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Abstract

We consider an inverse medium problem in two and three dimensional
cases. Namely, we investigate the problem of reconstruction of unknown
compactly supported refractive index (contrast) from L2 with fixed posi-
tive wavenumber. The proof is based on the new estimates for the Green-
Faddeev function in L∞ space. The main goal of the work is to prove
a uniqueness result in the two and three dimensional cases and to dis-
cuss some possible constructive methods for solving the problem. Finally
we present some numerical examples to demonstrate the results in two
dimensions.

1 Formulation of the problem
It is well known (see, for example, [3], Chapters 8 and 10) that the propagation of
time harmonic acoustic waves (with frequency ω) of small amplitude in a slowly
varying inhomogeneous medium can be governed by the following steady-state
Helmholtz equation

∆u(x) +
ω2

c2(x)
u(x) = 0, x ∈ Rn, n = 2, 3, (1)

where u(x) denotes the corresponding amplitude in two or three dimensions,
∆ is the multidimensional Laplacian and c2(x) is the speed of sound. The
wave motion is caused by an incident wave u0 satisfying the unperturbed lin-
earised equation being scattered by the inhomogeneous medium. Assuming
the inhomogeneous region is contained inside a bounded domain Ω ⊂ Rn, i.e.,
c(x) = c0 = constant for x ∈ Rn \ Ω, we can see that the scattering problem
under consideration is now modelled by

−∆u(x)− k2
0u(x) = k2

0m(x)u(x), (2)

where k0 = ω
c0

is a fixed wave number, m(x) =
c20

c2(x) − 1 := n2(x) − 1 is a
perturbation of the refractive index n(x) and

u(x) = u0(x) + usc(x), u0(x) = eik0(x,θ), θ ∈ Sn−1,
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where the scattered field usc is required to satisfy the Sommerfeld radiation
condition at the infinity

lim
r→∞

r
n−1
2

(
∂usc(x)

∂r
− ik0usc(x)

)
= 0, r = |x|. (3)

We allow for m to be complex-valued in order to include the possibility that
the medium is absorbing. The main practical example (it can be considered as
the motivation of this research) concerns to refractive index with an imaginary
component. As described in [3], this is often modelled in the literature by adding
a term that is proportional to velocity in Euler’s equation which implies that
n2(x) is now of the form

n2(x) = n1(x) + i
n2(x)

k0
=: 1 +m(x),

such that m has compact support in some bounded domain Ω. It is assumed
(for uniqueness purposes of the corresponding boundary value problem, see (10))
that 0 < n1 ≤ 1, n2(x) ≥ 0, that is, −1 < Re(m) ≤ 0 and Im(m) ≥ 0.

The scattering solutions are the unique solutions of the Lippmann-Schwinger
equation

u(x) = u0(x) + k2
0

∫
Rn

G+
k0

(|x− y|)m(y)u(y) dy, (4)

where G+
k0

is the outgoing fundamental solution of the operator (−∆ − k2
0) in

Rn, i.e., the kernel of the integral operator (−∆− k2
0 − i0)−1.

Our basic assumption for refractive index m is that it is a complex-valued
function which belongs to L2(Ω) (physically, only imaginary part of m can have
some infinite singularities from L2 whereas the real part of m can only have
jump singularities). In this case, for any fixed k0 > 0, there is a unique solution
u of (4) such that

‖usc‖Ls(Rn) <∞ (5)

for some s depending on the dimension n. More precisely, using the parametri-
sation v = |m| 12u we may rewrite (4) as

v(x) = v0(x) + k2
0

∫
Ω

K(x, y)m(y)v(y) dy, (6)

where v0 = |m| 12u0 and K(x, y) = |m(x)| 12G+
k0

(|x − y|)m 1
2
(y) with m 1

2
=

sign(m)|m| 12 . Since the integral operator with kernel K(x, y) is compact in
L2(Ω) (see, for example, [25], Chapter 23) we may apply the Riesz theory to
prove the existence and uniqueness of the solution u of the equation (4). These
solutions usc belong to Ls(Rn) with s = 4 if n = 3 and with s = 6 if n = 2 (see
[25], Chapter 23). Even more is true, these solutions u belong to W 2

