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Abstract

We consider a backscattering Born approximation for a perturbed bihar-
monic operator in three space dimensions. Previous results on this approach
for biharmonic operator use the fact that the coefficients are real-valued to
obtain reconstruction of singularities in the coefficients. In this text we drop
the assumption about real-valued coefficients and establish the recovery of sin-
gularities also for complex coefficients. The proof uses mapping properties of
the Radon transform.

1 Introduction
This work is continuation to our study of the backscattering problem for the per-
turbed biharmonic operatorH4u := ∆2u+~q·∇u+V u in three dimensions, considered
in [15]. Here ~q is a vector-valued function and V is a scalar-valued function from
suitable function spaces. We are interested in the scattering problem for H4 given
by the equations{

H4u = k4u, u = u0 + usc, u0(x, k, θ) = eik(θ,x),
∂f
∂|x| − ikf = o

(
|x|−n−1

2

)
, |x| → ∞, for both f = usc and f = ∆usc,

(1)

where (·, ·) denotes the usual inner product in R3, θ ∈ S2 := {x ∈ R3 | |x| = 1}
and the parameter k > 0 is usually called the wavenumber. The second line of (1)
is an analogue of Sommerfeld’s radiation condition at infinity for this biharmonic
operator [16].
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The solution to the above scattering problem fulfils the Lippmann-Schwinger
integral equation

u(x, k, θ) = eik(x,θ) −
∫
R3

G+
k (|x− y|) (~q(y) · ∇u(y, k, θ) + V (y)u(y, k, θ)) dy, (2)

under some integrability conditions for the coefficients [16]. Here

G+
k (|x|) :=

eik|x| − e−k|x|

8πk2|x|

is an outgoing fundamental solution to H0 := ∆2 − k4 in three dimensions.
For the author a motivating starting point for inverse scattering problems for

biharmonic operators was articles by K. Iwasaki [7]. In these texts the inverse
problem is formulated as a Riemann-Hilbert boundary value problem. From suitable
smoothness assumptions for the coefficients Iwasaki then proved that given suitable
scattering data (the reflection and connection coefficients) it is possible to uniquely
recover the coefficients ~q and V . We approach the inverse problem similarly as
[11, 12, 13, 14] (among many others) do for the the Schrödinger operator and the
magnetic Schrödinger operator. The aforementioned texts expand the solution u to
the scattering problem into several terms and then study the smoothness of certain
inverse Born approximation term-by-term. In particular, we use the backscattering
Born approximation where the data is simply obtained by taking the measurement
in the opposing angle of the incident wave.

As possible applications to biharmonic problems we mention the theory of vibra-
tions of beams and the study of elasticity. For example the time-dependent beam
equation

∂2tU + ∆2U +mU = 0

with the time-harmonic ansatz U(x, t) = u(x)e−iωt yields the equation

∆2u+mu = ω2u.

More concretely, one can model hinged plate configurations by the equations{
∆2u = f in Ω,

u = ∆u = 0 on ∂Ω.

In this context the quantities u, ∇u and ∆u are known as the displacement, the
slope and the bending moment of the beam. In the operator H4 the functions ~q
and V can be considered as perturbations of the slope and displacement. For more
theory, see for example [3]. A different kind of example is given in [9], where the
wave scattering by grating stacks is considered.
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2 Preliminaries
Before going into the main text we recall our notation. The Fourier transform of a
function f is defined by

f̂(ξ) :=
1

(2π)
3
2

∫
R3

e−i(x,ξ)f(x)dx.

The weighted Lebesgue spaces (see eg. [1], [6]) Lpδ(R3) are defined by the norm

‖f‖Lpδ(R3) :=

(∫
R3

(1 + |x|)δp|f(x)|pdx
) 1

p

and the weighted Sobolev spaces W k
p,δ(R3) are the spaces of those functions whose

weak derivatives up to order k ≥ 0 belong to Lpδ(R3). The symbol H t(R3) is used
to denote the L2-based Sobolev space of order t ∈ R defined by the norm

‖f‖Ht(R3) :=

(∫
R3

(1 + |x|2)t|f̂(x)|2dx
) 1

2

.

Finally, let

χc(x) :=

{
1, if |x| ≥ 2,

0, if |x| < 2.

