Maclaurin series (1 + ω)s = 1 + sω + O(ω2) to see
that

|x− y| =
[
|x|2 − 2(x, y) + |y|2

]1/2
= |x|

[
1− (x, y)

|x|2
+
|y|2

2|x|2
+O

({
−2(x, y)

|x|2
+
|y|2

|x|2

}2
)]

= |x| − (θ′, y) +
|y|2

2|x|
+O

(
|x|2a−1

)
= |x| − (θ′, y) +O

(
|x|2a−1

)
.

Similarly

|x− y|−
n−1
2 =

[
|x|2 − 2(x, y) + |y|2

]−n−1
4

= |x|−
n−1
2

[
1 +

n− 1

2

(x, y)

|x|2
− n− 1

4

|y|2

|x|2
+O

({
−2(x, y)

|x|2
+
|y|2

|x|2

}2
)]

= |x|−
n−1
2

[
1 +O

(
|x|a−1

)
+O

(
|x|2a−2

)]
= |x|−

n−1
2

[
1 +O

(
|x|a−1

)]
and |x− y|−1 = |x|−1[1 + O(|x|a−1)]. Then, for fixed k > 0 and |y| ≤ |x|a we take
a < 1

2
. Because |y| ≤ |x|a ≤ |x| → +∞ then we may assume that k|x−y| > 1. This

allows us to use the large argument asymptotic behaviour of Hankel and Macdonald
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functions and the Maclaurin expansion eω = 1 +O(ω) to compute

G+
k (|x− y|) =

i

8k2

(
k

2π|x− y|

)n−2
2
(
Hn−2

2
(k|x− y|) +

2i

π
Kn−2

2
(k|x− y|)

)
=

i

8k2

(
k

2π|x− y|

)n−2
2

(√
2

πk|x− y|
ei(k|x−y|−n−1

4
π)

+ C

√
π

2k|x− y|
e−k|x−y| +O

(
|x− y|−

3
2

))

= Cnk
n−7
2 |x|−

n−1
2

[
1 +O(|x|a−1)

](
eik|x|e−ik(θ′,y)e−ikO(|x|2a−1)

+ Ce−k|x|ek(θ′,y)ekO(|x|2a−1) +O(|x− y|−1)

)
= Cn

k
n−7
2

|x|n−1
2

(
eik|x|e−ik(θ′,y) + Ce−k|x|ek(θ′,y)

)
+O(|x|2a−1−n−1

2 ).

Let us apply these estimates to usc. We have

usc(x, k, θ) = −
∫
|y|≤|x|a

G+
k (|x− y|) [~q · ∇u+ V u] dy

−
∫
|y|>|x|a

G+
k (|x− y|) [~q · ∇u+ V u] dy =: I1 + I2.

Now integral I1 equals

I1 = −Cn
k
n−7
2 eik|x|

|x|n−1
2

∫
Rn

e−ik(θ′,y) [~q · ∇u+ V u] dy

+ Cn
k
n−7
2 eik|x|

|x|n−1
2

∫
|y|>|x|a

e−ik(θ′,y) [~q · ∇u+ V u] dy

+ C
k
n−7
2 e−k|x|

|x|n−1
2

∫
|y|≤|x|a

ek(θ′,y) [~q · ∇u+ V u] dy +O
(
|x|2a−1−n−1

2

)
.

As |x| → ∞ the second integral above is o
(
|x|−n−1

2

)
, since ~q · ∇u and V u are

integrable. On the other hand, by Lemma 5.1 the third term in this expression is
also o

(
|x|−n−1

2

)
.
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Next we consider I2. We first split the region of integration as

|I2| ≤
∫
|y|>|x|a

∣∣G+
k (|x− y|) [~q · ∇u+ V u]

∣∣ dy
=

∫
|x|a<|y|< |x|

2

|G+
k (|x− y|)||~q · ∇u+ V u|dy

+

∫
|y|≥ |x|

2

|G+
k (|x− y|)||~q · ∇u+ V u|dy =: J1 + J2.

In the case J1 we have |x−y| ≥ |x|−|y| > |x|
2
. Thus as |x| → +∞ by the asymptotic

of G+
k we have

J1 ≤
C

|x|n−1
2

∫
|x|a<|y|< |x|

2

|~q · ∇u+ V u|dy = o
(
|x|−

n−1
2

)
.

