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Abstract

We consider the inverse backscattering problem for a biharmonic operator
with two lower order perturbations in two and three dimensions. The inverse
Born approximation is used to recover jumps and singularities of an unknown
combination of potentials. Numerical examples are given to illustrate the
practical usefulness of the method.

1 Introduction
This work is devoted to inverse backscattering problem for the perturbed biharmonic
operator

H4u = ∆2u+ ~q · ∇u+ V u, (1)

where ∆ is the Laplacian and · denotes the dot-product. The bi-Laplacian is per-
turbed by first and zero order perturbations ~q and V which we allow to be complex-
valued and which will be specified below. We are looking for solutions to the scat-
tering problem

H4u = k4u, u = u0 + usc, u0(x, k, θ) = eik(x,θ) (2)

which are outgoing in the sense that they satisfy an analogue of Sommerfeld’s radi-
ation condition at the infinity [24]. Here θ ∈ Sn−1 = {x ∈ Rn : |x| = 1} and k ∈ R
are the angle and wavenumber of the incident wave, respectively.

Our interest in scattering problems for (1) stems from the corresponding prob-
lems for the Schrödinger operator and the magnetic Schrödinger operator. Indeed,
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the latter operators have received quite extensive interest in the frame of inverse scat-
tering. To this end, we refer to the works [3, 4, 5, 13, 14, 15, 16, 17, 18, 19, 21, 22]
and the references therein. The main idea in these works is to extract information
about the unknown potentials from the knowledge of scattering amplitude. Most
prominently, limited scattering data is considered in the form of fixed energy, fixed
angle or backscattering data.

Higher order operators can be met, for example, in the theory of vibrations of
beams and study of elasticity [8]. Biharmonic operators, such as (1), are not so
familiar in the inverse problems literature but they have recently gained attention
from several authors. In [2] the following boundary value problem{

(∆2 + q)u = 0, in Ω,

u = f, ∆u = g, on ∂Ω

for the biharmonic operator with Navier boundary conditions was studied. They
consider the recovery of q from partial boundary data (Dirichlet-to-Neumann map)
and proceed to prove certain stability estimates for this problem. In [25] the goal
of the problem is the same as in the present paper: to recover both ~q and V in H4,
however from partial Cauchy data on some subset of Rn.

In terms of scattering problems for higher order operators we are only aware of
[1, 11, 23, 24]. This work is a continuation of [24] and a multidimensional counterpart
of [23]. We investigate the inverse backscattering problem for (1), which means that
our data is limited to measurement angles which are opposite to the incident angle.
By considering the backscattering amplitude we define the inverse backscattering
Born approximation and prove that it recovers jumps and singularities of a potential
combination. As is always the case, the main difficulty in this approach is to obtain
good enough estimates for the first nonlinear term in the backscattering Born series.

Next we recall the main ingredients about direct scattering for (1) from [24]. Let
H0 := ∆2 − k4. By using the equality H0 = (−∆ − k2)(−∆ + k2) we see that H0

consists of two parts; one corresponds to the Helmholtz operator and the other is
non-singular. A fundamental solution to H0 is given by

G+
k (|x|) =

i

8k2

(
|k|

2π|x|

)n−2
2
(
H

(1)
n−2
2

(|k||x|) +
2i

π
Kn−2

2
(|k||x|)

)
,

where H(1)
n−2
2

is the Hankel function of the first kind and Kn−2
2

is the Macdonald

function, both of order n−2
2
. By applying this fundamental solution to (1) we obtain

so-called Lippmann–Schwinger integral equation

u(x, k, θ) = eik(x,θ) −
∫
Rn
G+
k (|x− y|) [~q(y) · ∇u(y, k, θ) + V (y)u(y, k, θ)] dy. (3)
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The equivalence of (2) and (3) has been shown in [24]. If we denote the latter
integral operator in (3) (including the minus sign) as Lku(x) the equation can be
equivalently written as

usc(x) = ũ0 + Lk(usc), ũ0 := Lku0. (4)

This integral equation can be solved by iterations defined as

uj(x, k, θ) = Ljku0(x, k, θ), j = 0, 1, . . . .

Moreover, the following main results concerning the direct scattering problem are
proved in [24].

Theorem 1.1. Let ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn), where n < p ≤ ∞ and

2δ > n− n/p. Then there exists k0 > 1 such that the function

usc(x, k, θ) =
∞∑
j=1

uj(x, k, θ) (5)

solves (4) uniquely in H2
−δ(Rn) for k ≥ k0.

Theorem 1.2. Let ~q and V be as in Theorem 1.1. Then for n = 2, 3 and for fixed
k > 0 the solution u(x, k, θ) to (2) or (3) admits the representation

u(x, k, θ) = u0(x, k, θ)− ie−i(n−1)π/4

4(2π)(n−1)/2

k(n−7)/2eik|x|

|x|(n−1)/2
A(k, θ, θ′)+o(|x|(1−n)/2), |x| → ∞

where
A(k, θ, θ′) =

∫
Rn

e−ik(θ′,y)(~q · ∇u+ V u)dy

and θ′ = x/|x|. Theorem also holds in any dimension n ≥ 4 if ~q and V are compactly
supported.

It was also shown that

‖uj‖H1
−δ(Rn) ≤ C

Cj
0

k2j−1
, j = 1, 2, . . . (6)

for some constants C,C0 > 0 depending on n, p, δ and the coefficients ~q and V (see
[24, proof of Corollary 4.3]).