(There is a misprint in [15] and the function χ should be the characteristic function
of R \ [−k0, k0].) As usual, the symbol C denotes a positive constant whose value
can change from line to line.

To continue with the inverse problem we recall the relevant definitions and results
from [15, 16]. If the coefficients satisfy ~q ∈ W 1

p,2δ(R3) and V ∈ Lp2δ(R3), with
3 < p ≤ ∞ and 2δ > 3 − 3

p
then for fixed and large enough k > 0 the equation

(2) has a unique solution with usc ∈ H1
−δ(R3). This solution has the following

asymptotic representation

u(x, k, θ) = eik(θ,x) − eik|x|

8πk2|x|
A(k, θ, θ′) + o

(
1

|x|

)
, |x| → ∞,

where
A(k, θ, θ′) =

∫
R3

e−ik(θ
′,y) [~q · ∇u+ V u] dy

is called the scattering amplitude and θ′ = x/|x| is the direction of observation. Our
data, the backscattering amplitude, is obtained by taking the measurement in the
opposing direction of the incident wave (θ′ = −θ) and is given by

Ab(k, θ) := A(k, θ,−θ) =

∫
R3

eik(θ,y)[~q(y) · ∇u(y, k, θ) + V (y)u(y, k, θ)]dy
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for k ≥ k0 > 0 and is defined Ab(k, θ) = 0 otherwise. By using the first order
Born approximation u(x, k, θ) ≈ u0(x, k, θ) and the divergence theorem we obtain
the approximation

Ab(k, θ) ≈ A0(k, θ) :=

∫
R3

e2ik(θ,y) [ikθ · ~q(y) + V (y)] dy

=

∫
R3

e2ik(θ,y)
[
−1

2
∇ · ~q(y) + V (y)

]
dy

= (2π)
3
2F−1(β)(2kθ),

where we denote β := −1
2
∇ · ~q + V . This motivates the definition of the inverse

backscattering Born approximation qB of β by Fourier inversion as the integral

qB(x) :=
1

(2π)3

∫ ∞
0

k2
∫
S2

e−ik(θ,x)Ab

(
k

2
, θ

)
dθdk.

This function β is the quantity related to the coefficients ~q and V which we hope to
recover.

Let us now elaborate on the Born inversion scheme. The solution of the Lippmann-
Schwinger integral equation (2) can be expressed as the series

u(x, k, θ) =
∞∑
j=0

uj(x, k, θ)

(see [16]). Here the iterations uj are defined by

uj(x, k, θ) := −
∫
Rn
G+
k (|x− y|)[~q(y) · ∇uj−1(y, k, θ) + V (y)uj−1(y, k, θ)]dy,

for j = 1, 2, . . . and u0 as before. Then the backscattering Born series has the
representation

qB = q0 + q1 + qrest,

where qrest :=
∑∞

j=2 qj and

qj(x) :=
1

(2π)3

∫ ∞
0

k2
∫
S2

e−ik(θ,x)Aj

(
k

2
, θ

)
dθdk, j = 0, 1, . . . ,

Aj(k, θ) :=

∫
R3

eik(θ,y)[~q · ∇uj + V uj]dy, j = 0, 1, . . . .

It was shown in [15] that q0 = β+ q̃, where q̃ ∈ C∞(R3) and also that qrest ∈ H t(R3)
for all t < 3

2
.
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The main difficulty in the inverse Born approximation is to obtain good estimates
for the first nonlinear term q1. The approach in [15] was to split q1 = q1,M +
q1,E, where the term q1,E corresponds to the exponentially decaying part of the
fundamental solution G+

k and satisfies q1,E ∈ H t(R3) for all t < 5
2
. The term q1,M

corresponds to the oscillating main part of G+
k and is more difficult to estimate. The

following lemma was proved in [15].

Lemma 2.1. Let n ≥ 2. If ~q ∈ W 1
p,2δ(Rn) and V ∈ Lp2δ(Rn) with n < p ≤ ∞ and

2δ > n− n
p
, then

q1,M(x) =
(2π)

n
2

2
F−1

(
χc(|µ+ η|/2)

|µ+ η|2
∇̂ · ~q(η)∇̂ · ~q(µ)

(µ, η) + i0

)
(x, x)

− (2π)
n
2

2
F−1

(
χc(|µ+ η|/2)

|µ+ η|2

∑n
j,k=1 ∂̂jqk(η)∂̂kqj(µ)

(µ, η) + i0

)
(x, x)

− 2(2π)
n
2F−1

χc(|µ+ η|/2)

|µ+ η|2
̂̃
V (η)V̂ (µ)

(µ, η) + i0

 (x, x)

in the sense of distributions. Here F−1 is the 2n-dimensional inverse Fourier trans-
form and Ṽ := ∇ · ~q − V .

