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Abstract

In the fall of 2023 the Finnish Inverse Problems Society organized
the Kuopio Tomography Challenge 2023 (KTC2023, see https://www.

fips.fi/KTC2023.php). The aim of KTC2023 was to gather groups of
contestants and test their various reconstruction methods on real electri-
cal impedance tomography data. The main purpose of this paper is to
demonstrate a boundary integral equation method (BIEM) based forward
solver on the KTC2023 challenge data set. We also briefly summarize our
BIEM formulation of the complete electrode model of electrical impedance
tomography, as presented in the authors’ previous work, and discuss its
numerical implementation.

1 Introduction

In December 2023 the Finnish Inverse Problems Society (FIPS) organized the
Kuopio Tomography Challenge 2023 (KTC2023, see https://www.fips.fi/

KTC2023.php), in which the aim was to gather groups of contestants and test
various reconstruction methods on real electrical impedance tomography (EIT)
data. The purpose of this paper is to demonstrate a boundary integral equation
method based forward solver recently developed by the authors in [25] on this
challenge data set.

Electrical impedance tomography is characterized as the problem of recover-
ing the electric conductivity distribution inside an unknown body from electric
current and voltage measurements performed at the boundary of the target.
Mathematically, the question is about recovering the conductivity coefficient
σ(x) > 0 in the partial differential equation

∇ · (σ(x)∇u) = 0, x ∈ Ω0, (1)
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in which u is the electrostatic potential, given suitable boundary measurements
of u. Let us introduce the notation we use for EIT next. The most realis-
tic model of EIT is the so-called complete electrode model (CEM), where the
boundary conditions for (1) are given by

∂nu = 0, x ∈ ∂Ω0 \ ∪L
k=1ek,

u(x) + σzk∂nu(x) = Uk, x ∈ ek,∫
ek

σ∂nu dlx = Ik,

(2)

in which the electrodes are modelled by open and connected sets ek ⊂ ∂Ω0

with ei ∩ ej = ∅, i ̸= j; zk > 0 are the contact impedances of the electrodes;
and Ik are the total currents injected through each electrode, for n = 1, . . . , L.
The constants Uk ∈ R, k = 1, . . . , L are the unknown voltages arising from
the (known) current injections Ik. For existence of a solution u ∈ H1(Ω0) it

is required that the total injected current
∑L

k=1 Ik = 0, while the condition∑L
k=1 Uk = 0 fixes a unique solution. The measurement data in the inverse

problem of recovering σ is the current-to-voltage map

R : (I1, . . . , IL) 7→ (U1, . . . , UL).

In real world applications, the electrodes only cover parts of the outer boundary
∂Ω0 and the task of recovering σ is highly ill-posed, see [18, 26].

Many uses of EIT, and the challenges therein, are highlighted in the survey
[26]. We mention here some uses in medical imaging, such as, stroke detection [2]
and brain imaging [3, 7], lung and heart monitoring [15, 16], and breast cancer
detection [4]. Recently, steps have also been taken towards recovering possibly
unknown boundary shapes simultaneously along with the contact impedances
and conductivity distribution [1].

In KTC2023, several target bodies (both conductive and resistive) were
placed inside a water tank and the EIT problem is that of locating these inclu-
sions given only (limited) current-to-voltage measurements. The quantitative
evaluation of the contestant’s methods was performed by a comparison against
a ground truth (segmentation of a photograph of the water chamber) using a
structural similarity index measure (SSIM). For details of the evaluation method
we refer to [20]. The results of the challenge were published in December of 2023.
Two winners of KTC2023 were machine learning based: 1st place (University
of Bremen, Germany and University College London, The United Kingdom)
used post-processing UNet for EIT segmentation, and the 2nd place (The Fed-
eral University of ABC, Brazil) a post-processing smoothness prior EIT recon-
structions using convolutional neural networks. The 3rd place (The Technical
University of Denmark, Denmark) took a more direct approach via a level set
method based on [8].

Our present strategy is based on a boundary integral equation method. Such
methods are not new to EIT and, for example, point-electrode models have been
proposed in [12, 11] and integral equations for the complete electrode model in
[13]. Our aim in this paper is to present a novel BIEM based forward solver, and
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use it to show that boundary integral equations can be a useful tool particularly
for detecting inclusions. Moreover, boundary integral equation based forward
solvers are fast compared to finite element methods (for some comparisons, see
[25]), because they do not require fine triangulations of possibly complicated
domains. Therefore, they have potential uses for example in iterative solvers for
EIT, and for forward solvers in network training.