This work is organized as follows. In Section 2 we define the inverse backscat-
tering Born approximation and expand it in several terms. The smoothness of the
remainder term qrest is analyzed in dimensions n ≥ 2. Section 3 is devoted to the
first nonlinear term q1. We distinguish it in two terms and carry out the analysis of
its smoothness in dimensions n = 2 and n = 3 separately. The reason for this is that
we do not need to assume real-valuedness of the potentials in the two dimensional
case. The main results from Section 2 and 3 are collected together in Section 4.
Finally, in Section 5 we give numerical examples in two dimensions to illustrate the
main results.
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2 Backscattering Born approximation
Let us start by fixing some notations. We define the Fourier transform of a Schwartz
function f as

F (f)(ξ) = f̂(ξ) := (2π)−
n
2

∫
Rn

e−i(ξ,x)f(x)dx.

The Fourier transform is extended to tempered distributions by duality. Let 1 ≤
p < ∞ and δ ∈ R. We denote by Lpδ(Rn) the weighted Lebesgue spaces defined by
finiteness of the norm

‖f‖Lpδ(Rn) :=

(∫
Rn

(1 + |x|)δp|f(x)|pdx
) 1

p

.

We say that f belongs to the Sobolev space W 1
p,δ(Rn) if f,∇f ∈ Lpδ(Rn). If ~f is

vector valued, then we say that ~f ∈ W 1
p,δ(Rn), if each component of ~f belongs to the

Sobolev space in the above sense. Similarly the vector valued Fourier transform ~̂f of
~f is to be understood coordinate-wise. As usual, we denote by Hs(Rn) the L2-based
Sobolev spaces, defined by the norm

‖f‖Hs(Rn) :=

(∫
Rn

(1 + |x|2)s|f̂(x)|2dx

) 1
2

.

We denote the characteristic function of the interval [−k0, k0] by χ(k). Finally, the
letter C will be used to denote a positive constant whose value can change from line
to line.

Let us now turn to the backscattering problem and set θ′ = −θ. In this case the
backscattering amplitude becomes

Ab(k, θ) := A(k, θ,−θ) =

∫
Rn

eik(θ,y) [~q(y) · ∇u(y, k, θ) + V (y)u(y, k, θ)] dy.

For simplicity we set A(k, θ,−θ) = 0 when 0 ≤ k < k0, where k0 > 0 can be chosen
so large that that all the relevant quantities are well-defined and unique. If we
substitute here u0 instead of u then we have the approximation

Ab(k, θ) ≈ A0(k, θ) :=

∫
Rn

e2ik(θ,y) [ikθ · ~q(y) + V (y)] dy

=

∫
Rn

e2ik(θ,y)

[
−1

2
∇ · ~q(y) + V (y)

]
dy

= (2π)
n
2F−1(β)(2kθ), (7)
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where we denote
β(x) := −1

2
∇ · ~q(x) + V (x)

and where the divergence theorem was applied to integrate by parts once in the first
term.

The approximation (7) suggests us to define the inverse backscattering Born
approximation qB of the potential combination β by

qB(x) :=
1

(2π)n

∫ ∞
0

kn−1

∫
Sn−1

e−ik(θ,x)Ab

(
k

2
, θ

)
dθdk (8)

in the sense of distributions.
In view of the series representation (5) it is possible to expand

Ab(k, θ) =
∞∑
j=0

Aj(k, θ),

where

Aj(k, θ) :=

∫
Rn

eik(θ,y) [~q(y) · ∇uj(y, k, θ) + V (y)uj(y, k, θ)] dy, j = 0, 1, . . . .

Note that Ab only depends on the product kθ. Moreover, we can write qB = q0 +
q1 + qrest, where qrest :=

∑∞
j=2 qj and

qj(x) :=
1

(2π)n

∫ ∞
0

kn−1

∫
Sn−1

e−ik(θ,x)Aj

(
k

2
, θ

)
dθdk, j = 0, 1, . . . . (9)

It is straight-forward to confirm that q0 = β + q̃, where

q̃(x) :=
1

(2π)n

∫ 2k0

0

kn−1

∫
Sn−1

e−ik(θ,x)

∫
Rn

eik(θ,y)β(y)dydθdk ∈ C∞(Rn).

In what follows we consider the remaining terms q1 and qrest. Our aim is to prove
that they are more regular than β itself is.

Lemma 2.1. Let n ≥ 2 and ~q and V be as in Theorem 1.1. Then qrest ∈ Hs(Rn)
for any s < 6−n

2
.

Proof. We start by estimating Arest(k, θ) :=
∑∞

j=2Aj(k, θ). For k > k0 we have by
Cauchy-Schwarz inequality that

|Arest(k, θ)| ≤
∞∑
j=2

∫
Rn

[|~q||∇uj|+ |V ||uj|]dy

≤
∞∑
j=2

[
‖~q‖L2

δ(Rn)‖∇uj‖L2
−δ(Rn) + ‖V ‖L2

δ(Rn)‖uj‖L2
−δ(Rn)

]
≤ C

k3
,
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where we applied (6) and estimated the emerging geometric series. Then Fourier
transform of qrest is estimated by |q̂rest(kθ)| ≤ Cχ(k/2)k−3. It means that

‖qrest‖2
Hs(Rn) =

∫ ∞
0

kn−1

∫
Sn−1

(1 + k2)s|q̂rest(kθ)|2dθdk ≤ C

∫ ∞
2k0

kn−1k2s−6dk,

where the last integral converges if and only if s < 6−n
2
.

3 Analysis of the first nonlinear term
In this section we perform the more delicate investigation of the first non-linear term
q1. Most of the following results hold in any dimensions n ≥ 2, but our main results
have their useful range of applications in dimensions n = 2, 3. Let us introduce a
shorthand notation

Ṽ := ∇ · ~q − V.

