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Abstract

The subject of this work concerns the classical direct and inverse
scattering problems for quasi-linear perturbations of the two-dimensional
biharmonic operator. The quasi-linear perturbations of the first and
zero order might be complex-valued and singular. We show the exis-
tence of the scattering solutions to the direct scattering problem in
the Sobolev space W 1

∞(R2). Then the inverse scattering problem can
be formulated as follows: does the knowledge of the far field pattern
uniquely determine the unknown coefficients for given differential op-
erator? It turns out that the answer to this classical question is af-
firmative for quasi-linear perturbations of the biharmonic operator.
Moreover, we present a numerical method for the reconstruction of
unknown coefficients, which from the practical point of view can be
thought of as recovery of the coefficients from fixed energy measure-
ments.

1 Introduction
We consider the following two-dimensional quasi-linear differential operator

H4u(x) := ∆2u(x) + ~W (x, |u|) · ∇u(x) + V (x, |u|)u(x),
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where ~W is a vector-valued complex (in general) function and V is a scalar
complex-valued potential. Our basic assumptions for the coefficients of H4

are:

Assumption 1.1. We assume that functions
−→
W and V satisfy the following

conditions:

• |
−→
W (x, s)| ≤ Cρ αW (x) and |V (x, s)| ≤ Cρ αV (x)

• |
−→
W (x, s1)−

−→
W (x, s2)| ≤ C̃ρ|s1 − s2| βW (x)

• |V (x, s1)− V (x, s2)| ≤ C̃ρ|s1 − s2|βV (x),

where 0 < s, s1, s2 ≤ ρ. Precise conditions for functions αW , αV , βW and
βV will be given in each theorem, but they are always assumed to satisfy the
following decay property

|f(x)| ≤ C

|x|µ
, |x| ≥ R, (1)

where R is big enough and µ > 2.

The motivation and the interest to study multi-dimensional operator of
order four appear for example in the study of elasticity and in the theory
of vibration of beams. As a concrete example, the non-linear beam equation
(see [7])

∂2tU(x, t) + ∆2
xU(x, t) +m(x)|U(x, t)|pU(x, t) = 0,

where p ≥ 0, under time-harmonic assumptions U(x, t) = u(x)e−iωt leads to
the equation

∆2u(x) +m(x)|u(x)|pu(x) = ω2u(x).

The wave parameter ω is fixed (in general), but nevertheless we can consider
it fixed but big enough in order to apply limiting process and appropriate
numerical methods. This allows to consider some scattering problems with
high frequency for this potential equation. For the scattering problems (in-
cluding non-linear equations), see for example [13] and references therein.
Concerning inverse problems for biharmonic and polyharmonic operators we
mention some solutions to inverse boundary value problems (see [10, 11]).

Assumption 1.1 includes the power-type nonlinearities of the nonlinear
beam equation described above, and most other physically relevant nonlin-
earities, such as the saturation and sinc nonlinearities

q(x)
|u|2

1 + |u|2
, and q(x)

sin(|u|)
|u|

.
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The present work follows the footsteps of [5, 6, 9, 15, 17]. In [5], [9] and [15]
the inverse scattering problems for multi-dimensional nonlinear Schrödinger
operators were considered. In [17] similar study was carried out for a multi-
dimensional biharmonic operator with linear perturbations of first and zero
order (see also [18]). In [6] fixed energy problem (the inverse scattering prob-
lem with fixed wave number) for nonlinear Schrödinger operator is studied.
In [19] these problems were considered for biharmonic operator with first
and zero order nonlinear perturbations on the line while a general nonlinear
Schrödinger operator on the line was investigated in [14]. The purpose of this
work is to initiate similar studies in the two-dimensional case.

The present work is concerned with the following scattering problem for
the operator H4 given by

H4u(x) = k4u(x), u(x) = u0(x) + usc(x), u0(x) = eik(x,θ), θ ∈ S1, (2)

where u0 is a plane wave travelling in direction θ with wavenumber k and the
scattered wave usc and its Laplacian ∆usc are required to satisfy Sommerfeld
radiation condition at the infinity

lim
r→∞

r
1
2

(
∂f(x)

∂r
− ikf(x)

)
= 0, r = |x|, for both f = usc and f = ∆usc.

(3)
We are looking for the scattering solutions usc to the equation (2) in the
Sobolev spaces H4

loc(R2)∩W 2
∞(R2). Literally repeating the proof of Theorem

3.3 in [17] (see also [3]) and using the radiation conditions (3) we obtain that
if u = u0 + usc, usc ∈ H4

loc(R2) ∩W 2
∞(R2) solves (2) then it also solves the

integral Lippmann-Schwinger equation (see [17] for details)

u(x) = u0(x)−
∫
R2

G+
k (|x− y|)( ~W (y, |u|) · ∇u(y) + V (y, |u|)u(y))dy,

where G+
k is the outgoing fundamental solution of the operator (∆2 − k4) in

R2, i.e., the kernel of the integral operator (∆2 − k4 − i0)−1. This function
G+
k in R2 has the following form

G+
k (|x|) =

i

8k2

(
H

(1)
0 (k|x|) +

2i

π
K0(k|x|)

