Inverse problem for the minimal surface equation and nonlinear CGO calculus in dimension 2

Tony Liimatainen

University of Helsinki
Sep 8, 2023
Based on a work with C. Carstea, M. Lassas and L. Tzou

Introduction

The minimal surface equation (1)

A minimal surface, which is given as a graph $\subset \mathbb{R}^{n+1}$ of a function $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies the minimal surface equation

$$
\begin{cases}\nabla \cdot\left(\frac{\nabla u}{(1+|\nabla u|)^{1 / 2}}\right)=0 & \text { in } \Omega, \tag{1}\\ u=f & \text { on } \partial \Omega .\end{cases}
$$

- Quasilinear elliptic.
- A minimal surface has vanishing mean curvature; trace of the tensor $(X, Y) \mapsto\left\langle\nabla_{X} N, Y\right\rangle$ vanishes, X, Y tangential.

More generally, a minimal surface embedded in an $(n+1)$-dimensional Riemannian manifold (M, \bar{g}) can be defined to be an n-dimensional submanifold whose mean curvature vanishes.

- As mean curvature depends not only on the metric on the minimal surface, but also on the "ambient" metric \bar{g}, the form of the minimal surface equation will depend also on \bar{g}.

The minimal surface equation (2)

We consider $n=2$. We work in Fermi coordinates relative to a surface Ω embedded in M, where the metric of (M, \bar{g}) reads

$$
\bar{g}(s, x)=d s^{2}+\sum_{k, l=1}^{2} g_{k l}(s, x) d x^{k} d x^{l}
$$

- Fermi coordinates always exist. Not a restriction of generality.
- The metric g on Ω is given by $\left.g_{k l}(s, x)\right|_{s=0}$.
- If u is a function over Ω, we write $g_{u}(x)=g(u(x), x)$.

If a minimal surface embedded in (M, \bar{g}) is given as a graph of u over Ω, then u satisfies

$$
-\frac{1}{\operatorname{Det}\left(g_{u}\right)^{1 / 2}} \nabla \cdot\left(g_{u}^{-1} \frac{\operatorname{Det}\left(g_{u}\right)^{1 / 2}}{\sqrt{1+|\nabla u|_{g_{u}}^{2}}}\right) \nabla u+f(u, \nabla u)=0,
$$

where

$$
f(u, \nabla u)=\frac{1}{2} \frac{1}{\left(1+|\nabla u|_{g_{u}}^{2}\right)^{1 / 2}}\left(\partial_{s} g_{u}^{-1}\right)(\nabla u, \nabla u)+\frac{1}{2}\left(1+|\nabla u|_{g_{u}}^{2}\right)^{1 / 2} \operatorname{Tr}\left(g_{u}^{-1} \partial_{s} g_{u}\right) .
$$

The inverse problem and main results

Let us then assume $\Omega=(\Sigma, g)$ is itself a minimal surface and that the DN map Λ_{g} of the minimal surface equation is known. The problem is to determine the minimal surface (Σ, g).

Theorem (C. Carstea, M. Lassas, T. L, L. Tzou 2023)

Let $\left(\Sigma_{1}, g_{1}\right) \subset\left(M_{1}, \bar{g}_{1}\right)$ and $\left(\Sigma_{2}, g_{2}\right) \subset\left(M_{2}, \bar{g}_{2}\right)$ be embedded $2 D$ minimal surface surfaces with a mutual boundary $\partial \Sigma$. Assume that Σ_{1}, Σ_{2} are diffeomorphic to a fixed domain in \mathbb{R}^{2}. (Assume also boundary determination.)

If the DN maps of the associated minimal surface equations satisfy $\Lambda_{g_{1}} f=\Lambda_{g_{2}} f$, for $f \in C^{\infty}(\partial \Sigma)$ sufficiently small, then there is an isometry $F: \Sigma_{1} \rightarrow \Sigma_{2}$,

$$
F^{*} g_{2}=g_{1},\left.\quad F\right|_{\partial \Sigma}=I d
$$

Also $F^{*} \eta_{2}=\eta_{1}$, where η_{β} are the second fundamental forms of $\left(\Sigma_{\beta}, g_{\beta}\right), \beta=1,2$.

- If we only consider recovering a conformal class by assuming a priori $g_{2}=c g_{1}$, then the assumption that Σ_{1} and Σ_{2} are topologically a fixed domain in \mathbb{R}^{2} can be dropped.

Motivation

Special motivations for the study:
1 Generalized boundary rigidity problem where the aim is to construct a manifold from the areas of minimal surfaces instead of lengths of minimal geodesics.

- Areas of minimal surfaces determine the DN map of the minimal surface equation.

2 AdS/CFT duality conjecture in physics by Ryu and Takayanagi (2006, thousands of citations) states that "entanglement entropies" of a quantum field theory living on the boundary determine areas of related minimal surfaces.