As q1 is given by (9) we study A1 first. By integrating by parts we see that it can
be expanded as

A1(k/2, θ) = −
∫
Rn

ikθ

2
· ~q(y)ei k

2
(θ,y)u1(y, k/2, θ)dy

−
∫
Rn
Ṽ (y)ei k

2
(θ,y)u1(y, k/2, θ)dy.

Since

u1(y, k, θ) = −
∫
Rn
G+
k (|y − z|) [ikθ · ~q(z) + V (z)] eik(θ,z)dz,

then by the symmetry in variables of integration we have

A1(k/2, θ) =

∫
Rn

∫
Rn
G+
k/2(|y − z|)ei k

2
(θ,y+z)

[
ikθ · ~q(y)

2

ikθ · ~q(z)

2

+∇ · ~q(y)
ikθ · ~q(z)

2
+ Ṽ (y)V (z)

]
dzdy.

Let us denote

G+
k (|x|) =: GM

k (|x|) +GE
k (|x|),

where GM
k is the oscillating main part corresponding to Hankel function and the

exponentially decaying part GE
k corresponds to Macdonald function. It means that
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we can separate A1 into two parts

A1(k/2, θ) =

∫
Rn

∫
Rn
GM
k/2(|y − z|)ei k

2
(θ,y+z)

×
[

ikθ · ~q(y)

2

ikθ · ~q(z)

2
+∇ · ~q(y)

ikθ · ~q(z)

2
+ Ṽ (y)V (z)

]
dzdy

+

∫
Rn

∫
Rn
GE
k/2(|y − z|)ei k

2
(θ,y+z)

×
[

ikθ · ~q(y)

2

ikθ · ~q(z)

2
+∇ · ~q(y)

ikθ · ~q(z)

2
+ Ṽ (y)V (z)

]
dzdy

=: AM(k/2, θ) + AE(k/2, θ).

In view of this splitting we write q1 as

q1(x) :=
1

(2π)n

∫ ∞
0

kn−1χ(k/2)

∫
Sn−1

e−ik(θ,x)AM(k/2, θ)dθdk

+
1

(2π)n

∫ ∞
0

kn−1χ(k/2)

∫
Sn−1

e−ik(θ,x)AE(k/2, θ)dθdk =: q1,M(x) + q1,E(x).

First we analyze the latter part which has better behaviour.

Lemma 3.1. Let n ≥ 2, ~q and V be as in Theorem 1.1. Then q1,E ∈ Hs(Rn) for
any s < 8−n

2
.

Proof. We will show that the Fourier transform of q1,E belongs to L2
s(Rn). To do

this, we divide AE into three parts

AE(k/2, θ) =

∫
Rn

∫
Rn
GE
k/2(|y − z|)ei k

2
(θ,y+z)

×
[

ikθ · ~q(y)

2

ikθ · ~q(z)

2
+∇ · ~q(y)

ikθ · ~q(z)

2
+ Ṽ (y)V (z)

]
dzdy

=: A
(1)
E + A

(2)
E + A

(3)
E .

We can interpret the double integral appearing in these formulas as a 2n-dimensional
convolution at (0, 0) ∈ Rn × Rn. Therefore, let us consider

T (f, g) :=
(
GE
k/2(|y − z|)e−i k

2
(θ,y+z) ∗ (f ⊗ g)

)
(0, 0)

formally for some functions f and g.
For the 2n-dimensional Fourier transform F we have F(ψ ∗ ϕ) = (2π)nFψFϕ

and so

T (f, g) = (2π)nF−1
(
F
(
GE
k/2(|y − z|)e−i k

2
(θ,y+z)

)
(η, µ)f̂(η)ĝ(µ)

)
(0, 0).
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Because for k > 0 we have

ĜE
k (|x|)(ξ) =

1

2k2

1

|ξ|2 + k2

then we may calculate

F
(
GE
k/2(|y − z|)e−i k

2
(θ,y+z)

)
(η, µ)

= (2π)−n
∫
Rn

∫
Rn

e−i(η,y)e−i(µ,z)GE
k/2(|y − z|)e−i k

2
(θ,y+z)dydz

=
2(2π)−

n
2

k2

∫
Rn

e−i(z,η+µ+kθ)

|η + kθ
2
|2 + k2/4

dz =
2(2π)

n
2

k2

δ0(η + µ+ kθ)

|η + kθ
2
|2 + k2/4

in the sense of distributions. Here δ0 is the Dirac delta distribution. This means
that

T (f, g) =

∫
Rn

∫
Rn

2(2π)
n
2

k2

δ0(η + µ+ kθ)

|η + kθ
2
|2 + k2/4

f̂(η)ĝ(µ)dηdµ

=
2(2π)

n
2

k2

∫
Rn

f̂(−µ− kθ)ĝ(µ)

|µ+ kθ
2
|2 + k2/4

dµ

=
2(2π)

n
2

k2

∫
Rn

f̂(−µ− kθ
2

)ĝ(µ− kθ
2

)

|µ|2 + k2/4
dµ,

where we have changed the variables µ 7→ µ − kθ
2

in the last step. The above
calculations give us a way to represent the terms of AE as

A
(1)
E =

2(2π)
n
2

k2

∫
Rn

ikθ
2
· ~̂q(−µ− kθ

2
) ikθ

2
· ~̂q(µ− kθ

2
)

|µ|2 + k2/4
dµ,

A
(2)
E =

2(2π)
n
2

k2

∫
Rn

∇̂ · ~q(−µ− kθ
2

) ikθ
2
· ~̂q(µ− kθ

2
)

|µ|2 + k2/4
dµ

and

A
(3)
E =

2(2π)
n
2

k2

∫
Rn

̂̃
V (−µ− kθ

2
)V̂ (µ− kθ

2
)

|µ|2 + k2/4
dµ.