p,loc(Rn)

with p = 4
3 if n = 3 and with p = 3

2 if n = 2 (see, for example, [25], Chapter
23).
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The property (5) allows us to conclude that the solution u(x, k0, θ) for fixed
k0 > 0 admits asymptotically as |x| → ∞ uniformly with respect to θ the
representation

u(x, k0, θ) = eik0(x,θ) + Cn
eik0|x|k

n−3
2

0

|x|n−1
2

A(k0, θ
′, θ) +O

(
1

|x|n+1
2

)
,

where θ′ := x
|x| ∈ Sn−1, Cn is a known constant depending only on the dimension

n, and the function A(k0, θ
′, θ) is called the scattering amplitude and is defined

by

A(k0, θ
′, θ) := k2

0

∫
Ω

e−ik0(θ′,y)m(y)u(y, k0, θ) dy. (7)

In this article we consider an inverse problem of reconstruction of unknown
function m from the knowledge of the scattering amplitude A(k0, θ

′, θ) for all
θ′, θ ∈ Sn−1. We note that these results work also in the more limited (and
important) case of backscattering data θ′ = −θ.

The following theorems hold.

Theorem 1 (n = 3) Suppose that mj(x) ∈ L2(Ω) are such that Re(mj) ≤ 0
and Im(mj) ≥ 0 for j = 1, 2, and the corresponding scattering amplitudes are
equal to each other

A1(k0, θ
′, θ) = A2(k0, θ

′, θ)

for fixed k0 > 0 and for all θ′, θ ∈ S2. Then

m1(x) = m2(x)

a.e. in Ω.

Theorem 2 (n = 2) Suppose that mj ∈ L2(Ω) are such that Re(mj) ≤ 0 and
Im(mj) ≥ 0 for j = 1, 2, and the corresponding scattering amplitudes are equal
to each other

A1(k0, θ
′, θ) = A2(k0, θ

′, θ)

for fixed k0 > 0 and for all θ′, θ ∈ S1. Then

m1(x) = m2(x) (mod Ht
loc(R2))

for t < 1.

Corollary 1 Suppose all conditions of Theorem 2 are satisfied. If the contrasts
m1 and m2 contain jumps over some smooth curves, then these curves and the
height functions of the jumps are the same for both contrasts m1 and m2.

The proof of this corollary follows from the fact that the difference between
the functions m1 and m2 in the neighborhood of these curves belongs to the
space Ht

comp(R2) with any t < 1. Since no function in Hs(R2), s > 1
2 , can have

conormal jumps, we have the claim.
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The inverse medium problem (with fixed wavenumber) is very similar to
the fixed energy problem for the Schrödinger operator. In dimensions higher
than two it is well known that the scattering amplitude for a fixed positive
energy uniquely determines a compactly supported potential (see [18], [20], [21],
[2]). Recently Bukhgeim [1] proved the uniqueness result in two-dimensional
fixed energy problem for a bounded potential with compact support from W 1

p ,
p > 2, and then Lakshtanov and Vainberg [15] proved the uniqueness result
for a singular potential from Lp, p > 2. Our three-dimensional considerations
for Helmholtz operator generalise an earlier study of many authors [3], [18],
[19], [20], [21], [28], [29] to a more singular refractive index. It should be noted
that the reconstruction of singularities in two-dimensional case for Schrödinger
operator (using the Born approximation) is known much earlier (see [30], [31],
[32], [27], see also [23]). Note here [22]. Again, it must be mentioned that the
fixed energy problem for Schrödinger operators, theoretically, is equivalent to the
inverse medium problem for the Helmholtz operator with a fixed wavenumber.

One may also be interested in [10], where inverse scattering problems for
the Helmholtz equation are considered with more limited data. Their approach
is different from ours and the idea is to use convexification of a Dirichlet-to-
Neumann map. The method is tested with experimental measurement data.
In [9, 11] the uniqueness in the framework of the proposed approximate model
is considered and tested with smooth unknown n(x). The numerical approach
in the present work is similar to that of [5, 26], where inverse problems for
the Schrödinger operator are considered. Numerically, in case of the Helmholtz
operator one has to take into account the size of k0 (this is not needed with
Schrödinger operator).