Note that so far we have only used the fact that ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn),

n ≥ 2. If these coefficients are compactly supported, then choosing large enough
|x| immediately yields J2 = 0, giving the claimed asymptotic representation. On
the other hand, even if the coefficients are not compactly supported, in dimensions
n = 2, 3 we know that the solution u to (3) is in W 1

∞(Rn).
We study first the case n = 3. By Remark 2.1 we have for a fixed k > 0 that

J2 ≤ C

∫
|y|≥ |x|

2

|~q|+ |V |
|x− y|

dy

≤ C

(∫
|y|≥ |x|

2

(1 + |y|−2δp′)

|x− y|p′
dy

)1/p′ (
‖~q‖Lp2δ(R3) + ‖V ‖Lp2δ(R3)

)

≤ C

(∫
|z|≥ 1

2

(1 + |x||z|)−2δp′

|x|p′|(x/|x|)− z|p′
|x|3dz

)1/p′

≤ C|x|
3
p′−2δ−1

(∫
|z|≥ 1

2

|z|−2δp′

|(x/|x|)− z|p′
dy

)1/p′

,

where we did the change of variables y = z|x|. Dividing the region of integration
to 2 > |z| > 1

2
and |z| > 2 we get∫

2>|z|> 1
2

|z|−2δp′

|(x/|x|)− z|p′
dz ≤ C

∫
2>|z|> 1

2

1

|(x/|x|)− z|p′
dz <∞,

because p′ < n/2. In the region |z| > 2 we have |(x/|x|)− z| ≥ |z| − 1 > |z|/2 and
therefore ∫

|z|>2

|z|−2δp′

|(x/|x|)− z|p′
dz ≤ C

∫
|z|>2

1

|z|2δp′+p′
dz <∞.
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Recalling that 3
p′
− 2δ < 0 we conclude that J ′2 is o

(
1
|x|

)
.

In the case n = 2 we use the asymptotic behaviour of G+
k . We consider the

regions k|x − y| < 1 and k|x − y| > 1 separately, with the respective integrals
denoted by J ′2 and J ′′2 . In the first case

J ′2 ≤ C

∫
|y|≥ |x|

2
k|x−y|<1

(1 + | log(k|x− y|)|) (|~q|+ |V |)dy

≤ C

∫
|y|≥ |x|

2
k|x−y|<1

(1 + | log(k|x− y|)|)p′(1 + |y|)−2δp′dy

 1
p′

≤ C|x|−2δ

(∫
|z|<1

(1 + | log(|z|)|)p′dz
) 1

p′

= o(|x|−1).

In the second case J ′′2 we pick some σ > 0 such that 0 < 2δp′−2 < σ < p′

2
+2δp′−2.

Then

J ′′2 ≤ C

∫
|y|≥ |x|

2
k|x−y|>1

|~q|+ |V |
|x− y| 12

dy

≤ C

∫
|y|≥ |x|

2
k|x−y|>1

(1 + |y|)−2δp′

|x− y| p
′
2

dy

 1
p′

≤ C|x|−
σ
p′

∫
|y|≥ |x|

2
k|x−y|>1

|y|−2δp′+σ

|x− y| p
′
2

dy

 1
p′

.

By changing the variables y/|x| = z in the above integral we get∫
|y|≥ |x|

2
k|x−y|>1

|y|−2δp′+σ

|x− y| p
′
2

dy

 1
p′

= |x|−
1
2
−2δ+ σ

p′+
2
p′

∫
|z|≥ 1

2
k|x−|x|z|>1

|z|−2δp′+σ

|(x/|x|)− z| p
′
2

dz

 1
p′

.

If the above integral converges, we have that J ′′2 = o
(
|x|− 1

2

)
, since −2δ + 2

p′
< 0.