By integration by parts ∇̂ · ~q(ξ) = iξ · ~̂q(ξ) and we have

A
(1)
E + A

(2)
E = −2(2π)

n
2

k2

∫
Rn

iµ · ~̂q(−µ− kθ
2

) ikθ
2
· ~̂q(µ− kθ

2
)

|µ|2 + k2/4
dµ.
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The part of q1,E corresponding to A(1)
E + A

(2)
E is

q
(1+2)
1,E (x) =

− 2

(2π)
n
2

∫ ∞
2k0

kn−1

∫
Sn−1

e−ik(θ,x) 1

k2

∫
Rn

iµ · ~̂q(−µ− kθ
2

) ikθ
2
· ~̂q(µ− kθ

2
)

|µ|2 + k2/4
dµdθdk

= − 2

(2π)
n
2

∫
|ξ|>2k0

1

|ξ|2
e−i(x,ξ)

∫
Rn

iµ · ~̂q(−µ− ξ
2
) iξ

2
· ~̂q(µ− ξ

2
)

|µ|2 + |ξ|2/4
dµdξ.

Then the Fourier transform of q(1+2)
1,E is

q̂
(1+2)
1,E (ξ) = −χ(|ξ|/2)

|ξ|2

∫
Rn

iµ · ~̂q(−µ− ξ
2
)iξ · ~̂q(µ− ξ

2
)

|µ|2 + |ξ|2/4
dµ.

Following [18] we write here

iµ · ~̂q(−µ− ξ

2
)iξ · ~̂q(µ− ξ

2
) =

1

2

[
−i(−µ− ξ

2
) · ~̂q(−µ− ξ

2
) + i(µ− ξ

2
) · ~̂q(−µ− ξ

2
)

]
×
[
−i(µ− ξ

2
) · ~̂q(µ− ξ

2
)− i(−µ− ξ

2
) · ~̂q(µ− ξ

2
)

]
.

This allows us to integrate by parts and expand to obtain

q̂
(1+2)
1,E (ξ) = −χ(|ξ|/2)

2|ξ|2

∫
Rn

∇̂ · ~q(−µ− ξ
2
)∇̂ · ~q(µ− ξ

2
)

|µ|2 + |ξ|2/4
dµ

+
χ(|ξ|/2)

2|ξ|2

∫
Rn

∑n
j,k=1 ∂̂jqk(−µ−

ξ
2
)∂̂kqj(µ− ξ

2
)

|µ|2 + |ξ|2/4
dµ.

Now instead of combinations of V and ~q it suffices to consider functions f and
g from Lp2δ(Rn). A simple application of Cauchy-Schwarz inequality and Parseval’s
equality gives

χ(|ξ|/2)

|ξ|2

∣∣∣∣∣
∫
Rn

f̂(−µ− ξ
2
)ĝ(µ− ξ

2
)

|µ|2 + |ξ|2/4
dµ

∣∣∣∣∣ ≤ 4χ(|ξ|/2)

|ξ|4
‖f‖L2(R)‖g‖L2(R).

This means that

‖q̂1,E‖2
L2
s(Rn) ≤ C

∫
|ξ|>2k0

(1 + |ξ|)2s 1

|ξ|8
dξ

and this integral converges if and only if s < 8−n
2
.
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Next we consider the more complicated part of q1, namely, q1,M. In order to
estimate the smoothness of this term we first derive an alternative form for it closely
following the proof of Lemma 3.1.

Lemma 3.2. Let n ≥ 2. If ~q and V are as in Theorem 1.1, then

q1,M(x) =
(2π)

n
2

2
F−1

(
χ(|µ+ η|/2)

|µ+ η|2
∇̂ · ~q(η)∇̂ · ~q(µ)

(µ, η) + i0

)
(x, x)

− (2π)
n
2

2
F−1

(
χ(|µ+ η|/2)

|µ+ η|2

∑n
j,k=1 ∂̂jqk(η)∂̂kqj(µ)

(µ, η) + i0

)
(x, x)

− 2(2π)
n
2F−1

χ(|µ+ η|/2)

|µ+ η|2
̂̃
V (η)V̂ (µ)

(µ, η) + i0

 (x, x)

in the sense of distributions. Here ·̂ denotes the Fourier transform in n dimensions
and F−1 is the 2n-dimensional inverse Fourier transform.

Proof. We split

q1,M(x) =
1

(2π)n

∫ ∞
0

kn−1

∫
Sn−1

e−ik(θ,x)

∫
Rn

∫
Rn
GM
k/2(|y − z|)ei k

2
(θ,y+z)

×
[

ikθ · ~q(y)

2

ikθ · ~q(z)

2
+∇ · ~q(y)

ikθ · ~q(z)

2
+ Ṽ (y)V (z)

]
dzdydθdk =: I1 + I2 + I3.

As in [7, 13] we start from the expression

I3 =

∫
Rn×Rn

1

(2π)n

∫ ∞
0

kn−1

∫
Sn−1

GM
k/2(|y − z|)ei k

2
(θ,y+z−2x)dθdkṼ (y)V (z)dydz,

which can be understood as a 2n-dimensional convolution I3 = (2π)−n(G ∗ (Ṽ ⊗
V ))(x, x), where

G(y, z) :=

∫ ∞
0

kn−1χ(k/2)

∫
Sn−1

GM
k/2(|y − z|)e−i k

2
(θ,y+z)dθdk.

To obtain the claimed formula we consider the 2n-dimensional Fourier transform of
G as

FG(η, µ) = (2π)−n
∫
Rn×Rn

∫ ∞
0

kn−1χ(k/2)

×
∫
Sn−1

GM
k/2(|y − z|)e−i k

2
(θ,y+z)e−i(η,y)e−i(µ,z)dθdkdydz.
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Recall that the Fourier transform of GM
k (|x|) is given by

1

2k2

1

|ξ|2 − k2 − i0
.