2 Green-Faddeev function
In order to prove Theorems 1 and 2 we need to investigate the mapping prop-
erties of the Green-Faddeev function

gz(x) :=
1

(2π)n

∫
Rn

ei(x,ξ)

ξ2 + 2(z, ξ)
dξ,

where z ∈ Cn is n-dimensional complex vector with (z, z) = 0. Here and in the
sequel the symbol (·, ·) denotes the inner product in Rn. It can be mentioned
that gz(x) is the fundamental solution of the following operator with constant
coefficients

(−∆− 2i(z,∇))gz(x) = δ(x).

We assume as before that Ω is a bounded domain in Rn. We extend f by zero
outside of Ω. The following results are proved in [24].

Lemma 1 There exists constant c > 0 depending on γ such that for any f ∈
L2(Ω) and for |z| > 1

‖gz ? f‖L∞(Rn) ≤
c

|z|γ
‖f‖L2(Ω), (8)
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where symbol gz ? f denotes the convolution of gz and f , γ < 1 for n = 2 and
γ < 1

2 for n = 3.

The estimates (8) allow us to prove the existence of complex geometric optics
(CGO) solutions to the equation

−∆v − k2
0m(x)v = 0 (9)

By CGO solutions we mean the solutions of this equation of the form

v(x, z) = ei(x,z)(1 +R(x, z)),

where z ∈ Cn with (z, z) = 0.

Lemma 2 For m ∈ L2(Ω) and |z| large enough there exists a unique CGO
solution of the Schrödinger equation (9) such that

‖R‖L∞(Rn) ≤
Ck2

0

|z|γ
,

where γ is as in Lemma 1 and C > 0 is a constant independent of k0.

3 Proof of Theorem 1
The proof consists of two steps, following classical lines. The first step is to
prove that the equality of Dirichlet-to-Neumann maps

Λ1 = Λ2

for boundary data on ∂Ω corresponding to two different refractive indexes m1

and m2 implies the equality m1 = m2. The second step is to show that the
equality of the scattering amplitudes

A1(k0, θ
′, θ) = A2(k0, θ

′, θ)

for fixed k0 > 0 implies the equality of the Dirichlet-to-Neumann maps

Λ1 = Λ2.

For the first step we consider the Dirichlet boundary value problem for the
homogeneous Schrödinger equation{

−∆u(x)− k2
0m(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω,
(10)

with function f from the Sobolev space H
1
2 (∂Ω). Using the Lax-Milgram theo-

rem (see e.g., [25]) and the assumption Re(m) ≤ 0 we can show that there exists
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a unique solution u ∈ H1(Ω) (in the weak sense) to (10). Thus, we may define
the Dirichlet-to-Neumann map Λ as follows:

Λf(x) :=
∂u

∂ν
(x), x ∈ ∂Ω,

where ν is the outward normal vector at the boundary ∂Ω. This map acts here
as

Λ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω).

The following lemma holds.

Lemma 3 If u1 and u2 are the solutions of Dirichlet boundary value problem
(10) with m1 and m2, and with f1 and f2 respectively, then

k2
0

∫
Ω

(m1(x)−m2(x))u1u2 dx =

∫
∂Ω

(
f1
∂u2

∂ν
− f2

∂u1

∂ν

)
dσ(x).

In particular, if f1 = f2 and Λ1 = Λ2 then∫
Ω

(m1(x)−m2(x))u1u2 dx = 0. (11)

This orthogonality condition (11) holds for any two solutions of the Dirichlet
boundary value problem (10). But we need to use it also for CGO solutions.
We proceed as follows.

Extend m1 and m2 by zero for x ∈ R3 \Ω. Suppose also that Λ1 = Λ2. Now,
if u1 and u2 are two CGO solutions then it can be proved (see, for example,
[17]) that u1 = u2 in R3 \ Ω. Thus

u1(x) = u2(x), x ∈ ∂Ω

and we can use (11) also for CGO solutions. Denoting now by u1 and u2 CGO
solutions for m1 and m2 respectively, we have

u1(x, z) = ei(x,z) (1 +R1(x, z)) , u2(x, z̃) = ei(x,z̃) (1 +R2(x, z̃))

with
iz = l + i(k + p), iz̃ = −l + i(k − p)

where l, k, p ∈ R3 and are mutually orthogonal. Fix arbitrary k and choose
l, p→∞, such that

|l|2 = |k|2 + |p|2.