- Entanglement entropy is the experienced entropy (i.e. state of disorder) of a physical system for an observer who has only access to a subregion of a larger space.
- Is a (static) spacetime determined by entanglement entropies of a QFT living on the (asymptotic) boundary?
- Physicists give examples where this is true, i.e. examples where generalized boundary rigidity problem is solvable.

Earlier results

Inverse problems for the minimal surface equation:

- C. Carstea, Lassas, T. L, L. Oksanen (2022), determination of a minimal surface (Σ, g) embedded in $\Sigma \times \mathbb{R}$.
- J. Nurminen (2022, 2023), results for conformally Euclidean metric in \mathbb{R}^{n}.

Generalized boundary rigidity \& manifold construction in AdS/CFT duality:

- S. Alexakis, T. Balehowsky \& A. Nachman (2020) "How to determine a 3 dimensional manifold from the areas of their minimal surfaces".

■ Physics papers by: S. Bilson, N. Bao et al, V. Hubeny, N. Jokela, A. Pönni...
Recent advances in inverse problem for nonlinear equations:

- Kurylev, Lassas \& Uhlmann (2018), inverse problem for $\square_{g} u(x, t)+q(x, t) u^{2}(x, t)=0$.
- A. Feizmohammadi \& L. Oksanen and Lassas, T.L, Y-H. Lin \& M. Salo (2019), inverse problems for $\Delta_{g} u+q u^{m}=0, m \geq 2$.
■ Other recent results for nonlinear elliptic by K. Krupchyk, T. Zhou, Y. Kian, R-Y. Lai, H. Liu, L. Tzou, B. Harrach, T. Tyni, L. Potenciano-Machado...

Proof of main theorem

How to recover an embedded minimal surface from the DN map (1)

The recovery is based on the higher order linearization method: Consider $f_{j} \in C^{\infty}(\partial \Sigma)$, $j=1,2,3,4$ and denote by $u=u_{\varepsilon_{1} f_{1}+\cdots+\varepsilon_{4} f_{4}}$ the solution to the minimal surface equation with boundary data $\varepsilon_{1} f_{1}+\cdots+\varepsilon_{4} f_{4}$. Denote $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{4}\right)$.

By taking the derivative $\left.\partial_{\varepsilon_{j}}\right|_{\varepsilon=0}$ of the solution $u_{\varepsilon_{1} f_{1}+\cdots+\varepsilon_{4} f_{4}}$, we see that the function

$$
v^{j}:=\left.\frac{\partial}{\partial \varepsilon_{j}}\right|_{\varepsilon=0} u_{\varepsilon_{1} f_{1}+\cdots+\varepsilon_{4} f_{4}}
$$

solves the first linearized equation

$$
\Delta_{g} v+q v=0
$$

where $q(x)$ is the quantity $\left.\frac{1}{2} \frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{Tr}\left(g_{u}^{-1} \partial_{s} g_{u}\right)$.

- Under the assumption that Σ is topologically a domain in \mathbb{R}^{2}, it is possible to recover (Σ, g) up to a conformal mapping by the result of O . Y. Imanuvilov, G. Uhlmann, and M. Yamamoto (2012).
- The conformal factor will be found only from the third linearization.

How to recover an embedded minimal surface from the DN map (2)

Let us denote by $\eta(X, Y)=\left\langle\nabla_{X} N, Y\right\rangle_{\bar{g}}$ the (scalar) second fundamental form. The function $w^{j k}:=\left.\frac{\partial^{2}}{\partial \varepsilon_{j} \partial \varepsilon_{k}}\right|_{\varepsilon=0} u_{\varepsilon_{1} f_{1}+\cdots+\varepsilon_{4} f_{4}}$ satisfies the second linearized equation

$$
\left(\Delta_{g}+q\right) w^{j k}=\text { terms of the form } \eta\left(\nabla v^{j}, \nabla v^{k}\right)+\text { lower order terms. }
$$

Lower order terms are terms contain at most one gradient of a linearized solution v_{j}. Since we know the DN map of second linearization, it follows that the integral

$$
\begin{align*}
& \int_{\Sigma} v^{1} \eta\left(\nabla v^{2}, \nabla v^{3}\right) d V+\int_{\Sigma} v^{2} \eta\left(\nabla v^{1}, \nabla v^{3}\right) d V+\int_{\Sigma} v^{3} \eta\left(\nabla v^{1}, \nabla v^{2}\right) d V \\
&+ \text { lower order terms } \tag{2}
\end{align*}
$$

is known.

- The aim is to recover the matrix field η next from (2). This is done by choosing special CGO solutions for the linearized equation $\left(\Delta_{g}+q\right) v=0$.