Hence, by the change of variables y − z = ξ, we obtain

FG(η, µ) = (2π)−n
∫ ∞

0

kn−1χ(k/2)

∫
Sn−1

∫
Rn
GM
k/2(|ξ|)ei( kθ2 +η,ξ)

×
∫
Rn

e−i(kθ+µ+η,z)dzdξdθdk

= 2(2π)
n
2

∫ ∞
0

kn−3χ(k/2)

∫
Sn−1

δ0(kθ + µ+ η)∣∣kθ
2

+ η
∣∣2 − k2

4
− i0

dθdk

= −2(2π)
n
2
χ(|µ+ η|/2)

|µ+ η|2
1

(µ, η) + i0

in the sense of distributions. Applying F(f ∗ g) = (2π)nFf Fg we obtain

I3 = −2(2π)
n
2F−1

χ(|µ+ η|/2)

|µ+ η|2
̂̃
V (η)V̂ (µ)

(µ, η) + i0

 (x, x).

Proceeding analogously for I1 and I2 and by using symmetry in η and µ we may
combine them as in the proof of Lemma 3.1 to obtain

I1 + I2 =
(2π)

n
2

2
F−1

(
χ(|µ+ η|/2)

|µ+ η|2
(µ− η) · ~̂q(η)(µ+ η) · ~̂q(µ)

(µ, η) + i0

)
(x, x)

=
(2π)

n
2

2
F−1

(
χ(|µ+ η|/2)

|µ+ η|2
∇̂ · ~q(η)∇̂ · ~q(µ)

(µ, η) + i0

)
(x, x)

− (2π)
n
2

2
F−1

(
χ(|µ+ η|/2)

|µ+ η|2

∑n
j,k=1 ∂̂jqk(η)∂̂kqj(µ)

(µ, η) + i0

)
(x, x)

as claimed.

According to Lemma 3.2 it suffices to study the regularity of

I = (2π)nF−1

(
χ(|µ+ η|/2)

|µ+ η|2
f̂(η)ĝ(µ)

(µ, η) + i0

)
(x, x)

for functions f, g ∈ Lp2δ(R), n < p ≤ ∞ and 2δ > n− n
p
. We use Sokhotski-Plemelj

formula (see e.g., [12])
1

x± i0
= p. v.

1

x
∓ iπδ0 (10)
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to expand

I = p. v.

∫
Rn×Rn

ei(x,η+µ)χ(|µ+ η|/2)

|µ+ η|2
f̂(η)ĝ(µ)

(η, µ)
dηdµ

− iπ

∫
Rn×Rn

ei(x,η+µ)χ(|µ+ η|/2)

|µ+ η|2
f̂(η)ĝ(µ)δ0((η, µ) = 0)dηdµ =: I ′ + I ′′.

The analysis of the terms I ′ and I ′′ is next carried out separately in two and
three dimensional cases.

3.1 Two-dimensional case

Lemma 3.3. Let n = 2 and f, g ∈ Lp2δ(R2) with 2 < p ≤ ∞ and 2δ > 2− 2
p
. Then

I ′′ defines a bounded and continuous function.

Proof. We follow [13] and change variables µ = tγ to obtain

I ′′ = C

∫
R2

∫ ∞
0

t

∫
S1

ei(x,η+tγ)χ(|η + tγ|/2)

|η + tγ|2
f̂(η)ĝ(tγ)δ0(t|η|(η/|η|, γ) = 0)dγdtdη.

Since δ0(αH) = 1
α
δ0(H) if α > 0 then we find that

I ′′ = C

∫
R2

∫ ∞
−∞

ei(x,η+tη⊥)χ(|η + tη⊥|/2)

|η + tη⊥|2
f̂(η)ĝ(tη⊥)|η|−1dtdη

= C

∫ ∞
0

∫
S1

∫ ∞
0

ei(x,rγ+tγ⊥)χ(|rγ + tγ⊥|/2)

|rγ + tγ⊥|2
f̂(rγ)ĝ(rγ⊥)dtdγdr,

where η⊥ is the unit vector perpendicular to η chosen according to any specific
orthogonal reference.

Note that |rγ + tγ⊥|2 = r2 + t2. Since f and g are integrable their Fourier
transforms are bounded and therefore this integral has no singularities at origin.
Hence, if we integrate over

∫ 1

0
for t and/or r the integral is bounded by the L1-

norms of f and g. So it remains to consider the integral
∫∞

1
. By Cauchy-Schwarz

inequality

∣∣∣∣∫ ∞
1

∫
S1

∫ ∞
1

ei(x,rγ+tγ⊥)χ(|rγ + tγ⊥|/2)

|rγ + tγ⊥|2
f̂(rγ)ĝ(rγ⊥)dtdγdr

∣∣∣∣
≤
∫ ∞

1

∫ ∞
1

(∫
S1

|f̂(rγ)|2

1 + r2
dγ

) 1
2 (∫

S1

|ĝ(tγ)|2

1 + t2
dγ

) 1
2

dtdr.

12



The above integrals are well-defined because f̂ and ĝ are continuous. Now it suffices
to estimate∫ ∞

1

(∫
S1

|f(rγ)|2

1 + r2
dγ

) 1
2

dr

≤
(∫ ∞

1

dr

(1 + r2)r

) 1
2
(∫ ∞

1

∫
S1

(1 + r2)r
|f(rγ)|2

1 + r2
dγdr

) 1
2

≤ C‖f‖L2(R2).

Since I ′′ can be split in parts each bounded by the norms of f and g we may use
Lebesgue’s theorem about dominated convergence to obtain the claim.