The notation 1
x+i0

is to be understood in the sense of tempered distributions as
the limit

1

x+ i0
:= lim

ε→0+

1

x+ iε
.

By Lemma 2.1 we see that it suffices to study the behaviour of the bilinear form

I(f, g) = (2π)nF−1
(
χc(|µ+ η|)
|µ+ η|2

f̂(η)ĝ(µ)

(µ, η) + i0

)
(x, x)

for functions f, g ∈ Lp2δ(R3) with n < p ≤ ∞ and 2δ > n − n
p
. The above formula

can be further expanded by the Sokhotski-Plemelj formula (cf. [8])

1

x± i0
= p.v.

1

x
∓ iπδ0,

which in distributional form reads〈
1

x+ i0
, ϕ

〉
= lim

ρ→0+

∫
|x|>ρ

ϕ(x)

x
dx∓ iπϕ(0), ϕ ∈ C∞0 (Rn),
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by pulling back with the quadratic form (η, µ). This way we obtain

I(f, g) := p.v.

∫
Rn×Rn

ei(x,η+µ)
χc(|η + µ|)
|η + µ|2

f̂(η)ĝ(µ)

(η, µ)
dηdµ

− iπ

∫
Rn×Rn

ei(x,η+µ)
χc(|η + µ|)
|η + µ|2

f̂(η)ĝ(µ)δ0((η, µ) = 0)dηdµ =: I ′ + I ′′. (3)

The notation δ0(H(x) = 0) denotes the pullback of δ0-distribution by H, i.e.∫
Rn
f(x)δ0(H(x) = 0)dx =

∫
H(x)=0

f(x)
dσ(x)

|∇H|
,

where dσ(x) is the surface measure on the surface {x | H(x) = 0} (see e.g. Theorem
6.1.5 of [6]).

At this point in [15] in the 3-dimensional case the assumption that ~q and V are
real-valued was used in quite essential way: by extending the solutions to (1) for
k < 0 and real ~q and V via formulae u(x, k, θ) := u(x,−k, θ) and ∇u(x, k, θ) :=
∇u(x,−k, θ) it turns out that the term I ′′ can be eliminated. This simplifies the
calculations considerably, but restricts the recovery of singularities to the form:
Re(qB) − β (where β is also real-valued) belongs to H t(R3) (mod C(R3)) for all
t < 3

2
.

In this text we drop the assumption about real-valued coefficients and analyze
the term I ′′ more carefully. Along the lines of proofs of [11, Proposition 3.2] or [15,
Lemma 3.3] in the 2-dimensional case one could write

I ′′ =

∫
R2×R2

ei(x,η+µ)
χc(|µ+ η|)
|µ+ η|2

f̂(η)ĝ(µ)δ0((η, µ) = 0)dηdµ

=

∫
R2

∫ ∞
−∞

ei(x,η+tη
⊥)χc(|η + tη⊥|)
|η|2 + t2

f̂(η)ĝ(tη⊥)|η|−1dtdη,

where η⊥ is the unit vector perpendicular to η chosen according to any specific
orthogonal reference. This choice can be made uniquely for each vector, because
each η ∈ R2 only has two perpendicular unit vectors. The above formula can then
be used to obtain the continuity of q1,M in x ∈ R2. However, in three dimensions
there is no smooth way to assign for every unit η ∈ S2 a unique unit η⊥ ∈ S2

(essentially because of the hairy ball theorem, cf. [5]) so the 2D-approach requires
some modifications to work in 3D.