We obtain from the orthogonality condition (11) that∫
Ω

(m1(x)−m2(x))(1 +R1(x, z))(1 +R2(x, z))e2i(x,k) dx = 0.

6



Since
‖R1‖L∞(R3) → 0, ‖R2‖L∞(R3) → 0, l→∞ (p→∞)

then using Lebesgue’s theorem about dominated convergence we obtain∫
Ω

(m1(x)−m2(x))e2i(x,k) dx = 0.

This equality holds for all k ∈ R3. Hence, we conclude that

m1(x) = m2(x)

a.e. in Ω. So, the first step is done. Namely, we proved that the equality of the
Dirichlet-to-Neumann maps implies the equality of the refractive indices.

Now we are in the position to make the second step. In order to finish
the proof of Theorem 1 we assume that the support of m belongs to the ball
BR(0) = {x ∈ R3 : |x| < R}. The scattering solutions u1, u2 of the Schrödinger
equation (2) satisfy the asymptotic representation (k0 > 0 and fixed) as |x| → ∞

uj(x, k0, θ) = eik0(x,θ) + C3
eik0|x|

|x|
Aj(k0, θ

′, θ) +O

(
1

|x|2

)
, j = 1, 2.

Since
A1(k0, θ

′, θ) = A2(k0, θ
′, θ)

then for |x| → ∞

u1(x, k0, θ)− u2(x, k0, θ) = O

(
1

|x|2

)
.

At the same time these solution satisfy

(∆ + k2
0)(u1 − u2) = k2

0(m2(x)u2(x)−m1(x)u1(x)).

Due to the assumptions we have that

supp(m1u1 −m2u2) ⊂ BR(0).

Applying some modification of Rellich’s lemma (see [29]) we obtain that

supp(u1 − u2) ⊂ BR(0).

This fact implies that

u1(x) = u2(x), x ∈ ∂BR(0)

and
∂u1

∂ν
(x) =

∂u2

∂ν
(x), x ∈ ∂BR(0).
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It remains only to remark that the latter equality is equivalent to the equality

Λ1 = Λ2

for the ball BR(0). Applying now the result of the first step we finally obtain
that the equality

A1(k0, θ
′, θ) = A2(k0, θ

′, θ)

implies
m1(x) = m2(x)

a.e. in Ω. This finishes the proof of Theorem 1.

4 Proof of Theorem 2
The geometry of the plane does not allow us to choose non-zero vectors l, k, p ∈
R2 such that

iz = l + i(k + p), iz̃ = −l + i(k − p)

and mutually orthogonal. Due to this "property" it is impossible in 2D case to
prove the result similar to Theorem 1. That’s why we proceed as follows. We
define the scattering transform by

T (ξ) = k2
0

∫
R2

ei(x,ξ)m(x)(1 +R(x, z)) dx, |ξ| ≥
√

2C0 (12)

and the T (ξ) = 0 for |ξ| <
√

2C0, where C0 is defined in Lemma 2. Here
z = 1

2 (ξ − iJξ) and the matrix J is equal to

J =

(
0 1
−1 0

)
.

The main idea here is: the scattering amplitude A(k0, θ
′, θ) with fixed spectral

parameter k0 uniquely determines the Dirichlet-to-Neumann map Λ (see [28]
and [29], see also the proof of Theorem 1 of this work), and the Dirichlet-to-
Neumann map in turn uniquely determines the scattering transform T (12) as
a function of ξ (see, for example, [4]). This allows us to introduce the Born
approximation for this fixed energy problem.