And indeed, the integral converges because∫
1
2
≤|z|

k|x−|x|z|>1

|z|−2δp′+σ

|(x/|x|)− z| p
′
2

dz ≤
∫

1
2
≤|z|

|(x/|x|)−z|>|z|

1

|z|2δp′−σ+ p′
2

dz

+

∫
1
2
≤|z|

|(x/|x|)−z|<|z|

|z|−2δp′+σ

|(x/|x|)− z| p
′
2

dz,
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where the first integral is finite due to the choice of σ. The second integral also
converges, as can be seen by splitting∫

1
2
≤|z|

|(x/|x|)−z|<|z|

|z|−2δp′+σ

|(x/|x|)− z| p
′
2

dz ≤
∫

1
2
≤|z|<2

C

|(x/|x|)− z| p
′
2

dz

+

∫
2≤|z|

C

|(x/|x|)− z| p
′
2

+2δp′−σ
dz <∞.

This concludes the proof.

Remark 5.3. In similar spirit as in the proof of Theorem 5.2 one can confirm that
usc and ∆usc satisfy the radiation condition at infinity at least if ~q and V are smooth
and compactly supported. For such coefficients, in light of Section 3 we can then
conclude that the scattering problem (2) and Lippmann-Schwinger equation (3)
are equivalent.

6 Proof of Theorem 1.1
Note that (unlike the proof for the asymptotic formula of u) this theorem does not
require us to assume that ~q and V have compact supports.

Proof. Let us denote

I := kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)A(k, θ, θ′)dθdθ′.

Then, because u = u0 + usc, we can write

I = kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′−θ,y) [ikθ · ~q + V ] dydθdθ′

+ kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′,y) [~q · ∇usc + V usc] dydθdθ′

=: I1 + I2.

Consider I1 first. We can further split I1 in two terms as

I1 = kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′−θ,y)ikθ · ~q(y)dydθdθ′

+ kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′−θ,y)V (y)dydθdθ′ =: I
(1)
1 + I

(2)
1 .
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In I(1)
1 we can first split the integral into two parts and then integrate the first one

by parts and do a change of variables θ = −γ′ and θ′ = −γ in the second term as
follows

I
(1)
1 = kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′−θ,y)ik(θ − θ′) · ~q(y)dydθdθ′

+ kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′−θ,y)ikθ′ · ~q(y)dydθdθ′

= −kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′−θ,y)∇ · ~q(y)dydθdθ′

− kn−1

∫
Sn−1×Sn−1

e−ik(−γ′+γ,x)

∫
Rn

e−ik(−γ+γ′,y)ikγ · ~q(y)dydγ′dγ.

Here ∇ · ~q denotes the divergence of ~q. The integration by parts is valid, since
~q ∈ W 1

p,2δ(Rn) ⊂ L1(Rn) ∩W 1
p (Rn) ⊂ Ċ(Rn) when n < p ≤ ∞ (see Theorem A.2).

But now the last integral is equal to −I(1)
1 , so that

I
(1)
1 = −kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′−θ,y) 1

2
∇ · ~q(y)dydθdθ′

and

I1 = kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′−θ,y)

(
−1

2
∇ · ~q(y) + V (y)

)
dydθdθ′.

An integral of this form was studied in [10] and we carry out the analogous analysis
here. It is known that∫

Sn−1

eik(θ,x−y)dθ = (2π)
n
2

Jn−2
2

(k|x− y|)

(k|x− y|)n−2
2

,

and one proof for this fact can be found for example from [10, Lemma 3.6]. Here
Jν(x) is the Bessel function of first kind and of order ν. From [16] we find that

Jν(x) =

{
O(xν), x→ 0,√

2
πx

cos(x− 1
2
νπ − 1

4
π) +O(x−

3
2 ), x→∞.

We split the region of integration as

I1 = (2π)nkn−1

∫
k|x−y|<1

J2
n−2
2

(k|x− y|)

(k|x− y|)n−2
β(y)dy

+ (2π)nkn−1

∫
k|x−y|>1

J2
n−2
2

(k|x− y|)

(k|x− y|)n−2
β(y)dy =: I ′1 + I ′′1 .
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The term I ′1 → 0 as k → +∞. Indeed,

|I ′1| ≤ Ckn−1

∫
k|x−y|<1

(k|x− y|)n−2

(k|x− y|)n−2
|β(y)|dy

≤ k
n−1− n

p′ ‖β‖Lp(Rn)