)
, k > 0,

where H(1)
0 is the Hankel function of the first kind and order zero and K0 is

the Macdonald function of order zero.
Since u0 is just a bounded function with the norm ‖u0‖L∞(R2) = 1 it is

more convenient to study (instead of (2)) the equivalent integral equation
for the scattered wave, namely
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usc(x) = −
∫
R2

G+
k (|x− y|)

(
~W (y, |u0 + usc|) · ∇ (u0 + usc) (y)

+ V (y, |u0 + usc|) (u0 + usc) (y)
)

dy. (4)

Once we have shown that the unique solution exists, by repeating the cal-
culation that was done in [9, 17] we obtain for fixed k > 0 the asymptotic
behaviour for |x| → ∞ of the function usc

usc(x) = − i + 1

8
√
π

eik|x|

k
5
2 |x| 12

A(k, θ′, θ) + o

(
1

|x| 12

)
,

where θ′ = x/|x| is the angle of observation and function A is called the
scattering amplitude and it is given via the formula

A(k, θ′, θ) =

∫
R2

e−ik(θ
′,y)
[−→
W (y, |u|) · ∇u+ V (y, |u|)u

]
dy.

From the point of view of inverse problems one regards this scattering
amplitude as one possible scattering data. For these purposes one requires
the scattering amplitude to be known for all possible angles θ and θ′ and all
arbitrarily high frequencies k > 0.

The main result of this work is the following Saito’s formula. Similarly to
other scattering problems it allows us to obtain a uniqueness result for the
inverse problem and a representation formula for the unknown combination
β(x) := V (x, 1)− 1

2
∇·
−→
W (x, 1) which appears in Theorem 1.2. What is more,

it was shown in [16] that Saito’s formula can be inverted numerically by
considering large value for k > 0 and solving the convolution type equation
for β.

Theorem 1.2 (Saito’s formula). Let functions
−→
W and V satisfy Assumption

1.1 with functions αW , αV , βW and βV belonging to space Lploc(R2) where
2 < p ≤ ∞ and they all satisfy condition (1). If in addition we assume that
∇ ·
−→
W (·, 1) ∈ Lploc(R2), with 2 < p ≤ ∞, and has the behavior at the infinity

(1) then

lim
k→∞

k

∫
S1

∫
S1

e−ik(θ−θ
′,x)A(k, θ′, θ)dθ′dθ = 4π

∫
R2

V (y, 1)− 1
2
∇ ·
−→
W (y, 1)

|x− y|
dy,

(5)

uniformly in x ∈ R2.
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The most significant consequences of Saito’s formula are contained in the
following corollaries.

Corollary 1.3. Let β1(x) = −1
2
∇ ·
−→
W 1(x, 1) + V1(x, 1) and β2(x) = −1

2
∇ ·

−→
W 2(x, 1) + V2(x, 1) be as in Theorem 1.2 and A1(k, θ

′, θ) and A2(k, θ
′, θ)

be the corresponding scattering amplitudes arising from these two scattering
problems. If these scattering amplitudes coincide for all angles θ, θ′ and for
some sequence kj →∞ as j →∞, then β1 = β2 almost everywhere in R2.

Corollary 1.4. If all conditions of Theorem 1.2 are satisfied, then

β(x) =
1

8π2
lim
k→∞

k2
∫
S1

∫
S1
A(k, θ′, θ)|θ − θ′|e−ik(θ−θ′,x)dθdθ′,

in the sense of tempered distributions.

Proofs for these corollaries can be found for example in [9].

Remark 1.5. Heuristically, if the non-linearity can be expanded by the Taylor
formula, we recover the principal part of the expansion. If the non-linearity
is of some known type, for example V (x, |u|) = q(x)|u|r for some function q
and r ≥ 1, then we can recover the unknown potential q uniquely.

The following notations are used throughout the text. The symbol Lpδ(R2),
1 ≤ p ≤ ∞, δ ∈ R denotes the p-based Lebesgue space over R2 with norm

‖f‖Lpδ =

(∫
R2

(1 + |x|)δp|f(x)|pdx
)1/p

.

The weighted Sobolev spaces Wm
p,δ(R2) are defined as the spaces of functions

whose weak derivatives up to order m ≥ 0 belong to Lpδ(R3) and the norm is
defined as follows,

‖f‖Wm
p,δ

=
∑
|α|≤m

‖Dαf‖Lpδ .

For L2-based space we use the special notationHm
δ (R2) = Wm

2,δ(R2). Through-
out the text the symbol C (compare with the constants C with some special
index and special meaning) is used to denoted generic positive constant whose
value may change from line to line.

The paper is organized as follows. In Section 2 we study the direct scat-
tering problem and establish its unique solvability under some suitable as-
sumptions. Section 3 is devoted to proving the main result of the paper, i.e.,
Saito’s formula. In Section 4 we demonstrate a new numerical method for
reconstruction of function β.
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2 Existence of the scattering solutions
The goal of this section is to show that the scattering problem (2) has a
unique solution. To this end the following theorem holds.