Definition The inverse scattering Born approximation qB(x) of the refractive
index m is defined by

qB(x) := F−1(T (ξ))(x),

where F−1 is the inverse Fourier transform and the equality is understood in
the sense of tempered distributions.
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If we write now qB w.r.t. the solution R then we obtain that

qB(x) = k2
0

1

(2π)2

∫
R2

e−i(ξ,x)

∫
Ω

ei(y,ξ)m(y)(1 +R(y, z)) dy

 dξ

= k2
0m(x) + q1(x) + qrest(x) (mod C∞(R2)), (13)

where the first nonlinear term q1 from the Born series is equal to

q1(x) = k4
0

1

(2π)2

∫
R2

e−i(ξ,x)

∫
Ω

ei(y,ξ)m(y)

∫
Ω

gz(y − s)m(s) ds

 dy

 dξ,

and qrest is equal to

qrest(x) = k2
0

1

(2π)2

∫
R2

e−i(ξ,x)

∫
Ω

ei(y,ξ)m(y)

∞∑
j=1

Rj(y, z) dy

 dξ

with the iterations Rj defined as

R0(x, z) = k2
0

∫
Ω

gz(x− y)m(y) dy,

Rj(x, z) = k2
0

∫
Ω

gz(x− y)m(y)Rj−1(y, z) dy, j = 1, 2, ....

(14)

Lemma 2 gives a rather simple (but a little bit rough) estimation of the smooth-
ness of qrest. Indeed, since for z large enough |z| ≈ |ξ| we obtain immediately
that (see (12))

‖qrest‖2Ht(R2) ≤ C
∫

|ξ|>
√

2C0

(1 + |ξ|2)t

|ξ|4γ
dξ <∞, t < 1.

More detailed analysis shows (see [27]) that this term qrest is actually everywhere
continuous function. Concerning the first nonlinear term q1 we refer also to [27]
where it is proved that function q1(x) belongs to Sobolev space W 1

r (R2) for any
r < 2. We are ready now tho finish he proof of Theorem 2. Indeed, since for
two different refractive indexes m1 and m2 the representation (13) holds (with
the same inverse scattering Born approximation) we obtain that

k2
0(m1(x)−m2(x)) = q1,m2

− q1,m1
+ qrest,m2

− qrest,m1

belongs to W 1
r (R2) +Ht(R2) (mod C∞(R2)) with r < 2 and t < 1. Taking into

account the imbedding
W 1
r (R2) ⊂ Ht(R2)

we obtain the needed result. Thus, Theorem 2 is completely proved.
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Corollary 2 (Backscattering problem with fixed k0) .
Suppose that mj ∈ L2(Ω) are such that Re(mj) ≤ 0 and Im(mj) ≥ 0 for j = 1, 2,
and the corresponding scattering amplitudes are equal to each other

A1(k0,−θ, θ) = A2(k0,−θ, θ)

for fixed k0 > 0 and for all θ ∈ Sn−1, n = 2, 3 (this is backscattering data). Then

m1(x) = m2(x), n = 3, m1(x) = m2(x) (mod Ht
loc), n = 2.

It can be verified that the considerations for backscattering data are completely
the same as for the proof of Theorem 1 and Theorem 2 of present work.

Remark As was mentioned, (see also [27], Theorem 1) the term qrest is a con-
tinuous function and the first nonlinear term q1 belongs (in our concrete case)
to the Sobolev space W 1

r (R2) for any r < 2. That’s why we may conclude that
there is a little bit better result than formulated in Theorem 2 of this paper.
Namely, the difference m1(x)−m2(x) belongs to the Sobolev space W 1

r,loc(R2)
for any r < 2.

5 Numerics
We follow the numerical approach of [5, 26]. In this section our scattering data
will be the scattering transform T . The problem of determining T from the
scattering amplitude A is interesting and will be the subject of future research.

To begin, we first need to numerically evaluate the scattering transform.
To do this, we compute the iterations Rj from (14) by numerically integrating
over the support of m. Due to the logarithmic singularity in gz on the diagonal
(and possible singularities in m) this integration is done by adapting the Kress
n-point rectangular rule [13] to the 2D-support. The nodes and weights of the
integration routine ∫ 1

0

f(x)dx ≈
n−1∑
k=1

akxk

on the interval [0, 1] are given by

xk = w

(
2πk

n

)
, ak =

2π

n
w′
(

2πk

n

)
with the weight function

wp(t) =
tp

tp + (2π − t)p
, p = 3,

see e.g., [12, 13]. Here, the integral may have singularities only at the end-points.
If the singularity occurs at some a ∈ ]0, 1[, we adapt by considering instead the
intervals [0, a] and [a, 1]. In our examples we used two iterations:

R ≈ R0 +R1.
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Since the functions Rj are bounded the calculation of T is easier: we need to
only worry about possible singularities of m. It should be mentioned that the
evaluation of the Faddeev’s Green function gz is done by using the exponential
integral method, for details see for example Section 14.3.2 of [16].