This paper is organized as follows. In Section 1.1 we derive the boundary
integral equation formulation for the complete electrode model using single layer
potentials. Section 2 discusses briefly the numerical and computational aspects
of the integral equations. Finally, in Section 3 we cover the inverse problem and
perform experiments on the KTC2023 dataset.

1.1 Derivation of the boundary integral equations

In this work we use the recently developed (see [25]) boundary integral equation
method (BIEM) for solving the equations (1)-(2). Let Ω0 ⊂ R2 be a compact
domain with a smooth boundary and let Ωi ⊂ Ω0, i = 1, 2, . . . , N be domains
with smooth boundaries. We will assume that the conductivity σ(x) is constant

σi within each domain Ωi and equal to σ0 in Ω0 \ (
⋃N

i=1 Ωi). To complete the
equations (1)–(2) in case of piecewise constant conductivity, we require that the
matching conditions

[u] = 0, x ∈ ∂Ωi, i = 1, . . . , N,

[σ∂nu] = 0, x ∈ ∂Ωi, i = 1, . . . , N
(3)

hold on the interfaces ∂Ωi. Here we used the notation [ξ](x) = ξ+(x) − ξ−(x),
where ξ+(x0) (resp. ξ

−(x0)) is the limit of ξ(x) as x → x0 from Ω0\Ωi (resp. from
Ωi). In case two or more domains Ωi overlap, we define the conductivity in the
overlap region to be the sum of overlapping conductivities:

σ(x) :=

{∑N
i=1 σiχi(x), x ∈ ∪N

i=1Ωi

σ0, x ∈ Ω0 \ ∪N
i=1Ωi,

in which χi(x) = 1 if x ∈ Ωi and χi(x) = 0 otherwise is an indicator function
for the body i. The equation (1) with the conditions (2)–(3) is then well-posed
in H1(Ω0) (see e.g.,[19, 22]).

We next re-express the electrostatic potential u of the CEM (1)–(3) in terms
of single layer potentials as

u(x) =

N∑
j=0

S∂Ωj [γj ](x), (4)

in which γj is the charge density of the interface ∂Ωj and the single layer po-
tential S∂Ωj

[γj ] is given by

S∂Ωj [γj ](x) :=

∫
∂Ωj

G(x, y)γj(y) dly.
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The kernel

G(x, y) :=
1

2π
log(|x− y|)

is harmonic and weakly singular. The charge density and the potential u are
connected by

γi = [∂nu] = ∂n+u− ∂n−u, on ∂Ωi, i = 1, . . . , N.

It is well-known (see [9, 17]) that the normal derivative of the single layer po-
tential satisfies

∂n±S∂Ωi
[γi](x) = K∗

∂Ωi
[γi](x)±

1

2
γi(x), x ∈ ∂Ωi,

with

K∗
∂Ωi

[γi](x) :=
1

2π

∫
∂Ωi

(x− y) · n(x)
|x− y|2

γi(y) dly, x ∈ ∂Ωi

is the adjoint Neumann-Poincaré operator. This allows us to write

∂n±S∂Ωj
[γj ](x) =

∫
∂Ωj

K(x, y)γj(y) dly ±
1

2
γj(x)δij , x ∈ ∂Ωi, i = 0, . . . , N,

in which δij is the Kronecker delta symbol and where we denote

K(x, y) :=
(x− y) · n(x)
2π|x− y|2

.

We observe that K(x, y) has a removable singularity on the diagonal, provided

∂Ωi is C
2-smooth. The singularity is removed by defining K(x, x) = κ(x)

4π , where
κ(x) is the curvature at point x ∈ ∂Ωi, and with this K becomes a continuous
function.

Under these notations the complete electrode model (1)–(3) can be expressed
as integral equations for the charge densities γi as follows.
Off electrodes:

−1

2
σ(x)γ0(x) + σ(x)

N∑
j=0

∫
∂Ωj

(
K(x, y)− δ0j

)
γj(y) dly = 0, x ∈ ∂Ω0 \

L⋃
k=1

ek.