Theorem 2.1. Let functions ~W and V be as in Assumption 1.1, with αW , βW ∈
Lploc(R2), where 1 < p ≤ ∞ and αV , βV ∈ L1

loc(R2). Then for any ρ > 0
there exists k0 > 0 such that the equation (4) has a unique solution in
Bρ(0) := {f ∈ W 1

∞(R2) : ‖f‖W 1
∞ ≤ ρ}, for all k ≥ k0. Moreover, depending

on 1 < p ≤ ∞, the solution will agree to the following norm estimates

‖usc‖W 1
∞ ≤ C

{
k−1/2, 4/3 < p ≤ ∞
k−ε, 1 < p ≤ 4/3,

for some constant C and any 0 < ε < 2p−2
p
.

Proof. Let us start by defining an operator F by setting

F (ϕ) (x) = −
∫
R2

G+
k (|x− y|)

[−→
W (y, |u0 + ϕ|) · ∇(u0 + ϕ)

+ V (y, |u0 + ϕ|)(u0 + ϕ)
]
dy,

where ϕ ∈ W 1
∞(R2). We will show that operator F is a contraction from

Bρ(0) to itself. The asymptotic behaviour of functions H(1)
j and Kj (see [12])

leads us to the following estimates for the fundamental solution∣∣G+
k (|x− y|)

∣∣ ≤ C0

k2

and ∣∣∇xG
+
k (|x− y|)

∣∣ ≤ C0


1

k
, k|x− y| < 1

1

k3/2|x− y|1/2
, k|x− y| > 1.

(6)

The latter estimate gives us that for any 0 ≤ ε ≤ 1
2
there exists constant

Cε, such that we have

|∇xG
+
k (|x− y|)| ≤ Cε

k1+ε|x− y|ε
, (7)

for all x, y ∈ R2 and k > 0. From (6) it follows that the value of ε can not
be bigger than 1

2
in (7). Using this behaviour of function G+

k , the following
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inequality holds for all ϕ ∈ Bρ(0), when k ≥ 1,

|F (ϕ) (x)| ≤ C0

k2

∫
R2

(
| ~W (y, |u0 + ϕ|)|(k + ρ) + |V (y, |u0 + ϕ|)|(1 + ρ)

)
dy

≤ C ′

k
, (8)

where
C ′ = C0Cρ+1(1 + ρ) (‖αW‖L1 + ‖αV ‖L1) ,

uniformly in x ∈ R2. Conditions for functions αW and αV guarantee that this
value is always finite. For the gradient of F (ϕ) , we use the estimate (7). If
4
3
< p ≤ ∞, we choose ε = 1

2
and otherwise we pick any 0 < ε < 2p−2

p
and

we have

|∇xF (ϕ) (x)| ≤
∫
R2

Cε
k1+ε|x− y|ε

Cρ+1 |αW (y)|| (k + ρ)dy

+

∫
R2

C0

k
Cρ+1 |αV (y)| (1 + ρ)dy ≤ C∗

kε
, (9)

where

C∗ = CεCρ+1(1 + ρ) sup
x∈R2

∫
R2

|αW (y)|
|x− y|ε

dy + C0Cρ+1(1 + ρ)‖αV ‖L1 ,

which is finite due to αW ∈ Lploc(R2), with 1 < p ≤ ∞. Indeed,∫
R2

|αW (y)|
|x− y|ε

dy ≤
∫
|y|≤R

|αW (y)|
|x− y|ε

dy + C

∫
|y|>R

1

|x− y|ε|y|µ
dy = I1 + I2.

For I1 we may use Hölder inequality and we have

I1 ≤ ‖αW‖Lp
(∫
|y|≤R

|x− y|
−εp
p−1 dy

) p−1
p

≤ CR‖αW‖Lp

uniformly in x ∈ R2, since ε < 2p−2
p

.
In order to show that I2 is bounded uniformly in x ∈ R2, we consider two

cases. Let us first assume that |x| ≤ R/2. Then, inside the area of integration
in I2, we have |x− y| ≥ R/2 and therefore (for these values of x)

I2 ≤ C

(
2

R

)ε ∫
|y|>R

|y|−µdy ≤ C ′R

due to µ > 2.
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In case when |x| > R/2, for any µ− 2 < α < µ+ ε− 2 we have

I2 = C

∫
|y|>R

1

|x− y|ε|y|µ
dy ≤ CR−α

∫
R2

1

|x− y|ε|y|µ−α
dy

≤ R−α
C

|x|ε+µ−α−2
≤ C ′′R.

Therefore, we may conclude that uniformly in x ∈ R2

sup
x∈R2

∫
R2

|αW (y)|
|x− y|ε

dy ≤ C.

Combining estimates (8) and (9), gives us that

‖F (ϕ) ‖W 1
∞ ≤ ρ,

whenever k ≥ k1 := max

{
1,
(
C′+C∗

ρ

)1/ε}
. Next, we will show that F is

contraction, i.e., there exists 0 < τ < 1 such that for all ψ, ϕ ∈ Bρ(0),

‖F (ψ)− F (ϕ) ‖W 1
∞ ≤ τ‖ψ − ϕ‖W 1

∞ .