(∫
|z|<1

dy

) 1
p′

,

where n−1− n
p′

= n
p
−1 < 0 when p > n. The term I ′′1 converges to the claimed limit

of this theorem as k → +∞. To see this we utilize the large argument behaviour
of Bessel function to get

I ′′1 = (2π)nk

∫
k|x−y|>1

β(y)

|x− y|n−2

(√
2

πk|x− y|
cos

(
k|x− y| − n− 1

4
π

)

+O

(
1

(k|x− y|) 3
2

))2

dy

= 2nπn−1

∫
k|x−y|>1

β(y)

|x− y|n−2
2 cos2

(
k|x− y| − n− 1

4
π

)
dy

+
1

k

∫
k|x−y|>1

β(y)

|x− y|n
O(1)dy

= 2nπn−1

∫
k|x−y|>1

β(y)

|x− y|n−1
dy

+ C

∫
k|x−y|>1

β(y)

|x− y|n−1
cos

(
2k|x− y| − n− 1

2
π

)
dy

+
1

k

∫
k|x−y|>1

β(y)

|x− y|n
O(1)dy.

Here the first integral gives the claimed limit as k → +∞, since∫
Rn

|β(y)|
|x− y|n−1

dy <∞

uniformly in x when p > n. The second integral above gives∫
k|x−y|>1

β(y)

|x− y|n−1
cos

(
2k|x− y| − n− 1

2
π

)
dy

=

∫
Rn

β(y)

|x− y|n−1
cos

(
2k|x− y| − n− 1

2
π

)
dy

−
∫
|x−y|< 1

k

β(y)

|x− y|n−1
cos

(
2k|x− y| − n− 1

2
π

)
dy =: I∗1 + I∗∗1 .
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The latter integral I∗∗1 → 0 as k → +∞, while the former integral requires little
more effort. We do the change of variables y = x − z and then swap to polar
coordinates to obtain

I∗1 =

∫ ∞
0

∫
Sn−1

β(x− rγ) cos(2kr − n− 1

2
π)dγdr.

Define

fx(r) :=

∫
Sn−1

β(x− rγ)dγ.

Now it suffices to conclude that fx ∈ L1(0,∞) uniformly in x and then apply the
Riemann-Lebesgue lemma to conclude that I∗1 → 0 as k → +∞. We calculate the
L1-norm of fx to see that∫ ∞

0

|fx(r)|dr =

∫ ∞
0

∫
Sn−1

|β(x− rγ)|dγdr

=

∫
Rn

|β(y)|
|x− y|n−1

dy <∞

uniformly in x. To finish the consideration of I ′′1 we only need to show that

1

k

∫
k|x−y|>1

β(y)

|x− y|n
dy → 0

as k → +∞. Let ε > 0 be a parameter whose value will be chosen later. Estimate

1

k

∫
k|x−y|>1

|β(y)|
|x− y|n

dy ≤ kε−1

∫
k|x−y|>1

|β(y)|
|x− y|n−ε

dy

≤ kε−1

(∫
|z|> 1

k

1

|z|(n−ε)p′
dz

) 1
p′

‖β‖Lp(Rn)

= Ckε−1

(∫ ∞
1
k

r−(n−ε)p′+n−1dr

) 1
p′

= Ckε−1

(
−r−(n−ε)p′+n

∣∣∣∞
r= 1

k

) 1
p′

= Ck
n
p
−1,

where we required ε < n
p
. This estimate shows that all of the terms of I ′′1 tend to

0 as k →∞.
Next we confirm that the term I2 → 0 as k →∞. To achieve this we calculate

the integrals with respect to θ and θ′ as in [18] and use the mapping properties of
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Ĝp. First we separate the integral into two parts with respect to ~q and V as

I2 = kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′,y)(~q·∇usc+V usc)dydθdθ′ =: I
(1)
2 +I

(2)
2 .