Having obtained the synthetic measurement data T we can start the inver-
sion. Our approach is to consider the inverse Born approximation qB as the
unknown, in the sense that we do not directly calculate the Fourier transform
of the data T (ξ), but rather solve a linear system which gives qB as its solution.
More precisely, since

qB(x) := F−1(T (ξ))(x),

then by Fourier inversion

T (ξ) = F (qB)(ξ) =

∫
R2

ei(x,ξ)qB(x)dx.

We will now form a piecewise constant approximation of qB, where the values
of qB inside the pixels are unknown. We divide our reconstruction grid into
N pixels and denote each pixel by rj . Then we substitute instead of qB the
piecewise constant form

qB(x) ≈
N∑
j=0

fjχrj (x),

where χrj are the characteristic functions of the pixels and fj are the unknown
values of qB in rj . Doing this, we obtain

T (ξ) =

N∑
j=0

fj

∫
rj

ei(x,ξ)dx+ δ(ξ),

where we ignore the error term δ(ξ). The above integrals can be easily computed
in closed form by hand. Now conducting measurements at M points ξk we
arrive to the linear problem Ef = g, where gk = T (ξk) are the measurements
and the matrix E ∈ CM×N contains the values of the above integrals. One
can think of this linear system as a linear inverse problem and use some inverse
problems methods to solve it. In fact, we always choose the number of unknowns
M < N so that this linear system is under-determined, ill-conditioned and rank-
deficient, which means that regularization methods are necessary.

This approach of regarding qB as the unknown has the benefit of easily
allowing one to choose the regularization method. Note also that there is no
danger of committing inverse crime, since the measurement data T is obtained
from the CGO-solutions by numerically integrating R. The inversion on the
other hand is done in a completely separate reconstruction grid.

5.1 Regularization
We tested three (actually four) different regularization methods: the conjugate
gradient least squares (CGLS), Tikhonov and total variation (TV) regulariza-
tion methods. Between these three, the CGLS- and TV-methods seem to work
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best for recovering jumps and singularities in the presence of infinite singulari-
ties. Tikhonov regularization works well, when the components of the refractive
index are small (in L2-norm). We also tested the truncated singular value de-
composition approach to regularizing the problem, but in our experiments this
method did not work so well.

The CGLS-method is an iterative approach to minimizing the expression

arg min {‖Efk − g‖2}

under the constraint fk ∈
{
E∗g, . . . (E∗E)k−1E∗g

}
. This method focuses on

the significant singular components. We used the CGLS-algorithm of Hestenes
and Stiefel, see e.g., [7, 8].

The Tikhonov regularization instead aims to minimize the expression

arg min
{
‖Ef − g‖22 + λ‖f‖22

}
,

where λ > 0 is the regularization parameter, see e.g., [7, 16]. This method works
rather well for our problem when the L2-norm of our solution is relatively small.
However, in our case in the presence of infinite singularities this method picks
too small solutions.

Finally, in TV-regularization we use little different penalty term and mini-
mize the expression

arg min
{
‖Ef − g‖22 + λ‖∇f‖1

}
.

This method allows the solution f to have some steep gradients and hence
works rather well when reconstructing jumps and infinite singularities. The
downside is that this method is somewhat complicated to implement. We use
the approach described in [16] with some modifications to allow for complex
matrix E and solution f . Also, since we a priori assume that the solution
f satisfies −1 < Re(f) ≤ 0 and Im(f) ≥ 0 we can use these conditions as
constraints to help find the optimized solution.