(5)
On electrodes:

−1

2
zkσ(x)γ0(x) +

N∑
j=0

∫
∂Ωj

(
G(x, y) + zkσ(x)K(x, y)

)
γj(y) dly = Uk, (6)

for x ∈ ek, k = 1, . . . , L;∫
ek

(
− 1

2
σ(x)γ0(x) + σ(x)

N∑
j=0

∫
∂Ωj

K(x, y)γj(y) dly

)
dlx = Ik,
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for k = 1, . . . , L.
On interfaces:

1

2
(σ+(x) + σ−(x))γi(x) + (σ+(x)− σ−(x))

N∑
j=0

∫
∂Ωj

K(x, y)γj(y) dly = 0, (7)

for x ∈ ∂Ωi, i = 1, . . . , N . Here the symbols σ±(x) denote the conductivity in
the direction ±n(x). In (5) the kernel K(x, y) has been replaced by K(x, y)−δ0j
as in [5, 25]. This choice (5) with

∑L
k=1 Ik = 0 results in a unique solution to

the system of integral equations, and also forces∫
∂Ω0

γ0(x) dlx = 0.

Finally, the same integral equations hold in case the interfaces are only assumed
to be Lipschitz. In this work we consider interfaces that are either smooth or
piecewise C2, for instance, polygons. In case some domains Ωi overlap, we
require that the intersection of the interfaces ∂Ωi is transverse to avoid cusps,
where the behaviour of the integral equations and the electrostatic potential is
unknown.

2 Numerical implementation

The numerical implementation of the BIEM we use was developed in [25] and we
recall here the main points. To discretize the integral equations (5) – (7) we used
the Nyström method. The interfaces ∂Ωi are first parametrized by q ∈ [0, 1)
and then discretized by taking a grid of Mi > 0 points qij , j = 0, . . . ,Mi − 1.
Two different discretization schemes are used depending on the type of interface.
We call a curve parametrized over [0, 1) panelled, when the curve is split into
subsegments, called panels, parametrized over [xi, xi+1) for 0 = x1 < . . . <
xK = 1 for some K ∈ N. The points on the curve evaluated at x1, . . . , xK are
called panel breaks. Numerical integration over a panelled curve can then be
performed over each panel separately using suitable quadrature rules.

In our implementation, the outer interface and any interfaces overlapping
each other are broken into panels. We ensure that panel breaks are located at
the electrode boundaries on the outer interface, and at any intersection points
(found automatically by using a quasi-Newton algorithm) of two interfaces. The
panels neighboring these intersection points or electrode boundaries are further
subdivided dyadically as follows: a panel over [a, b) is divided into two new
panels over [a, (b + a)/2) and [(b + a)/2, b), and this subdivision is repeated
recursively on the panels adjacent to any intersection points or corners, see [14].
Moreover, interfaces within a specified threshold distance from each other are
also panelled. Panelled interfaces are equipped with Gauss-Legendre quadrature
nodes on each panel, while on non-panelled interfaces we use the uniformly
distributed quadrature nodes given by trapezoidal rule, yielding exponential
convergence when the interface is distant enough from other interfaces [24].
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We give emphasis on the fact that the kernel G(x, y) + zkσ(x)K(x, y) in (6)
has a logarithmic singularity, requiring a more specialized choice of quadrature
for its accurate numerical evaluation. The arising singular integrals are evalu-
ated by introducing an auxiliary set of nodes {xi} and weights {wi} according
to a generalized Gaussian quadrature [6]. The determination of the quadra-
ture nodes and weights requires solution of a nonlinear optimization problem,
and the calculation is carried out using GGQ available at https://github.com/
JamesCBremerJr/GGQ. To obtain the values of the integrands involved in the
singular integrals at the auxiliary nodes we use Lagrange interpolation from the
Gauss-Legendre or uniform nodes, see [23]. We mention also [10] for quadrature
methods for these types of weakly singular integrals.