Recall from Remark 4.5 that usc = −Ĝp(~q · ∇u0 + V u0). This allows us to write

I
(2)
2 = −kn−1

∫
Sn−1×Sn−1

e−ik(θ−θ′,x)

∫
Rn

e−ik(θ′,y)V (y)

× Ĝp(ikθ · ~qeik(θ,·) + V eik(θ,·))(y)dydθdθ′

= −kn−1

∫
Rn

Jn−2
2

(k|x− y|)

(k|x− y|)n−2
2

V (y)Ĝp

(∫
Sn−1

ikθ · ~qe−ik(θ,x−z)dθ

)
dy

− kn−1

∫
Rn

Jn−2
2

(k|x− y|)

(k|x− y|n−2
2 )

V (y)Ĝp

(∫
Sn−1

V e−ik(θ,x−z)dθ

)
dy =: I

(2)∗
2 + I

(2)∗∗
2 .

From [26] we find that d
dx

(x−νJν(x)) = −x−νJν+1(x) and therefore in I(2)∗
2 we have∫

Sn−1

~q(z) · ikθe−ik(x−z,θ)dθ = ~q(z) · ∇z

∫
Sn−1

e−ik(x−z,θ)dθ

= −k(2π)
n
2 ~q(z) · x− z

|x− z|
Jn

2
(k|x− z|)

(k|x− z|)n−2
2

. (7)

Next, we may write ~q = (~q/|~q|)|~q| 12 |~q| 12 =: q 1
2
|~q| 12 . Now we define operator

K̂1 as the integral operator with the kernel |V (y)| 12 Ĝp(y − ·)q 1
2
(·). Actually, K̂1 :

L2(Rn)→ L2(Rn) uniformly in x with the same norm estimates as Ĝp. Indeed, let
~f ∈ L2(Rn). Then, since ~q ∈ W 1

p,2δ(Rn), we have that

‖q 1
2
· ~f‖L2

δ(Rn) ≤ ‖~q‖
1
2

L∞2δ(Rn)‖~f‖L2(Rn).

Due to the Sobolev embedding theorem we have the continuous embedding

H1
−δ(Rn) ⊂ L

2p
p−1

−δ (Rn).

Thus, taking a function g ∈ H1
−δ(Rn) and applying Hölder’s inequality gives

‖|V |
1
2 g‖L2(Rn) ≤ ‖V ‖

1
2

Lp2δ(Rn)
‖g‖

L
2p
p−1
−δ (Rn)

≤ C‖V ‖
1
2

Lp2δ(Rn)
‖g‖H1

−δ(Rn).
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These estimates and the mapping property of Ĝp finally yield

‖|V |
1
2 Ĝp(q 1

2
f)‖L2(Rn) ≤ ‖V ‖

1
2

Lp2δ(Rn)
‖Ĝp(q 1

2
f)‖H1

−δ(Rn)

≤ C

k2
‖V ‖

1
2

Lp2δ(Rn)
‖q 1

2
f‖L2

δ(Rn)

≤ C

k2
‖V ‖

1
2

Lp2δ(Rn)
‖~q‖

1
2

L∞2δ(Rn)‖f‖L2(Rn).

Next we show that the function from (7) satisfies∥∥∥∥∥|~q| 12 Jn2 (k|x− ·|)
(k|x− ·|)n−2

2

∥∥∥∥∥
L2(Rn)

≤ Ck
1−n
2 .

This is a straight-forward calculation by using the asymptotic behaviour of the
Bessel function. We estimate∫

Rn
|~q(y)|

J2
n
2
(k|x− y|)
|x− y|n−2

dy ≤ C

∫
k|x−y|<1

|~q(y)| (k|x− y|)n

(k|x− y|)n−2
dy

+ C

∫
k|x−y|>1

|~q(y)|
(k|x− y|)n−1

dy

≤ C

kn−1

∫
Rn

|~q(y)|
|x− y|n−1

dy ≤ Ck1−n.

In the same manner ∥∥∥∥∥|V | 12 Jn−2
2

(k|x− ·|)

(k|x− ·|)n−2
2

∥∥∥∥∥
L2(Rn)

≤ Ck
1−n
2 .