5.2 Numerical examples
In all of the following examples m(x) = n1(x)−1+ i

k0
n2(x) and k0 = 5. As seen

in Lemma 2, the size of R depends on k0. Therefore, to obtain visually good
reconstruction we need to use large enough measurement points (in modulus)
to compensate for the size of k0. We used M = 8100 measurement points in a
[−100, 100]2 square grid. If k0 is smaller (say, k0 = 1) then a smaller grid suffices.
The number of unknown values fj is N = 104 and we attempt to recover m
in a [−1, 1]2 square. In all of the examples the measurement data is corrupted
by Gaussian white noise with standard deviation of 1% of the maximum of the
measurements.

The generation of the synthetic measurements T for one example with two
iterations takes about 15 hours on a computer with 20 core CPU at 2.2GHz.
In the future we are interested in trying finite element methods for the direct
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problem, so that one does not need to iterate the numerically expensive integral
equation. The inversion methods are much quicker. The CGLS solutions can
be computed in less than a second, while Tikhonov solutions take few minutes.
The TV method is the slowest. The numerical work is done in Matlab.

Example 1: Let m(x) = −0.5χrectangle(x) + 0.7
k0
χellipse(x).

Example 2: Let

m(x) = −0.5χellipse(x)−
iϕ|x|<0.3(x)

k0|x| log(|x|)
.

Example 3: Let

m(x) = −0.5χellipse(x) +
iϕ|x|<0.3(x)

k0|0.25− |x||0.4
.

Here χ(x) is the characteristic function and φ|x|<0.3 is a smooth bump function
supported in the ball |x| < 0.3.

Figures 1 and, 2 demonstrate the recovery of shapes (with possible corners),
while in Figures 4, 5, 6, 7 we attempt to detect infinite singularities. The
singularity in Example 2 is rather small and supported at a single point, while
the large singularity of Example 3 is spread on the circle with radius 0.25. Note
that in Figures 4, 5, 6, 7 we plot only a small portion of the infinite singularity.

6 Conclusions and discussion
Remark One could try to introduce also the inverse Born approximation for
this problem. It could be defined (using similar procedure as for the Schrödinger
operator with not fixed wave number k2) by (consider for simplicity only n = 3)

qB(x) :=

∫
S2

∫
S2

e−ik0(x,θ−θ′)A(k0, θ
′, θ) dθ dθ′

= k2
0

∫
Ω

m(y) dy

∫
S2

∫
S2

e−ik0(x,θ−θ′)e−ik0(y,θ′)u(y, k0, θ) dθ dθ′

= k2
0

∫
Ω

m(y) dy

∫
S2

∫
S2

e−ik0(x−y,θ−θ′) dθ dθ′ + k4
0e
ik0|x|O

(
1

|x|

)
, |x| > 1,

where O is uniform w.r.t. θ and θ′. The first term in the latter sum can be
calculated (using the knowledge of Bessel functions) precisely (see Lebedev [14])
and it is equal to

qB(x) ≈ 16π2

∫
Ω

m(y) sin2(k0|x− y|)
|x− y|2

dy.
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It is clear that this term is a bounded continuous function in x ∈ R3 and
behaves as O∗

(
1
|x|2

)
at the infinity. These facts show that the inverse scattering

Born approximation does not contain any significant information about the
contrast m (for example singularities of m) and therefore cannot be used in the
reconstruction of singularities (jumps) of unknowns.

We considered an inverse medium problem with possibly singular contrast
(refractive index) in dimensions two and three. The main motivation was to
account for possibly absorbing medium, where the refractive index is allowed to
be complex-valued. The real part of the refractive index is bounded, but the
imaginary part can have infinite singularities from L2. The main theorems are
uniqueness theorems for the inverse scattering problem with fixed wave number:
equality of the scattering amplitudes (the measurement data) implies the equal-
ity of the corresponding refractive indices. These results also hold under the
backscattering data, where measurements are made in the opposing direction of
the incident field. We also demonstrate the results numerically. We presented
several examples, where we attempt to recover the location of a compactly sup-
ported refractive index with non-zero imaginary part. In the numerical approach
we have to take into account the size of the wave number k0, in contrast with the
corresponding numerical results for the Schrödinger operator. Examples where
the imaginary part of the refractive index has singularities at a point and along
a surface are also given.
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