By Hölder’s inequality

Lp2δ(R
n) ⊂ L2

1(Rn), n ≥ 2,

where p and δ are as in Theorem 1.1. Further analysis is carried out in the larger
space L2

1(Rn).

Lemma 3.4. Let n = 2 and f, g ∈ L2
1(R2). Then I ′ belongs to Hs(R2) with s < 2.

Proof. We will proceed analogous to [19, Lemma 4] and [13, Proposition 3.1]. Our
aim is to prove that Î ′ ∈ L2

s. Changing first variables as η 7→ η− µ and then taking
the n-dimensional Fourier transform of I ′ in x we get

Î ′(η) = p. v.

∫
R2

χ(|η|/2)

|η|2
f̂(η − µ)ĝ(µ)

(η − µ, µ)
dµ.

Then changing variables as µ 7→ η/2− µ yields,

Î ′(η) = p. v.

∫
R2

χ(|η|/2)

|η|2
f̂(µ+ η/2)ĝ(η/2− µ)

(|η|/2 + |µ|)(|η|/2− |µ|)
dµ

=

(∫
|µ|≤|η|/2−1

+ p. v.

∫
|η|/2−1≤|µ|≤|η|/2+1

+

∫
|µ|≥|η|/2+1

)
× χ(|η|/2)

|η|2
f̂(µ+ η/2)ĝ(η/2− µ)

(|η|/2 + |µ|)(|η|/2− |µ|)
dµ

=: h1(η) + h2(η) + h3(η).

It is rather easy to verify that

|h1(η)|, |h3(η)| ≤ χ(|η|/2)

|η|3

∫
R2

|f̂(ξ)||ĝ(ξ + η)|dξ ≤ χ(|η|/2)

|η|3
∥∥∥f̂∥∥∥

L2(R2)
‖ĝ‖L2(R2) .
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Next we turn our attention to h2. By switching to polar coordinates the principal
value integral becomes

h2(η) = lim
ε→0+

(∫
|η|/2−1≤r≤|η|/2−ε

r

∫
S1

χ(|η|/2)

|η|2
f̂(rω + η/2)ĝ(η/2− rω)

(|η|/2 + r)(|η|/2− r)
dωdr

+

∫
|η|/2+ε≤r≤|η|/2+1

r

∫
S1

χ(|η|/2)

|η|2
f̂(rω + η/2)ĝ(η/2− rω)

(|η|/2 + r)(|η|/2− r)
dωdr

)
.

Changing variables r 7→ |η| − r in the latter integral we obtain

h2(η) = lim
ε→0+

(∫
|η|/2−1≤r≤|η|/2−ε

r

∫
S1

χ(|η|/2)

|η|2
f̂(rω + η/2)ĝ(η/2− rω)

(|η|/2 + r)(|η|/2− r)
dωdr

−
∫
|η|/2−1≤r≤|η|/2−ε

(|η| − r)
∫
S1

χ(|η|/2)

|η|2
f̂(|η|ω − rω + η/2)ĝ(η/2− |η|ω + rω)

(3|η|/2− r)(|η|/2− r)
dωdr

)
or

h2(η) = lim
ε→0+

∫
|η|/2−1≤r≤|η|/2−ε

∫
S1

χ(|η|/2)

|η|2

(
r

(|η|/2 + r)(|η|/2− r)

− |η| − r
(3|η|/2− r)(|η|/2− r)

)
f̂(rω + η/2)ĝ(η/2− rω)dωdr

+ lim
ε→0+

∫
|η|/2−1≤r≤|η|/2−ε

∫
S1

|η| − r
(3|η|/2− r)(|η|/2− r)

χ(|η|/2)

|η|2

×
[
f̂(rω + η/2)ĝ(η/2− rω)− f̂(|η|ω − rω + η/2)ĝ(η/2− |η|ω + rω)

]
dωdr

=: B1 +B2.

Here the term B1 can be estimated by

|B1| ≤
χ(|η|/2)

|η|4
‖f‖L2(R2) ‖g‖L2(R2) .

In the term B2 an elementary estimate gives∣∣∣∣ |η| − r
(3|η|/2− r)(|η|/2− r)

∣∣∣∣ ≤ r

|η|
1

|η|
2
− r

.

Next we use the Hajłasz inequality [9]

|ϕ(x)− ϕ(y)| ≤ C|x− y|[M(|∇ϕ|)(x) +M(|∇ϕ|)(y)]

14



for ϕ ∈ W 1
p (R2), 1 < p ≤ ∞ and for almost all x, y ∈ R2, where

Mϕ(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|ϕ(y)|dy, x ∈ Rn

is the Hardy-Littlewood maximal function. Here B(x, r) denotes the open ball of
radius r, centered at x with Lebesgue measurem(B(x, r)). Recall thatM : Lp → Lp,
1 < p ≤ ∞, see e.g., [20]. For this purpose we expand

f̂(rω + η/2)ĝ(η/2− rω)− f̂(|η|ω − rω + η/2)ĝ(η/2− |η|ω + rω)

= f̂(rω + η/2)[ĝ(η/2− rω)− ĝ(η/2− |η|ω + rω)]

+ ĝ(η/2− |η|ω + rω)[f̂(rω + η/2)− f̂(|η|ω − rω + η/2)].