3 Estimates for I ′′(f, g)
Our approach is based on the observation that certain integrals in I ′′ can be in-
terpreted as Radon transforms of some functions. We can then use the mapping
properties of Radon transform as the main tool for smoothness estimates.
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The Radon transform of a suitable measurable function f is defined as

R(f)(θ, t) :=

∫
(θ,x)=t

f(x)dσ(x),

where θ ∈ Sn−1 and t ∈ R, see e.g., [4]. Here again the measure dσ(x) is the usual
Lebesgue surface measure. We use the following theorem, which is proved in [10] by
methods of complex interpolation.

Theorem 3.1. For n ≥ 3 the inequality∫
Sn−1

sup
t∈R
|R(f)(θ, t)|ρ dθ ≤ C‖f‖αLa(Rn)‖f‖1−αLb(Rn)

holds with ρ ≤ n whenever 1 ≤ a < n
n−1 < b ≤ ∞ and

α

a
+

1− α
b

=
n− 1

n
.

We remark that the above inequality does not hold if n = 2. For our purposes
also Corollary 2 of [10] will be useful.

Corollary 3.2. If f ∈ La(Rn) ∩ Lb(Rn) (n ≥ 3) with 1 ≤ a < n
n−1 < b ≤ 2 then

for almost all θ ∈ Sn−1 the Radon transform R(f)(θ, t) is bounded and continuous
as function of t ∈ R.

Let us now turn to our more particular case. By Hölder’s inequality Lp2δ(R3) ⊂
L1(R3) ∩ L2(R3) when 3 < p ≤ ∞ and 2δ > 3 − 3

p
so we may work in the larger

space L1 ∩ L2.

Lemma 3.3. Let f, g ∈ L2(R3). If f or g is also in L1(R3) then I ′′ = I ′′(f, g)(x)
defines a bounded and continuous function of x ∈ R3.

Proof. By the symmetry I ′′(f, g) = I ′′(g, f) we may assume without loss of gen-
erality that f ∈ L1(R3) ∩ L2(R3). Since |∇µ(η, µ)| = |η| then the application of
δ0-distribution in the µ-variable yields

|I ′′| =
∣∣∣∣∫

R3×R3

ei(x,η+µ)
χc(|η + µ|)
|η + µ|2

f̂(η)ĝ(µ)δ0((η, µ) = 0)dµdη

∣∣∣∣
≤
∫
R3

|f̂(η)|
|η|

∫
(η̂,µ)=0

χc(|η + µ|)
|η + µ|2

|ĝ(µ)|dσ(µ)dη,

where η̂ := η
|η| . Our plan is to show that the above integral is finite. The claim

about continuity then follows from the Lebesgue dominated convergence theorem.
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Here one can interpret the innermost integral as a Radon transform and note
that |η+µ|2 = |η|2 + |µ|2 within the region of integration. Then going over to polar
coordinates in η allows us to split

|I ′′| ≤
∫ 1

0

r

∫
S2
|f̂(rθ)|R

(
χc(|rθ + ·|)
r2 + | · |2

|ĝ|
)

(θ, 0)dθdr

+

∫ ∞
1

r

∫
S2
|f̂(rθ)|R

(
χc(|rθ + ·|)
r2 + | · |2

|ĝ|
)

(θ, 0)dθdr =: J1 + J2.

Since the Fourier transform of f is bounded by ‖f̂‖L∞(R3) ≤ C‖f‖L1(R3) we may
estimate J1 as

J1 ≤ C‖f‖L1(R3)

∫ 1

0

∫
S2
R

(
χc(
√
r2 + | · |2)
| · |2

|ĝ|

)
(θ, 0)dθdr. (4)

The function inside the Radon transform in (4) is integrable since χc(
√
r2 + |η|2) = 0

if |η| < 1 and by the Cauchy-Schwarz inequality∫
R3

χc(
√
r2 + |µ|2)
|µ|2

|ĝ(µ)|dµ ≤ ‖ĝ‖L2(R3)

(∫
|µ|>1

1

|µ|4
dµ

) 1
2

uniformly in r ∈ [0, 1], where in polar coordinates∫
|µ|>1

1

|µ|4
dµ =

∫ ∞
1

r2
∫
S2

1

r4
dθdr = 4π.