To finish the consideration of the term I
(2)∗
2 we integrate with respect to θ′ to obtain

J ′1 ≤ kn−1

∫
Rn
|V (y)|

1
2

|Jn
2
(k|x− y|)|

(k|x− y|)n−2
2

∣∣∣∣∣K̂1

(
k|~q|

1
2

Jn
2
(k|y − ·|)

(k|y − ·|)n−2
2

)∣∣∣∣∣ dy
≤ Ckn+ 1−n

2
−2

(∫
Rn
|V (y)|

J2
n
2
(k|x− y|)

(k|x− y|)n−2
dy

) 1
2

≤ Ckn+ 1−n
2
−2k

1−n
2 = Ck−1.

This means that the term I
(2)∗
2 → 0 as k →∞.

Next we consider the integral I(2)∗∗
2 . The method is essentially the same as in

case of I(2)∗
2 . By computing the integral with respect to θ we get

I
(2)∗∗
2 = −kn−1

∫
Rn

Jn−2
2

(k|x− y|)

(k|x− y|)n−2
2

V (y)Ĝp

(
V
Jn−2

2
(k|x− ·|)

(k|x− ·|)n−2
2

)
dy.
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Here it appears to be simpler to conclude directly that∥∥∥∥∥V Jn−2
2

(k|x− ·|)

(k|x− ·|)n−2
2

∥∥∥∥∥
L2
δ(Rn)

≤ Ck
2−n
2

and to not factorize the integrals into new operators. We estimate the square of
the above norm by∫

Rn
(1 + |z|)2δ|V (z)|2

J2
n−2
2

(k|x− z|)

(k|x− z|)n−2
dz ≤ C

∫
k|x−z|<1

(1 + |z|)2δ|V (z)|2dz

+ C

∫
k|x−z|>1

(1 + |z|)2δ |V (z)|2

(k|x− z|)n−1
dz

≤ Ck2−n
∫
Rn

(1 + |z|)2δ |V (z)|2

|x− z|n−2
dz.

Dividing the region of integration to |x− z| < 1 and |x− z| > 1 we see that∫
Rn

(1 + |z|)2δ |V (z)|2

|x− z|n−2
dz ≤

∫
|x−z|<1

(1 + |z|)2δ |V (z)|2

|x− z|n−2
dz

+

∫
|x−z|>1

(1 + |z|)2δ|V (z)|2dz

≤

(∫
|x−z|<1

1

|x− z|
(n−2)p
p−2

dz

) p−2
p

‖V ‖Lpδ(Rn) + ‖V ‖L2
δ(Rn).

The above integral converges uniformly in x, when n < p ≤ ∞. Thus, since
Ĝp : L2

δ(Rn)→ H1
−δ(Rn), we have

|I(2)∗∗
2 | ≤ Ckn−1

(∫
Rn
|V (y)|

J2
n−2
2

(k|x− y|)

(k|x− y|)n−2
dy

) 1
2
∥∥∥∥∥|V | 12 Ĝp

(
V
Jn−2

2
(k|x− ·|)

(k|x− ·|)n−2
2

)∥∥∥∥∥
L2(Rn)

≤ Ckn−1+ 1−n
2

+ 2−n
2
−2 ≤ Ck−

3
2 → 0

as k → +∞.
The term I

(1)
2 can be considered analogously to I(2)

2 . Compared to the term
I

(2)
2 , where we utilized the fact that Ĝp maps L2

δ to H1
−δ, in term I

(1)
1 we can use

the previous calculations and the fact that ∇Ĝp maps L2
δ to L2

−δ with the same
estimates as earlier. Now for g ∈ L2

−δ(Rn) we have that

‖|~q|
1
2 g‖L2(Rn) ≤ ‖~q‖

1
2

L∞2δ(Rn)‖g‖L2
−δ(Rn).
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Replacing the first |V | 12 by |~q| 12 in the previous calculations and using the above
norm estimate we may conclude that I(1)

2 satisfies the same estimate in k as I(2)
2 .

Therefore, I2 → 0 as k → +∞ and the theorem is proved.

The proofs of Corollaries 1.2 and 1.3 are well-known in literature and can be
found for example in [18] or [10] (case n = 3).

Conclusion
A direct scattering problem for a first-order perturbation of the biharmonic op-
erator was studied. It was shown that a solution to scattering problem with cer-
tain radiation conditions satisfies the Lippmann-Schwinger equation. This integral
equation has a unique solution in the weighted Sobolev space H1

−δ in any dimension
and in particular this solution is bounded if the dimension is 2 or 3. The proofs
of these results are based on a Green-type formula for bi-Laplacian and Agmon’s
estimate [1]. The asymptotic behaviour of the solution for fixed k > 0 as |x| → +∞
was studied and a formula for the scattering amplitude was obtained.