Finally, the discretized integral equations (5) – (7) can be written as the
single linear system

Ag = I, g ∈ RM+L, (8)

where M =
∑N

i=0 Mi is the total number of grid nodes and the right-hand
side I = (0, . . . , 0, I1, . . . , IL)

T ∈ RM+L contains the injected currents. These
equations are solved via Gaussian elimination with partial pivoting, allowing
the right-hand side I be a matrix I := (I1, . . . , Im) corresponding to several
injected current patterns, simultaneously. The solution g contains both values
of the charge densities γj at the nodes qi, and the values of the electrode poten-
tials Uk directly, providing ready access to the voltage measurements without a
need to evaluate the electrostatic potential u through the single layer potential
expression (4).

Finally, for flexibility, we have implemented all of our quadratures in an
adaptive way. More precisely, we used either a Fourier or Legendre series based
methods to study the accuracy of the solution to (8). On interfaces with uniform
grids we expanded the found γ into Fourier series via the fast Fourier transform.
If the highest Fourier coefficients are below a specified threshold, we accept the
solution, if not we refine those interfaces. Similar study is done on panels with
Gaussian quadrature nodes, but instead of Fourier coefficients we studied the
size of the Legendre series coefficients of γ. In case the number of quadrature
nodes on a panel (or interface) exceeds a specified threshold, we further subdi-
vide the panel (or interface) dyadically. More details on the adaptive methods
can be found in [5, 25].

3 Inverse problem of EIT

3.1 Description of the measurement setup

The measurement data is described in detail in [20], but we briefly recall the
setup here for the reader’s convenience. The target is a cylindrical plastic water
tank with inner diameter of 23.0 cm, with 32 stainless steel electrodes of height1

5.0 cm placed at the boundary of the water tank, and with various inclusions

1This information was obtained in private communication with the organizers of KTC2023.
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placed within the tank. Each of the electrodes (and the gaps between electrodes)
covered an angle of 5.625 degrees, and depth of water was 5.0 cm. The units of
the raw measurement data were mA (milliamperes) and V (volts). The inclu-
sions placed in the tank were either conductive (conductive 3D printed plastic or
metal) or resistive (3D printed PLA plastic) compared to the background water.
The measurement data was the voltage differences between specified electrodes.
The data can be found in [21].

The challenge data is organized in the following way. Four practise targets
were provided with full 32 electrode data (we call these targets Level 0). In the
challenge, the algorithms were tested on new data not available to participants.
The data was organized by difficulty levels such that at Level 1 the full 32
electrode data was provided and at each increase of difficulty level the number
of active measurement electrodes was reduced by 2 (e.g., at Level 7 twelve
electrodes were not used in the measurements). At each challenge level there
were three configurations of inclusions, labelled A, B, and C. At all challenge
levels, a set of reference voltages arising from measurement using all electrodes
in a chamber containing only water was provided.

3.2 Iterative least squares solver for EIT

To experiment on the experimental data provided in KTC2023, we employ a
straightforward least-squares approach. We are given the experimental voltages
Vexp arising from the current injections. To combat against possible systematic

errors in the measurement data, we use the provided reference voltages V⃗ref given
for the tank containing only water. The reference measurements are first used
to solve for the unknown electrode contact impedances and the conductivity
of water in the tank. This is done by minimizing the following sum-of-squares
objective function

F (B⃗) = 106
ML∑
j=1

∣∣∣V j
num(B⃗)− V j

exp

∣∣∣2 , (9)

where B⃗ := (z1, . . . , z32, σ0) contains the contact impedances zk and the con-
ductivity of water σ0, and where Vexp are the experimentally measured voltages.
Here ML is the number of available voltage measurements at the challenge Level
L and V⃗num(B⃗) denotes the numerically found voltages. The factor 106 in (9)
increases the effectiveness of the optimization algorithms we use: the minimiza-
tion of F is done by using Matlab’s fmincon-function. In this work, we chose
to use the default optimization algorithm of fmincon called ‘interior-point’
algorithm. In general it is a second-order algorithm, requiring information of
the objective function’s gradient and Hessian. After the contact impedances
and the conductivity of water are found, we record the numerically obtained
voltages V⃗ 0

num at the minimum of the objective function F . We then calculated
the voltage discrepancy

δV⃗ := V⃗ref − V⃗ 0
num,
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and used it to correct the voltage measurement for all of the challenge problems
as

V⃗corrected := Vexp − δV⃗ .