By assumption g ∈ L2(R3), so that by Plancherel’s theorem ĝ ∈ L2(R3) and Par-
seval’s equality ‖g‖L2(R3) = ‖ĝ‖L2(R3) holds (see e.g., [2]). Thus the function inside
the Radon transform in (4) also belongs to L2(R3). Then Corollary 3.2 shows that
the Radon transform in the first integral is well-defined as a bounded and continu-
ous function of t ∈ R. By Theorem 3.1 this transform is integrable in θ ∈ S2 and
therefore by using Theorem 3.1 on (4) and applying Parseval’s equality we have the
estimate

J1 ≤ C‖f‖L1(R3)

∫ 1

0

∥∥∥∥∥χc(
√
r2 + | · |2)
| · |2

ĝ

∥∥∥∥∥
1
3

L1(R3)

∥∥∥∥∥χc(
√
r2 + | · |2|)
| · |2

ĝ

∥∥∥∥∥
2
3

L2(R3)

dr

≤ C‖f‖L1(R3)‖g‖L2(R3),

where in the notation of Theorem 3.1 a = 1, b = 2, ρ = 1 and α = 1
3
.

Next we turn to integral J2. Choose first some 6
5
< a < 3

2
to play the same role

as it does in Theorem 3.1. Next, the χc-term can be estimated as
1

r2 + |η|2
≤ 1

r(1 + |η|2) 1
2

,
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when r > 1. Then using Cauchy-Schwarz inequality in the θ-integral yields

J2 ≤
∫ ∞
1

r

∫
S2
|f̂(rθ)|1

r
R

(
|ĝ|

(1 + | · |2) 1
2

)
(θ, 0)dθdr

≤
∫ ∞
1

(∫
S2
|f̂(rθ)|2dθ

) 1
2

∫
S2

[
R

(
|ĝ|

(1 + | · |2) 1
2

)
(θ, 0)

]2
dθ

 1
2

dr. (5)

By the Riemann-Lebesgue lemma the function f̂ is continuous and therefore the
θ-integral over |f̂ |2 is well-defined. Let us show that the Radon transform in (5) is
also well-defined. By Hölder’s inequality∫

R3

|ĝ(µ)|a

(1 + |µ|2)a2
dµ ≤

(∫
R3

1

(1 + |µ|2)at2
dµ

) 1
t (∫

R3

|ĝ(µ)|at′dµ
) 1

t′

, (6)

where 1
t

+ 1
t′

= 1. The latter integral of (6) converges by assumption if we choose
t′ := 2

a
. This choice gives 5

2
< t < 4 which further means that at > 3 whence it

follows that the first integral of (6) also converges. Clearly the function

|ĝ(µ)|
(1 + |µ|2) 1

2

∈ La(R3) (7)

is also in L2(R3), because ĝ ∈ L2(R3) by the previous arguments and the rest is
bounded. By Corollary 3.2 the Radon transform in (5) is well-defined. We may now
use Theorem 3.1 with b = 2 and ρ = 2 to the function (7) to see that the θ-integral
of its Radon transform in (5) is bounded. By (6) we obtain the estimate

J2 ≤ C

∥∥∥∥∥ ĝ

(1 + | · |2) 1
2

∥∥∥∥∥
α

La(R3)

∥∥∥∥∥ ĝ

(1 + | · |2) 1
2

∥∥∥∥∥
1−α

L2(R3)

∫ ∞
1

(∫
S2
|f̂(rθ)|2dθ

) 1
2

dr

≤ C‖g‖L2(R3)

∫ ∞
1

(∫
S2
|f̂(rθ)|2dθ

) 1
2

dr

where α = a
3(2−a) . Further, by Cauchy-Schwarz inequality and Parseval’s equality∫ ∞

1

(∫
S2
|f̂(rθ)|2dθ

) 1
2

dr ≤
(∫ ∞

1

1

r2
dr

) 1
2
(∫ ∞

1

r2
∫
S2
|f̂(rθ)|2dθdr

) 1
2

≤ ‖f‖L2(R3).

Therefore

J2 ≤ C‖g‖L2(R3)‖f‖L2(R3).
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Combining the estimates for J1 and J2 yields

|I ′′(f, g)(x)| ≤ J1 + J2 ≤ C‖g‖L2(R3)

(
‖f‖L1(R3) + ‖f‖L2(R3)

)
uniformly in x ∈ R3 and this estimate concludes the proof.