The main result of this paper, Saito’s formula, was proved under quite general
assumptions on the coefficients. More precisely, the formula for scattering ampli-
tude was proved under the assumption that the coefficients of the direct operator
are compactly supported, but this assumption was not necessary for the proof of
Saito’s formula. The proof itself was based on explicit calculations starting from
the formula for scattering amplitude and utilizing the properties of certain resolvent
operator related to the direct operator. Some consequences of Saito’s formula were
discussed. Namely, the scattering amplitude uniquely determines a combination of
the coefficients for the direct problem and in turn gives a uniqueness result for the
inverse problem. A representation formula for this combination of the coefficients
was given.
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A Appendix
Lemma A.1. Let Ω ⊂ Rn be an open and bounded domain with smooth boundary
∂Ω. If f, g ∈ H4(Ω) then the following equality holds∫

Ω

(f∆2g − g∆2f)dx =

∫
∂Ω

(
f
∂

∂n
∆g + ∆f

∂

∂n
g − g ∂

∂n
∆f −∆g

∂

∂n
f

)
dσ(x).

Proof. Let f and g be C4-functions on Ω and define a C1-vector field ~F by the
formula

~F = ∆f∇g + f∇(∆g)−∆g∇f − g∇(∆f).

Then the divergence theorem (see e.g., [8]) gives the claimed formula. To extend
the result for functions from H4(Ω) we note that left-hand side defines a bounded
bilinear form. Similarly, for smooth boundary ∂Ω the trace operator is bounded
from H4(U) to H3(∂U) so the right-hand side is also bounded. Since C4-functions
are dense in H4 the continuity and a density argument show that the claim holds
also for functions from H4(Ω).

Theorem A.2. If n < p <∞, then W 1
p (Rn) ⊂ Ċ(Rn).

Proof. We start from the known [5] embedding W 1
p (Rn) ⊂ C1−n

p (Rn) for n < p <
∞, where Cα(Rn) is the Hölder space for 0 < α < 1. It is also known that
functions in the space W 1

p (Rn) are bounded when p > n. It remains to verify that
the functions in W 1

p (Rn) vanish at infinity.
Let f ∈ W 1

p (Rn). If a 6= b then by the mean value theorem we have the equality

|ap − bp| = p|ξ|p−1|a− b|

for some ξ ∈]a, b[. Thus for the function |f | we find that

||f(x)|p − |f(y)|p| ≤ p‖f‖p−1
L∞(Rn)||f(x)| − |f(y)|| ≤ C|x− y|1−

n
p a.e.,

and therefore |f |p can be chosen to be uniformly (even (1−n/p)-Hölder) continuous.
Next, assume in contrary that |f |p does not vanish at infinity. It means that

there exists a constant c > 0 and points xj ∈ Rn so that |f(xj)|p ≥ c. We may
pick a sequence of these points with the property that for each m ∈ N we have
|xm| ≥ m. Since |f |p is uniformly continuous, there exists δ > 0 (that only depends
on c) such that |f(x)|p ≥ c

2
when |xm− x| < δ. This is a contradiction since |f |p is

integrable, but |xm| → ∞ and∫
|x−xm|<δ

|f(x)|pdx ≥ c|Bδ(xm)|
2

,
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where |Bδ(xm)| denotes the volume of a ball of radius δ centered at xm.
Finally, if f did not vanish at infinity then we would find constant c̃ > 0 and

points x̃m ∈ Rn so that |f(x̃m)| ≥ c̃. But this means that |f(x̃m)|p ≥ c̃p, which is
a contradiction, as we just saw.

Remark A.3. In dimension n = 1 it is possible to prove straight-forwardly that
W 1

1 (R) ⊂ Ċ(R). Moreover, Theorem A.2 does not hold for p = ∞, since for
example all constant functions belong to W 1

∞(Rn), but the only constant function
vanishing at infinity is the constant C ≡ 0.
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