In the next step we find it convenient to slightly expand the region of integration.
Now, since f, g ∈ L2

1(R2) then f̂ , ĝ ∈ H1(R2) and we have

|B2| ≤
χ(|η|/2)

|η|3

∫
|η|
2
−1≤|ξ|≤ |η|

2
+1

|f̂(η/2 + ξ)||M(∇ĝ)(η/2− ξ)dξ

+
χ(|η|/2)

|η|3

∫
|η|
2
−1≤|ξ|≤ |η|

2
+1

|f̂(η/2 + ξ)||M(∇ĝ)(η/2− |η|ξ̂ + ξ)dξ

+
χ(|η|/2)

|η|3

∫
|η|
2
−1≤|ξ|≤ |η|

2
+1

|ĝ(η/2− |η|ξ̂ + ξ)||M(∇f̂)(η/2 + ξ)dξ

+
χ(|η|/2)

|η|3

∫
|η|
2
−1≤|ξ|≤ |η|

2
+1

|ĝ(η/2− |η|ξ̂ + ξ)||M(∇f̂)(η/2 + |η|ξ̂ − ξ)dξ

=: J1 + J2 + J3 + J4.

Here the hat-notation is used for two meanings: hat on a function denotes the
usual n-dimensional Fourier transform, while a hat on a vector ξ ∈ Rn is used to
denote the unit vector ξ̂ := ξ/|ξ|. The first integral above is easily estimated by
Cauchy-Schwarz inequality as

J1 ≤
Cχ(|η|/2)

|η|3
‖f‖L2(R2) ‖M(∇ĝ)‖L2(R2) .

In the integrals J2, J3 and J4 we first use the Cauchy-Schwarz inequality and then
change variables as follows. We consider an orthogonal reflection ϕη(ξ) = |η|ξ̂ − ξ
in the annulus Aη := {ξ ∈ R2 | |η|/2 − 1 ≤ |ξ| ≤ |η|/2 + 1} with respect to the
circle of radius |η|/2 centered at origin. This mapping ϕη : Aη → Aη is bijective
with ϕη = ϕ−1

η and has Jacobian

Jϕ = 1− |η|
|ξ|
,
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which is estimated by 1
3
≤ |Jϕ| ≤ 3 within the domain of integration (we take k0 > 2

to obtain |η| > 4). This procedure yields for the term h2 the estimate

|h2| ≤ C
χ(|η|/2)

|η|3
(
‖f‖L2(R2)‖M(∇ĝ)‖L2(R2) + ‖g‖L2(R2)‖M(∇f̂)‖L2(R2)

)
.

These estimates show that Î ′ belongs to L2
s(R2) with s < 2 which then implies the

claim.

3.2 Three-dimensional case

In this section we consider the first non-linear term q1 for n = 3. For simplicity, we
assume that the coefficients ~q and V are real-valued. Next we define the solutions to
the scattering problem (3) for k < 0 by requiring u(x, k, θ) = u(x,−k, θ) and extend
the scattering amplitude by A(k, θ, θ′) = A(−k, θ, θ′) for k < 0.

It follows from (8) that

Re qB(x) =
1

(2π)n
Re

(∫ ∞
0

kn−1

∫
Sn−1

e−ik(θ,x)Ab

(
k

2
, θ

)
dθdk

)
=

1

2(2π)n

∫ ∞
−∞
|k|n−1

∫
Sn−1

e−ik(θ,x)Ab

(
k

2
, θ

)
dθdk. (11)

Remark 3.5. Sometimes (11) is taken as the definition of the backscattering Born
approximation (see e.g., [14, 19]). However, the definition (8) is more general since
it allows the approximation of complex-valued β.

In the splitting
qB = β + q̃ + q1,M + q1,E + qrest

we have already studied the terms q1,E and qrest. So it remains to examine

Re q1,M(x) =
1

2(2π)n

∫ ∞
−∞
|k|n−1

∫
Sn−1

e−ik(θ,x)AM

(
k

2
, θ

)
dθdk =: q+

1,M(x) + q−1,M(x),

where q+
1,M and q−1,M correspond to integrals over positive and negative k, respectively.

Lemma 3.6. Let n ≥ 2. If ~q and V are real-valued and if they are as in Theorem
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1.1, then

q±1,M =
(2π)

n
2

4
F−1

(
χ(|µ+ η|/2)

|µ+ η|2
∇̂ · ~q(η)∇̂ · ~q(µ)

(µ, η)± i0

)
(x, x)

− (2π)
n
2

4
F−1

(
χ(|µ+ η|/2)

|µ+ η|2

∑n
j,k=1 ∂̂jqk(η)∂̂kqj(µ)

(µ, η)± i0

)
(x, x)

− (2π)
n
2F−1

χ(|µ+ η|/2)

|µ+ η|2
̂̃
V (η)V̂ (µ)

(µ, η)± i0

 (x, x)

in the sense of distributions.

Proof. Literally the same as the proof of Lemma 3.2, but for the integral over nega-
tive k we use the definition AM(k, θ) = AM(−k, θ). It is at this complex conjugation
where the assumptions ~q = ~q and V = V are used.

Using the fact that ~q and V are real-valued, (10) provides a convenient cancel-
lation of delta terms and it suffices to study

I = p. v.

∫
Rn×Rn

ei(x,η+µ)χ(|µ+ η|/2)

|µ+ η|2
f̂(η)ĝ(µ)

(η, µ)
dηdµ.

Lemma 3.7. Let n = 3 and f, g ∈ L2
1(R3). Then I belongs to Hs(R3) with s < 3/2.

Proof. The claim is obtained by repeating the proof of Lemma 3.4 with minor
changes. The only relevant difference occurs when changing to polar coordinates
in the term h2(η), where the Jacobian brings forth an r2-multiplier. Fortunately
this fact does not affect any subsequent estimates and the proof can be carried out
in the same way as before.

4 Main results
Theorem 4.1 (Main theorem, n = 2). Let ~q ∈ W 1

p,2δ(R2) and V ∈ Lp2δ(R2), where
2 < p ≤ ∞ and 2δ > 2 − 2

p
. Then the difference qB − β defines a bounded and

continuous function. If in addition ~q and V are real-valued then Re qB−β ∈ Hs(R2)
(mod C∞(R2)) for any s < 2.