4 Recovery of singularities
To conclude the recovery of singularities of H4 from the backscattering data for
complex-valued coefficients we collect the results in the following

Theorem 4.1 (Recovery of singularities). Let ~q ∈ W 1
p,2δ(R3) and V ∈ Lp2δ(R3) with

3 < p ≤ ∞ and 2δ > 3− 3
p
. Then the difference qB − β ∈ H t(R3) (mod C(R3)) for

all t < 3
2
.

Proof. From the discussion in Section 1 we know that in the expansion

qB = β + q1,M + q1,E + qrest + q̃,

the terms q1,E, qrest ∈ H t(R3), t < 3
2
and q̃ ∈ C∞(R3). The term q1,M is the main

culprit of problems, but due the conditions on the coefficients ~q and V it suffices
to use Lemma 2.1 and then properties of I = I ′ + I ′′ in (3). Now [15, Lemma 3.7]
shows that I ′ belongs to H t(R3). Then the use of Lemma 3.3 to I ′′ concludes the
proof.

If ~q and V are as before then β ∈ Lp2δ(R3). Theorem 4.1 allows us to conclude
that the difference qB − β is smoother than β itself in the sense that the Sobolev
space H t(R3) embeds into Lq(R3) for any given 2 ≤ q < ∞, by choosing t < 3

2

suitably. This means that if β contains any (local) infinite singularities in the sense
that β 6∈ Lploc(R3) (for some p) then qB has precisely those same singularities.

Corollary 4.2. Under the same assumptions as in Theorem 4.1 the infinite singu-
larities of β = −1

2
∇ · ~q + V over boundaries of smooth domains in three dimensions

are uniquely determined by the backscattering data Ab and can be recovered from qB.

To apply these results in practise one needs to know only the backscattering
amplitude Ab(k, θ) for all angles θ ∈ S2 and all arbitrarily high frequencies k > 0.
A numerical scheme for an approach is treated in [15] in the 2D case.

Acknowledgement

The author was supported by the Doctoral Programme of Exact Sciences at the
University of Oulu, Finland and by the Academy of Finland (application number
250215, Finnish Programme for Centres of Excellence in Research 2012–2017). The
author is grateful to Prof. V. Serov and Docent M. Harju for many discussions and
the anonymous referees for their comments to improve the manuscript.

10



References
[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory,

Ann. Scuola Norm. Sup. Pisa, 2 (1975), 151–218.

[2] G. Folland, Introduction to partial differential equations, Princeton University
Press, New Jersey, 1995.

[3] F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic boundary value prob-
lems, Springer-Verlag Berlin Heidelberg, 2010.

[4] S. Helgason, Radon transform, Birkhäuser Basel, 2nd edition, Boston, 1999.

[5] M. Hirsch, Differential topology, Springer-Verlag, New York, 1976.

[6] L. Hörmander, The analysis of linear partial differential operators I: Distribu-
tion theory and Fourier analysis, Springer-Verlag Berlin Heidelberg, 2003.

[7] K. Iwasaki, Scattering theory for 4th order differential operators: I-II, Japan
J. Math, 14 (1988), 1–96.

[8] R. Kanwal, Generalized functions: Theory and technique, Academic Press,
New York, 1983.

[9] N.V. Movchan, R.C. McPhedran, A.B. Movchan and C.G. Poulton, Scattering
by platonic grating stacks, Proc. R. Soc. A., 465 (2009), 3383–3400.

[10] D.M. Oberlin and E. Stein, Mapping properties of the Radon transform,
Indiana Univ. Math. J., 31 (1982), vol.5, 641–650.

[11] P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering
in two dimensions, Commun. PDE, 26 (2001), 697–715.

[12] A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering
data, Commun. PDE 30 (2005), 67–96.

[13] V. Serov, Inverse fixed angle scattering and backscattering problems in two
dimensions, Inverse Problems, 24 (2008), 065002.

[14] Z. Sun and G. Uhlmann, Inverse scattering for singular potentials in two
dimensions, Trans. Am. Math. Soc., 338 (1993), 363–374.

[15] T. Tyni and M. Harju, Inverse backscattering problem for perturbations of
biharmonic operator, Inverse Problems, 33 (2017), 105002.

[16] T. Tyni and V. Serov, Scattering problems for perturbations of the multidi-
mensional biharmonic operator, Inverse Probl. Imaging, 12:1 (2018), 205-227.

11