Let ψ, ϕ ∈ Bρ(0). We start by splitting the difference into two parts

F (ϕ) (x)− F (ψ) (x)

= −
∫
R2

G+
k (|x− y|)

[−→
W (y, |u0 + ϕ|) · ∇(u0 + ϕ)

−
−→
W (y, |u0 + ψ|) · ∇(u0 + ψ)

]
dy

−
∫
R2

G+
k (|x− y|) [V (y, |u0 + ϕ|)(u0 + ϕ)− V (y, |u0 + ψ|)(u0 + ψ)] dy

= I ′ + I ′′.

The first part can be estimated as

|I ′| ≤
∫
R2

|G+
k (|x− y|)|

∣∣∣ ~W (y, |u0 + ψ|)− ~W (y, |u0 + ϕ|)
∣∣∣ |∇u0(y)|dy

+

∫
R2

|G+
k (|x− y|)|

∣∣∣ ~W (y, |u0 + ψ|)− ~W (y, |u0 + ϕ|)
∣∣∣ |∇ψ|dy

+

∫
R2

|G+
k (|x− y|)|

∣∣∣ ~W (y, |u0 + ψ|)
∣∣∣ |∇ϕ−∇ψ|dy

≤ ‖βW‖L
1

k
C̃ρ+1(1 + ρ)‖ϕ− ψ‖L∞ +

‖αW‖L1

k2
Cρ+1‖∇ϕ−∇ψ‖L∞ . (10)
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Similar calculation shows that

|I ′′| ≤ ‖βV ‖L
1

k2
C̃ρ+1(1 + ρ)‖ϕ− ψ‖L∞ +

‖αV ‖L1

k2
Cρ+1‖ϕ− ψ‖L∞ . (11)

Finally, for the difference of gradients of functions F (ϕ) and F (ψ) , we may
again pick 0 < ε < 2− 2

p
and similarly as above, we have

|∇F (ϕ) (x)−∇F (ψ) (x)| ≤
[
A1

kε
+
A2

k

]
‖ϕ− ψ‖W 1

∞ , (12)

where the constants A1 and A2 are given as

A1 = CεC̃ρ+1 sup
x∈R2

∫
R2

|βW (y)|
|x− y|ε

dy and

A2 = C0

[
C̃ρ+1ρ‖βW‖L1 + Cρ+1‖αW‖L1 + C̃ρ+1(1 + ρ)‖βV ‖L1 + Cρ+1‖αV ‖L1

]
.

Our conditions for functions αW , βW , αV and βW guarantee that these con-
stants are finite. Now, by combining estimates (10), (11) and (12) we have
that

‖F (ϕ)− F (ψ) ‖W 1
∞ ≤

τ̃

kε
‖ϕ− ψ‖W 1

∞ , (13)

where ε > 0 and

τ̃ = CεC̃ρ+1 sup
x∈R2

∫
R2

|βW (y)|
|x− y|ε

dy + C̃ρ+1(1 + ρ(1 + C0))‖βW‖L1

+ Cρ+1(1 + C0) (‖αW‖L1 + ‖αV ‖L1) + C̃ρ+1(1 + ρ)(1 + C0)‖βV ‖L1 .

From this it follows that operator F is a contraction for all k ≥ k2 :=
max{1, τ̃ 1/ε}. The estimate (13) also yields an estimate for the scattered field
usc in terms of iterations defined by ũj := F (ũj−1), j = 1, 2, . . . and ũ0 = 0.
This follows from Banach fixed point theorem’s a priori estimates (see e.g,
[20, Theorem 1.A(iii)]). Indeed, using ũ1 = F (0), we have

‖usc − ũj‖W 1
∞(R2) ≤

(τ̃ /kε)j

1− τ̃ /k
‖F (0)‖W 1

∞(R2) ≤ Ck−(j+1)ε, (14)

when k ≥ k0. In particular, when we consider functions ~W and V that satisfy
Assumption 1.1 with 2 < p ≤ ∞, we have

‖usc − ũj‖W 1
∞(R2) ≤ Ck−

j+1
2 . (15)

The norm estimate for usc given in Theorem 2.1 follows immediately from
the error estimate (14) and estimates (8) and (9) for ϕ = 0. This finishes the
proof.
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Lemma 2.2. Let ~W and V satisfy Assumption 1.1. Then the following norm
estimates hold

‖usc‖Hj
−δ(R2) ≤

C

k2−j
, j = 0, 1, 2

with some constant C > 0, where δ > 1
2
.

Proof. This lemma follows from the mapping properties of integral operator
with kernel G+

k and from the Agmon’s estimate [1, Appendix A, Remark 2],
which states that for δ > 1

2
and k ≥ 1,∑

|α|≤4

k3−|α| ‖Dαf‖L2
−δ(Rn)

≤ C
∥∥(∆2 − k4)f

∥∥
L2
δ(Rn)

,

where the constant C > 0 depends only on n and δ. For details, see [17].

Theorem 2.3. Let usc be the solution of (4) obtained in Theorem 2.1. Then
for fixed k > k0 it has the following asymptotic representation as |x| → ∞

usc(x) = − i + 1

8
√
π

eik|x|

|x|1/2k5/2
A(k, θ′, θ) + o

(
1

|x| 12

)
, (16)

where, θ′ ∈ S2 is the angle of observation, i.e., θ′ = x
|x| and function A is

called a scattering amplitude and it is given as

A(k, θ′, θ) =

∫
R2

e−ik(θ
′,y)
[−→
W (y, |u|) · ∇u+ V (y, |u|)u

]
dy.