How to recover an embedded minimal surface from the DN map (3)

To recover η, we use as solutions $v^{k},\left(\Delta_{g}+q\right) v^{k}=0$, the CGOs constructed by C. Guillarmou and L. Tzou (2011, GAFA) of the form

$$
e^{\Phi / h}\left(a+r_{h}\right),
$$

where $\Phi=\phi+i \psi$ is a holomorphic Morse function, h small, a is a holomorphic function and r_{h} is a correction term given by

$$
r_{h}=-\bar{\partial}_{\psi}^{-1} \sum_{j=0}^{\infty} T_{h}^{j} \bar{\partial}_{\psi}^{*-1}(q a),
$$

where $\bar{\partial}_{\psi}^{-1}$ is defined (modulo localization) by $\bar{\partial}_{\psi}^{-1} f=\bar{\partial}^{-1}\left(e^{-2 i \psi / h} f\right)$, where $\bar{\partial}^{-1}$ is the Cauchy-Riemann operator that solves $\bar{\partial}^{-1} \bar{\partial}=$ Id.

- The form of T_{h} is not important, but what is important to note is that the h-dependence of r_{h} is quite implicit and not polynomial.

How to recover an embedded minimal surface from the DN map (4)

Plugging in the CGOs $v^{k}=e^{\Phi_{k} / h}\left(a_{k}+r_{k, h}\right)$, to the integral identity

$$
\int_{\Sigma} v^{1} \eta\left(\nabla v^{2}, \nabla v^{3}\right) d V+\int_{\Sigma} v^{2} \eta\left(\nabla v^{1}, \nabla v^{3}\right) d V+\int_{\Sigma} v^{3} \eta\left(\nabla v^{1}, \nabla v^{2}\right) d V+\cdots=0
$$

yields the term

$$
I_{\text {leading }}=\int_{\Sigma} \hat{v}^{1} \eta\left(\nabla \hat{v}^{2}, \nabla \hat{v}^{3}\right) d V+\int_{\Sigma} \hat{v}^{2} \eta\left(\nabla \hat{v}^{1}, \nabla \hat{v}^{3}\right) d V+\int_{\Sigma} \hat{v}^{3} \eta\left(\nabla \hat{v}^{1}, \nabla \hat{v}^{2}\right) d V,
$$

where $\hat{v}^{k}=e^{\Phi_{k} / h} a_{k}$ and integral $I_{o t h e r}$ of other terms that contain products of $e^{\Phi_{k} / h} r_{k, h}$ and their gradients. We wish to use stationary phase for $I_{\text {leading }}$ to recover η and consider $I_{o t h e r}$ as a negligible term.

Stationary phase yields $I_{\text {leading }}=O(1)$ as $h \rightarrow 0$ while L^{p} estimates $\left\|r_{k, h}\right\|_{L^{p}},\left\|\nabla r_{k, h}\right\|_{L^{p}}=O\left(h^{1 / p}\right)$ yield $I_{\text {other }} \sim O\left(h^{-1}\right)$. Thus

$$
I_{\text {other }}>I_{\text {leading }}, \quad h \rightarrow 0
$$

by just using L^{p} estimates. A problem.

Solution: Nonlinear CGO calculus

Nonlinear CGO calculus is a collection estimates that can be considered to be stationary phase type estimates for a class of h-dependent functions. The main estimate is

Theorem (C. Carstea, M. Lassas, T. L, L. Tzou 2023)
Let f be C_{c}^{∞} smooth outside a finite number of points and $\operatorname{deg}(f) \geq l \geq 0$, then

$$
\int e^{4 i \psi / h} f \partial^{l} r_{h}=o\left(h^{\lfloor(\operatorname{deg}(f)-l) / 2\rfloor+1}\right) .
$$

- $\lfloor\cdot\rfloor$ is the floor function. The degree $\operatorname{deg}(f)$ of a function f is roughly the order it vanishes at critical points of ψ; if $\operatorname{deg}(f)=l$, then $f(z)=z^{k} \bar{z}^{m}+O\left(|z|^{l+1}\right), k+m=l$.
- The theorem yields improved estimate $I_{\text {other }}=o(1)$. Thus $I_{\text {other }}<O(1)=I_{\text {leading }}$, and we recover 2nd fundamental form η. 3rd order linearization recovers the conformal factor.
- Note that for $n \geq 3$, typical CGOs used in geometric inverse problems can be made to have correction terms R_{h} with $R_{h}=O_{H^{k}}\left(\tau^{-R}\right)$, for any $k, R \in \mathbb{N}$, so that nonlinear CGO calculus is not needed. Recall that we have only $r_{h}=O_{L^{p}}\left(h^{1 / p}\right)$.

Summary

1 Recovery of a general 2D minimal surface from the DN map of minimal surface equation under a topological assumption.

- Conformal factor can be recovered in without the topological assumption.
- Also recovered second fundamental form; information about the ambient space.

2 Introduction of the recent higher order linearization method for inverse problems into the AdS/CFT correspondence in physics.

- Entanglement entropies of CFT determine the DN map of minimal surface equation.

3 Nonlinear CGO calculus to handle contributions from products of CGOs needed in studies of nonlinear models in 2D.

- CGO calculus is independent of the application to inverse problem for the minimal surface equation.
- Needed not only in geometric settings, but useful in inverse problems for quasilinear elliptic equations in \mathbb{R}^{2}.
Slides will be available at https://www.mv.helsinki.fi/home/tjliimat/