At all of the challenge levels we then minimized the objective function

Fcorrected(B⃗) := 106
ML∑
j=1

∣∣∣V j
num(B⃗)− V j

corrected

∣∣∣2 ,
that is, the expression (9) with V⃗exp replaced by V⃗corrected. In the challenge lev-

els, the quantity B⃗ denotes the parameters involved in the parametrizations of
the interfaces ∂Ωi, and their conductivities. In our reconstructions we used two
different types of curves: smooth curves and convex polygons. To parametrize
smooth curves (e.g., ellipses, blobs) we used finite sums of trigonometric func-
tions (essentially truncated Fourier series), while polygons were parametrized
by arc length given the vertices of the polygon. Moreover, trigonometric in-
terfaces are parametrized so that the resulting curves are star-shaped and non-
self-intersecting. We note that restricting to two Fourier “coefficients” results
in ellipses; the largest number of Fourier coefficients we employ here is five. We
should thus note that for many of the displayed bodies the shape can not be
identified by our putative smooth curves, and that the findings are approxima-
tions to the desired shapes within our (very) finite dimensional space of allowed
curves. In case of polygonal interfaces, we only take the vertices defining the
convex hull of the polygon. This is done both to allow one to “hide” more ver-
tices within the convex hull during optimization and to prevent the interfaces
from self-intersecting. A downside to this approach is that we cannot recon-
struct non-convex polygons, for example, the star-shaped polygons appearing
in KTC2023 at Levels 2B, 3A, 6B, and 7A.

It can be noted that this approach requires accurate simulation of the volt-
ages arising in EIT, because we directly minimize the squared voltage differ-
ences. In Figure 1 we have plotted the given experimental voltages against the
numerically arising voltages for two of the challenge data sets. This figure also
shows the difference in amount of data available at Level 0 when using all of the
32 electrodes against Level 7, where 12 electrodes are disabled.

3.3 Results

We have performed a set of experiments on the provided data. In the initial
guesses we used the a priori knowledge of the number of inclusions inside the
water chamber and also in some cases that the inclusions are known to be
polygonal. This information was not available to the participants. Moreover,
the initial guesses have been set taking into account the location of inactive elec-
trodes. While our choice of initial guess was done by hand, one could implement
an automatic choice of initial guess by employing first another method, such as
the d-bar or monotonicity based methods, thresholding the resulting first re-
construction, and finally parametrizing the interfaces arising from thresholding.
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This task will be addressed in future research. By contrast, in Figure 5 we show
the results of some reconstructions where the number of bodies is guessed in-
correctly. For more reconstructions with incorrect initial assumptions, we refer
to [25]. The results are depicted in Figures 2, 3, and 4. The initial guesses
are shown in grey dotted line, while the found location of inclusion is given in
red solid line. The active electrode locations at the outer boundary are marked
with red color, while the electrodes not used for measurement are marked with
black. The ground truth’s yellow inclusions are more and teal inclusions less
conductive compared to the background water.

We also present the found conductivities for each case in the Table 1. In the
reconstructions we allowed the bodies overlap not only with other inclusions,
but also with the outer boundary under the condition that the conductivity
of an inclusion covering an entire electrode is non-zero – otherwise we cannot
guarantee solvability of the CEM equations. Any parts of an inclusion outside of
the domain of reconstruction are discarded from the system of equations (8). We
used varying number of parameters in our initial guesses. In case of polygons, we
sometimes included more vertices (hidden inside the convex hull) than visible,
so that the initial guess might initially look like a square, but later evolve into
a more complicated shape (see for example Figure 2 Target A, where a square
evolves into a pentagonal shape.). Similarly, in many other cases we started
with an initial guess of a disc, which we allowed to evolve into an ellipse or more
complicated shape by using higher number of trigonometric functions (see for
example Figure 3 Target B at Levels 2 and 4). Above each reconstruction in
Figures 2, 3, and 4 we show the “Score”, that is, the objective function value

Score := F (B⃗found)

where B⃗found denotes the located inclusions in the end. Roughly speaking, we
conclude that a low Score (i.e., objective function value, displayed above each
reconstruction) of around 1000 to 4000 is, visually, a “good reconstruction”,
while scores higher than that tend to correspond to visually poor quality recon-
structions.