Proof. See [17, Theorem 5.2].

3 Proof of Saito’s formula
Proof. We start by splitting the left hand side of (5) into four parts

k

∫
S1

∫
S1

e−ik(θ−θ
′,x)A(k, θ′, θ)dθ′dθ

= k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′−θ,y)ikθ · ~W (y, |u|)dydθ′dθ

+ k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′,y) ~W (y, |u|) · ∇usc(y)dydθ′dθ

+ k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′−θ,y)V (y, |u|)dydθ′dθ

+ k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′,y)V (y, |u|)usc(y)dydθ′dθ

= I1 + I2 + I3 + I4.
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In what follows, we will make a frequent use of the following result,∫
S1

e−ik(θ,x−y)dθ = 2πJ0(k|x− y|), (17)

where J0 is the Bessel function of first kind and order 0. Some justification
for this can be found in [8]. Function J0 satisfies the following asymptotic
behaviour

J0(z) =

O(1), z → 0√
2

πz
cos(z − 1

4
π) +O(z−

3
2 ), z → +∞.

Let us first consider the term I1. By substituting ~W (y, |u|) = ~W (y, 1) +
~W (y, |u|)− ~W (y, 1) we obtain

I1 = k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′−θ,y)ikθ · ~W (y, 1)dydθ′dθ

+ k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′−θ,y)ikθ ·

(
~W (y, |u|)− ~W (y, 1)

)
dydθ′dθ

= I ′ + I ′′.

When we substitute θ = θ − θ′ + θ′ into I ′, we have

I ′ = k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′−θ,y)ik(θ − θ′) · ~W (y, 1)dydθ′dθ

+ k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′−θ,y)ikθ′ · ~W (y, 1)dydθ′dθ

= k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

∇ye
−ik(θ′−θ,y) · ~W (y, 1)dydθ′dθ − I ′,

where −I ′ appears on the last row due to asymmetricity with respect to θ
and θ′.

If we now rearrange the equation above, we may integrate by parts and
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use the result (17) to obtain

2I ′ = −k
∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′−θ,y)∇ · ~W (y, 1)dydθ′dθ

= −4π2k

∫
R2

J2
0 (k|x− y|)∇ · ~W (y, 1)dy

= −4π2k

∫
k|x−y|<1

∇ · ~W (y, 1)dy

− 4π2k

∫
k|x−y|>1

(√
2 cos(k|x− y| − 1

4
π)√

kπ|x− y|
+O

(
1

k3/2|x− y|3/2

))2

∇ · ~W (y, 1)dy

= −4π2k

∫
k|x−y|<1

∇ · ~W (y, 1)dy

− 4π

∫
k|x−y|>1

2

|x− y|
cos2(k|x− y| − 1

4
π)∇ · ~W (y, 1)dy

+O(1)

∫
k|x−y|>1

∇ · ~W (y, 1)

k|x− y|2
dy. (18)

Here the first term goes to zero as k →∞ uniformly in x due to Assumption
1.1 and

4π2k

∫
k|x−y|<1

|∇ · ~W (y, 1)|dy

≤ 4π2k

(∫
k|x−y|<1

1dy

)1/p′ (∫
k|x−y|<1

|∇ · ~W (y, 1)|pdy
)1/p

≤ Ck1−2/p
′
(∫

k|x−y|<1

|∇ · ~W (y, 1)|pdy
)1/p

,

where p′ is the Hölder conjugate of 2 < p ≤ ∞ and thus 1− 2/p′ < 0.
The second term in (18) can be further split into two parts and we obtain

4π

∫
k|x−y|>1

∇ · ~W (y, 1)

|x− y|
2 cos2(k|x− y| − 1

4
π)dy

= 4π

∫
k|x−y|>1

∇ · ~W (y, 1)

|x− y|
dy + 4π

∫
k|x−y|>1

∇ · ~W (y, 1)

|x− y|
sin(2k|x− y|)dy,

where at the limit when k → ∞, the first term gives us what we wanted.
In order to show that the rest goes to zero as k →∞ we will use Riemann-
Lebesgue lemma. It suffices to show that ∇·

~W (·,1)
|x−·| ∈ L1(R2), uniformly in

12



x ∈ R2. Now∫
R2

|∇ · ~W (y, 1)|
|x− y|

dy ≤
∫
|y|≤R

|∇ · ~W (y, 1)|
|x− y|

dy + C

∫
|y|>R

dy

|y|µ|x− y|

≤
(∫
|y|≤R

|∇ · ~W (y, 1)|pdy
)1/p(∫

|y|≤R

1

|x− y|p′
dy

)1/p′

+ C

∫
|y|>R

dy

|y|µ|x− y|
,

where the first term is finite uniformly in x ∈ R2 due to p′ < 2. In the second
term we consider two cases. First, let |x| ≤ R

2
. Then for all |y| > R, we have

|x− y| > R
2
and therefore

C

∫
|y|>R

dy

|y|µ|x− y|
≤ 2C

R

∫
S1

dω

∫ ∞
R

r1−µdr ≤ C.

In the case when |x| > R
2
, we may choose ε > 0 such that 1 < µ − ε < 2.