Proof. Since
qB − β = q1,M + q1,E + qrest + q̃

then the first claim follows from Lemmata 2.1, 3.1, 3.3 and 3.4. For real-valued
potentials the second claim is based on the fact that I ′′ = 0.
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Corollary 4.2. If ~q and V are as in Theorem 4.1 then the jumps of β over smooth
(bounded) curves are uniquely determined by the backscattering data Ab and can be
recovered from qB.

Theorem 4.3 (Main theorem, n = 3). Let ~q ∈ W 1
p,2δ(R3) and V ∈ Lp2δ(R3), where

3 < p ≤ ∞ and 2δ > 3− 3
p
, be real-valued. Then the difference Re qB− β belongs to

the Sobolev space Hs(R3) (mod C∞(R3)) for any s < 3
2
.

Proof. The proof follows from Lemmata 2.1, 3.1 and 3.7.

Corollary 4.4. If ~q and V are as in Theorem 4.3 then the main singularities of
β over smooth (bounded) curves are uniquely determined by the backscattering data
Ab and can be recovered from qB.

5 Numerics
In this section we present some numerical examples to illustrate the recovery of
singularities using the inverse Born approximation in two dimensions. We proceed
analogously to [6, 10] but outline the numerical scheme here for convenience.

We use synthetic scattering data computed from

A(k, θ,−θ) ≈ −4
√

2πR

ie−iπ/4

1

k−5/2eikR
usc(−Rθ, k, θ), R = 105.

To this end, we need an approximation for usc. That is computed as the truncated
series usc ≈

∑M
j=1 uj with M = 2. The integrals uj are calculated numerically over

the supports of ~q and V .
Having the backscattering amplitude at hand the inverse Born approximation is

computed from (8). Indeed, we represent qB(x) in discrete form

qB(x) =
N∑
j=1

fjχrj(x),

where rj are the subgrids of unit cube in R2 and fj are the unknown values of qB at
those subgrids. Substituting this representation into∫

Rn
eik(θ,x)qB(x)dx = A(k, θ, θ′)

yields
N∑
j=1

fj

∫
rj

eik(θ,x)dx = A(k, θ, θ′),
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where the integrals are easy to compute in closed form. Evaluating the latter equa-
tion at several k = ks, θ = θl points leads to a linear system which we write as
Ef = g. We use the following parameter values:

N = 6400, k = ks = s, s = 1, 2, . . . , 12

and 40 values for θ uniformly from the unit circle.
The right hand side g is corrupted with zero mean Gaussian noise with standard

deviation 1% of maximum value. The ill-posed linear system is solved for f using a
regularization method. Namely, we use the truncated singular value decomposition
(TSVD) as follows. Let E = USV ∗ be the singular value decomposition of E, where
S = diag(s1, . . . , sr) is the diagonal matrix containing the singular values sj of E.
Then the reconstruction is

f = V LU∗g,

where L = diag(1/s1, . . . , 1/stol, 0, . . . , 0) and where stol is the last (smallest) singular
value exceeding a prescribed tolerance 10−2.

We consider the following sample scatterers:

V (x) =
3

2
χΩV (x),

where ΩV is an ellipse (Example 1) or rectangle (Examples 2 and 3). For qj, j = 1, 2
we consider the smooth bump function

1

2
χ|x|<1(x) exp(1/(|x|2 − 1))

and scale the variables so that the supports Ωj := supp qj are ellipses. Further, in
Example 3 we multiply the potentials V and q2 by the imaginary unit i to illustrate
the recovery of complex-valued potentials.

Figure 1 shows the contour plots of V and ~q with white lines indicating their
supports. The shape and location of real and imaginary parts of the potentials in
Example 3 are the same as for the real-valued potentials in Example 2. Figures 2
and 3 present the unknown function β for Examples 1 and 2 on the left and their
TSVD reconstructions on the right. These figures show that by using the inverse
Born backscattering approximation we are able to locate quite accurately the shape
and location of the support of the scatterers. Additionally, the height function of
β is recovered rather reasonably. Figure 4 presents the real and imaginary parts
of potentials in Example 3 on the left with their respective TSVD reconstructions
on the right. In light of this example we see that the Born approximation can be
applied numerically also in the complex-valued case.
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Figure 1: Potentials V and ~q for sample scatterers: Example 1 (left) and Example
2 (right)
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Figure 2: Example 1: Function β(x) (left) and TSVD reconstruction (right)

6 Conclusions
An inverse backscattering problem for the first order perturbation of the multidi-
mensional biharmonic operator was studied. We examined the problem of finding
the jump discontinuities and local singularities of the potential functions based on
certain scattering data. This data for the inverse problem is so-called scattering
amplitude, which can be obtained as the far-field data or, more precisely, as the
asymptotic of the scattered wave at |x| → ∞ [24]. In this text we assumed that
only part of the full data is known; namely, we assumed that the scattering ampli-
tude is only known for arbitrarily large wave-numbers k and for measurement angles
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Figure 3: Example 2: Function β(x) (left) and TSVD reconstruction (right)

which are opposite to the angle of the incident wave.
The method of choice, backscattering Born approximation, was studied sepa-

rately for the dimensions n = 2 and n = 3 of the ambient space. It was proved that
backscattering Born approximation can be used to recover the jumps and singulari-
ties of a combinations of the (possibly complex-valued) potentials in two dimensions,
and to recover main singularities in three dimensions. Numerical examples were
given to further illustrate this approximation method for several different scatterers,
including a complex-valued example.
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Figure 4: Example 3: real and imaginary parts of β (top- and bottom-left) and real
and imaginary parts of TSVD reconstruction (top- and bottom-right)
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