Remark 1. In our initial findings we observed a consistent visual discrepancy
between our reconstructions and the provided ground truth pictures; visually
it seemed that the ground truths were consistently shrunk by a fixed factor,
see Figure 6. We communicated our findings with the KTC2023 organizers
who confirmed a rescaling was needed. In this paper we thus compare our
reconstructions with the updated ground truth figures.
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Level Target Found conductivities
0 A 0.0042 90.86 0
0 B 0.0042 34.99 0
0 C 0.0042 3.1938
0 D 0.0045 0
1 A 0.0042 0
1 B 0.0041 2215.16
1 C 0.0045 0
2 A 0.0042 625.49
2 B 0.0044 0
2 C 0.0042 0.0198 84.25
3 A 0.0045 0 0
3 B 0.0042 0
3 C 0.0042 0.0318
4 A 0.0043 0 115.43
4 B 0.0042 0 3.2553
4 C 0.0043 0 0.9172
5 A 0.0042 0.0186 0 0.5430 0
5 B 0.0042 0
5 C 0.0043 0.1627 117.49
6 A 0.0043 0.6879 0.0238 0 0.2445
6 B 0.0044 0 0 7.2893
6 C 0.0043 0.7856 0
7 A 0.0045 0 20.83 0 0.0267
7 B 0.0043 0 0 0 2.4173
7 C 0.0043 0 0

Table 1: The found conductivities listed for the reconstructions appearing in
Figures 2–4, the first number being the found conductivity of water. The con-
ductivities will need to be scaled by depth of water to get real (3D) units. We
conclude that the resistive inclusions are found to be perfect insulators, while
conductive bodies appear essentially perfect conductors (relative to water).
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Figure 1: Comparison of the available experimental voltages (black circles) and
the numerically estimated voltages (red crosses) which correspond to the volt-
ages one would have, assuming the found solution from the inverse solver. The
first figure shows the measured voltages corresponding to the 3rd target of Level
0 (32 electrodes; example data given to the participants). Here the full 2356
measurements are available. Below, in the third plot we show the 513 available
voltages in the case of the first target at Level 7 (12 electrodes disabled; chal-
lenge data unavailable to participants). The second and fourth plots show the
respective relative errors |Vexp − Vnum|/max(|Vexp|) for these two cases. Here
Vexp and Vnum are the experimentally measured and numerically found voltages,
respectively. As most measured voltages are small, for visual clarity we display
all voltages above the threshold of 0.3V in absolute value, but only every 5th

voltage below 0.3V.
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Figure 2: Level 0: Full data available. The ground truth’s yellow inclusions
are more and teal inclusions less conductive compared to the background water,
respectively. Numerically found location of inclusions in solid red line and the
initial guess in grey dotted line. Score above each image is the objective function
value at the end and i denotes the number of iterations the optimizer took. We
emphasize that in case of Target A we start with an initial guess on the left
that contains five vertices, whose convex hull is a square. The optimizer then
finds a better fit to the data by employing all of the five vertices, by finding a
pentagonal diamond shape.
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Figure 3: Full 32 electrode data at Level 1 and reducing the number of voltage
measurements by 2 electrodes at each increment of level of difficulty. The active
electrode locations at the outer boundary are marked with red color, while the
electrodes not used for measurement are marked with black. The ground truth’s
yellow inclusions are more and teal inclusions less conductive compared to the
background water. Numerically found location of inclusions in solid red line and
the initial guess in grey dotted line. Score above each image is the objective
function value at the end and i denotes the number of iterations the optimizer
took.
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Figure 4: The active electrode locations at the outer boundary are marked with
red color, while the electrodes not used for measurement are marked with black.
The ground truth’s yellow inclusions are more and teal inclusions less conductive
compared to the background water. Numerically found location of inclusions in
solid red line and the initial guess in grey dotted line. Score above each image
is the objective function value at the end and i denotes the number of iterations
the optimizer took.
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Figure 5: Level 5: Targets A and B, 8 removed electrodes, 1012 voltage measure-
ments. In these examples we are forcing an initial guess with incorrect number
of bodies. The ground truth’s yellow inclusions are more and teal inclusions less
conductive compared to the background water. Numerically found location of
inclusions in solid red line, and the initial guess in grey dotted line. Score above
each image is the objective function value at the end and i denotes the number
of iterations the optimizer took.
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