Now for the convolution it holds that

C

∫
|y|>R

dy

|y|µ|x− y|
≤ C

Rε

∫
R2

dy

|y|µ−ε|x− y|
≤ C

Rε

1

|x|µ−ε−1
≤ C2µ−ε−1

Rµ−1

and therefore ∇·
~W (·,1)
|x−·| ∈ L

1(R2), uniformly in x ∈ R2. Thus Riemann-Lebesgue
lemma gives us

lim
k→∞

4π

∫
k|x−y|>1

∇ · ~W (y, 1)

|x− y|
sin(2k|x− y|)dy = 0,

uniformly in x ∈ R2.
The third term of (18) can be estimated as∣∣∣∣∣

∫
k|x−y|>1

∇ · ~W (y, 1)

k|x− y|2
dy

∣∣∣∣∣ ≤ 1

kσ

∫
R2

|∇ · ~W (y, 1)|
|x− y|1+σ

dy,

where the last integral is finite when 0 < σ < 1− 2
p
.

In order to estimate term I ′′, we prove the following inequality. For a
function g ∈ Lploc(R2), 2 < p ≤ ∞ satisfying the decay-property (1) and
δ < µ− 1

2
, we have∫

R2

(1 + |y|)2δ|J0(k|x− y|)|2|g(y)|2dy ≤ C

kη
, (19)

13



for some η > 0 small enough. Indeed,∫
R2

(1 + |y|)2δ|J0(k|x− y|)|2|g(y)|2dy

≤
∫
k|x−y|<1

(1 + |y|)2δ|g(y)|2dy + C

∫
k|x−y|>1

(1 + |y|)2δ |g(y)|2

k|x− y|
dy

≤
∫
k|x−y|<1, |y|≤R

(1 + |y|)2δ|g(y)|2dy + C

∫
k|x−y|<1, |y|>R

(1 + |y|)2δ 1

|y|2µ
dy

+
C

kη

∫
k|x−y|>1,|y|≤R

(1 + |y|)2δ |g(y)|2

|x− y|η
dy

+
C

k

∫
k|x−y|>1, |y|>R

(1 + |y|)2δ 1

|x− y||y|2µ
dy

= K1 +K2 +K3 +K4.

Using Hölder’s inequality, we may estimate the first term as follows

K1 ≤ (1 +R)2δ
(∫

k|x−y|<1

|g(y)|2qdy
)1/q (∫

k|x−y|<1

1dy

)1/q′

≤ C

k2/q′
,

where q = p
2
and q′ = p

p−2 , and the second term as

K2 ≤ CR2δ−2µ
∫
|x−y|<1/k

1dy ≤ C

k2
.

Again, by Hölder’s inequality we have

K3 ≤
C

kη
(1 +R)2δ

(∫
|y|≤R

|g(y)|2qdy
)1/q (∫

|y|≤R

1

|x− y|ηq′
dy

)1/q′

≤ C

kη
,

where both integrals are finite when q = p
2
and 0 < η < 2 − 4

p
. And finally

the fourth term can be estimated as

K4 ≤
C

k

∫
|y|>R

1

|x− y||y|2µ−2δ
dy ≤ C

k
,

since δ < µ− 1
2
. This proves (19).

Next we will show that the term I ′′ goes to zero as k →∞. Using Hölder
inequality and Lemma 2.2 together with estimate (19) we have

|I ′′| ≤ C k2
∫
S1

dθ

∫
R2

|J0(k|x− y|)| |βW (y)||usc(y)|dy

≤ C k2
∫
S1

dθ

(∫
R2

(1 + |y|)2δ|J0(k|x− y|)|2|βW (y)|2dy
)1/2

×
(∫

R2

(1 + |y|)−2δ|usc(y)|2dy
)1/2

≤ C

kη/2
,

14



for some η > 0 small enough.
Let us now consider I3.We start again by substituting V (y, |u|) = V (y, 1)+

V (y, |u|)− V (y, 1) and we have

I3 = k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′−θ,y)V (y, 1)dydθ′dθ

+ k

∫
S1

∫
S1

e−ik(θ−θ
′,x)

∫
R2

e−ik(θ
′−θ,y) (V (y, |u|)− V (y, 1)) dydθ′dθ

= I∗ + I∗∗.

The term I∗∗ can be considered in the same manner as we did earlier with
I ′′. In I∗ we may calculate integrals with respect to both θ and θ′ using (17)
and we obtain

I∗ = 4π2k

∫
R2

J2
0 (k|x− y|)V (y, 1)dy

= 4π2k

∫
k|x−y|<1

V (y, 1)dy

+ 4π2k

∫
k|x−y|>1

(√
2

πk|x− y|
cos(k|x− y| − 1

4
π) +O

(
1

k3/2|x− y|1/2

))2

V (y, 1)dy

= 4π2k

∫
k|x−y|<1

V (y, 1)dy

+ 4π

∫
k|x−y|>1

2

|x− y|
cos2(k|x− y| − 1

4
π)V (y, 1)dy

+O (1)

∫
k|x−y|>1

V (y, 1)

k|x− y|2
dy = J1 + J2 + J3.

We may estimate term J1 straightforwardly by using Hölder’s inequality and
we have

|J1| ≤ 4π2k

(∫
k|x−y|<1

1dy

)1/p′ (∫
k|x−y|<1

|V (y, 1)|pdy
)1/p

≤ Ck1−2p
′
,

where 1 ≤ p′ < 2.
Let us now split J2 into two parts,

J2 = 4π

∫
k|x−y|>1

V (y, 1)

|x− y|
dy + 4π

∫
k|x−y|>1

V (y, 1)

|x− y|
sin(2k|x− y|)dy,

where the second term goes to zero due to Riemann-Lebesgue lemma and
the first term is as we wanted. For J3 there exists some constant C such that

15



the following estimate holds

|J3| ≤
C

kε

∫
R2

|V (y, 1)|
|x− y|1+ε

dy,

where the integral is finite when ε > 0 is small enough. To combine, we have
now shown that

lim
k→∞

(I1 + I3) = 4π

∫
R2

V (y, 1)− 1
2
∇ · ~W (y, 1)

|x− y|
dy,

uniformly in x ∈ R2.
Finally, in order to finish the proof of Theorem 1.2 we need to show that

both I2 and I4 go to zero as k → ∞. When we first calculate the integral
with respect to θ′ ∈ S1 and then use Hölder’s inequality, we obtain

|I2| ≤ 2πk

∫
S1

dθ

∫
R2

|J0(k|x− y|)||αW (y)||∇usc(y)|dy

≤ 2πk

∫
S1

dθ

(∫
R2

(1 + |y|)2δ|J0(k|x− y|)|2|αW (y)|2dy
)1/2

×
(∫

R2

(1 + |y|)−2δ|∇usc(y)|2dy
)1/2

≤ 2πk

∫
S1
‖usc‖H1

−δ
dθ

(∫
R2

(1 + |y|)2δ|J0(k|x− y|)|2|αW (y)|2dy
)1/2

.

The term inside brackets tends to zero as k → ∞ due to estimate (19)
and therefore by Lemma 2.2 the whole term tends to zero when k → ∞.
Similar calculations can be done for I4 (even simpler than for I2) and we
may conclude that

lim
k→∞

(I2 + I4) = 0.

Thus Theorem 1.2 is completely proved.

4 Numerical examples
In this section we demonstrate numerically how we can recover β from the
knowledge of the scattering amplitude. We take two different approaches.
Firstly, we shall compute numerically the left hand side of Saito’s formula
and invert the convolution type integral equation for β. Our second approach
makes use of the representation formula which gives us a direct access to β.
In both cases we fix large enough k to simulate the high frequency limit.
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To simulate the scattering data A we need to solve the direct scattering
problem (2). Due to the non-linearity of the problem we need to approximate
the scattered field usc iteratively. To this end, we follow [4, 19]. Let us briefly
describe this approach for the convenience of the reader. Since the solution
to the direct scattering problem can be obtained from the iterations ũj =
F (ũj−1) (see Theorem 2.1), we need to calculate the integrals

F (ũj−1) (x) = −
∫
R2

G+
k (|x− y|)

[−→
W (y, |u0 + ũj−1|) · ∇(u0 + ũj−1)

+ V (y, |u0 + ũj−1|)(u0 + ũj−1)
]
dy,

where u0(x, k, θ) = eik(x,θ) and ũ0 = 0. We note that the kernel G+
k is essen-

tially bounded, so we can use for example Gauss-Legendre n-quadrature rule
for the integrals. These integrals are evaluated iteratively. Then the scattered
field is obtained as the limit usc = limj→∞ ũj, where we take j = 3, choice
justified by the estimate (15).

In order to obtain the scattering amplitude we use the asymptotic be-
haviour of the solution u, see (16). By discarding the error term o(|x|−1/2),
we have

u(x, k, θ) ≈ eik(x,θ) − i + 1

8
√
πRk5

eikRA(k, θ, θ′),

where we put x = Rθ′ with R = 104. This will be our synthetic data. To
simulate noisy measurements, we add Gaussian white noise to the data with
standard deviation 5% of the maximum of the measurement.

We use the abbreviation

β(y) := V (y, 1)− 1

2
∇ ·
−→
W (y, 1).

For the inverse problem of recovering β from A we will follow [16]. Saito’s
formula says that

lim
k→∞

k

∫
S1×S1

e−ik(θ−θ
′,x)A(k, θ, θ′)dθdθ′ = 4π

∫
R2

β(y)

|x− y|
dy

= 4π

(
β ∗ 1

| · |

)
(x) =: S(x),

where ∗ denotes the convolution. The convolution-type integral on the right-
hand side can be inverted by using a Calderón operator as follows. Note first
that the Fourier transform of g(x) = 1/|x| is

F(g)(ξ) =
1

|ξ|
.
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Therefore, in the sense of distributions, we have that

1

4π
F−1

(
|ξ|F(S)

)
(x) = F

[
|ξ|F

(
β ∗ 1

|x|

)
(ξ)

]
(x) = F−1 [F(β)(ξ)] = β(x).

This high-pass filtering is implemented numerically with the fast-Fourier
transform.

Remark 4.1. This approach of inverting Saito’s formula has the practical
benefit that one can choose to use a different filter instead of the simple
high-pass filter |ξ|. Depending on the features that one wants to emphasize
one can choose filters such as Shepp&Logan, Hamming or Blackman filters.
The effects of different filters in the context of computed tomography are
described for instance in [2].

The integral over incident and measurement angles in Saito’s formula is
computed in polar coordinates

θ(t) := (cos(t), sin(t)), θ′(s) := (cos(s), sin(s))

as∫
S1×S1

e−ik(θ−θ
′,x)A(k, θ, θ′)dθdθ′

=

∫ 2π

0

∫ 2π

0

e−ik(θ(t)−θ
′(s),x)A(k, θ(t), θ′(s))dtds. (20)

This double integral can be evaluated by using standard quadrature rules,
and we resort to Gauss-Legendre rule. We used 64 incident and measurement
angles, totalling 4096 measurements evaluated at the quadrature nodes.

Similar integral appears in the representation formula (see Corollary 1.4).
We evaluated this integral in the same manner as (20) to test the applicability
of this approach.

While Saito’s formula requires a limit k → ∞, for numerical purposes
large k > 0 will suffice. In our experiments k > 15 yields reasonable recon-
structions. The examples below are done with k = 25.

Let us now describe our sample potentials. We denote by

χA(x) =

{
1, x ∈ A,
0, x 6∈ A

the characteristic function of the set A.
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For the component functions of ~W we will use C∞0 -functions on an ellipse
{(x, y) ∈ R2 | (x/a)2 + (y/b)2 < 1, a, b > 0}, given by the formula

ϕellipse(x, y) =

{
exp

(
1

(x/a)2+(y/b)2−1

)
, (x/a)2 + (y/b)2 < 1,

0, otherwise.

The ellipses will also be shifted and rotated in different examples.
We consider the following nonlinear examples

1. ~W ≡ 0 and V (x, |u|) = χellipse(x)|u|2.

2. ~W (x, |u|) ≡ (0, ϕ2) sin(|u|) and V (x, |u|) = χL−shape(x)
|u|2

1 + |u|2
.

3. ~W (x, |u|) = (ϕ1
|u|2

1+|u|2 , ϕ2|u|2) and V (x, |u|) = ϕ3(x)|u|2.

4. ~W (x, |u|) = (ϕ1, ϕ2)|u|2 and V (x, |u|) = ϕ3(x)|u|2.
These examples contain both smooth functions and functions with jump
discontinuities. In Example 4 we will choose the smooth bump functions
ϕ1, ϕ2 and ϕ3 so that their supports intersect. Figure 1 depicts the potential
combinations β for each example. Figure 2 displays the scattered fields usc.
The corresponding reconstructions by using inversion of Saito’s formula by
FFT are shown in Figures 3-6. We conclude that the shape and location of
the scatterers are reconstructed reasonably well. It must be mentioned, that
with this approach we can not distinguish the different functions V,W1 and
W2 from each other.

Without details we report that the reconstructions obtained with inver-
sion of Saito’s formula and the representation theorem are indistinguish-
able to the eye, since the absolute difference between the reconstructions is
within 10−6. To us this signals that the end user may choose which one of
the approaches best suits application. On one hand, representation formula
Corollary 1.4 is very simple to implement. On the other hand, inversion of
Saito’s formula allows one to choose different filtering functions and possibly
different regularisation methods. This approach is also considerably faster
numerically due to effectiveness of fast-Fourier transform.
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Figure 1: The potentials β for Examples 1 (top left), 2 (top right), 3 (bottom
left) and 4 (bottom right). In Example 1 we have only potential V which is
a characteristic function of an ellipse. In Example 2 V is the characteristic
function of an L-shaped domain and ~W = (0, ϕ2) sin(|u|) has one component,
where ϕ2 is a smooth bump function in a circular domain. In Example 3
both components of ~W = (ϕ1

|u|2
1+|u|2 , ϕ2|u|2) are multiplied by smooth bump

functions ϕ1 and ϕ2 supported in ellipses located at the top and bottom
right in the figure, respectively. The coefficient ϕ3 of potential V is also a
smooth bump function supported in an ellipse, located in the middle-left side
of the figure. In example 4 all coefficients are smooth bump functions (see
also Figure 6), but their supports are intersecting.
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Figure 2: The scattered fields for Examples 1 (top left), 2 (top right), 3
(bottom left) and 4 (bottom right) with k = 25. The locations of the supports
of the potentials are presented in black. Here the incident field is travelling
from the left to the right.
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Figure 3: Example 1. Left: The unknown target β. Right: The numerical
reconstruction βnum.
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Figure 4: Example 2. Left: The unknown target β. Right: The numerical
reconstruction βnum. This example shows recovery of corners and recovery of
a shape with piece-wise smooth boundary.
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Figure 5: Example 3. Left: The unknown target β. Right: The numerical
reconstruction βnum. We see that weak potentials are quite difficult to detect
while stronger potentials are clearly visible in comparison, as is expected.
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Figure 6: Example 4. Top left V (x, 1), top middle W1(x, 1) and top right
W2(x, 1). Bottom left: The unknown target β. Bottom right: The numerical
reconstruction βnum. In this example the supports of potentials V , W1 and
W2 overlap. We can not distinguish these functions from each other.
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