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Introduction



The minimal surface equation (1)

A minimal surface, which is given as a graph ⊂ Rn+1 of a function u : Ω ⊂ Rn → R satisfies

the minimal surface equation ∇ ·
(

∇u
(1+|∇u|)1/2

)
= 0 in Ω,

u = f on ∂Ω.
(1)

Quasilinear elliptic.

A minimal surface has vanishing mean curvature; trace of the tensor (X,Y ) 7→ 〈∇XN,Y 〉
vanishes, X,Y tangential.

More generally, a minimal surface embedded in an (n+ 1)-dimensional Riemannian manifold

(M, g) can be defined to be an n-dimensional submanifold whose mean curvature vanishes.

As mean curvature depends not only on the metric on the minimal surface, but also on

the “ambient” metric g, the form of the minimal surface equation will depend also on g.
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The minimal surface equation (2)

We consider n = 2. We work in Fermi coordinates relative to a surface Ω embedded in M ,

where the metric of (M, g) reads

g(s, x) = ds2 +
2∑

k,l=1

gkl(s, x)dx
kdxl.

Fermi coordinates always exist. Not a restriction of generality.

The metric g on Ω is given by gkl(s, x)|s=0.

If u is a function over Ω, we write gu(x) = g(u(x), x).

If a minimal surface embedded in (M, g) is given as a graph of u over Ω, then u satisfies

− 1

Det(gu)1/2
∇ ·

g−1
u

Det(gu)1/2√
1 + |∇u|2gu

∇u+ f(u,∇u) = 0,

where

f(u,∇u) =
1

2

1

(1 + |∇u|2gu)1/2
(∂sg

−1
u )(∇u,∇u) +

1

2
(1 + |∇u|2gu)1/2Tr(g−1

u ∂sgu).

Here ∇ and · are the Euclidean ones.
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The inverse problem and main results

Let us then assume Ω = (Σ, g) is itself a minimal surface and that the DN map Λg of the

minimal surface equation is known. The problem is to determine the minimal surface (Σ, g).

Theorem (C. Carstea, M. Lassas, T. L, L. Tzou 2023)

Let (Σ1, g1) ⊂ (M1, g1) and (Σ2, g2) ⊂ (M2, g2) be embedded 2D minimal surface surfaces

with a mutual boundary ∂Σ. Assume that Σ1,Σ2 are diffeomorphic to a fixed domain in R2.

(Assume also boundary determination.)

If the DN maps of the associated minimal surface equations satisfy Λg1f = Λg2f , for

f ∈ C∞(∂Σ) sufficiently small, then there is an isometry F : Σ1 → Σ2,

F ∗g2 = g1, F |∂Σ = Id.

Also F ∗η2 = η1, where ηβ are the second fundamental forms of (Σβ , gβ), β = 1, 2.

If we only consider recovering a conformal class by assuming a priori g2 = cg1, then the

assumption that Σ1 and Σ2 are topologically a fixed domain in R2 can be dropped.
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Motivation

Special motivations for the study:

1 Generalized boundary rigidity problem where the aim is to construct a manifold
from the areas of minimal surfaces instead of lengths of minimal geodesics.

Areas of minimal surfaces determine the DN map of the minimal surface equation.

2 AdS/CFT duality conjecture in physics by Ryu and Takayanagi (2006, thousands
of citations) states that “entanglement entropies” of a quantum field theory living
on the boundary determine areas of related minimal surfaces.

Entanglement entropy is the experienced entropy (i.e. state of disorder) of a physical

system for an observer who has only access to a subregion of a larger space.

Is a (static) spacetime determined by entanglement entropies of a QFT living on the

(asymptotic) boundary?

Physicists give examples where this is true, i.e. examples where generalized boundary

rigidity problem is solvable.
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Liu, L. Tzou, B. Harrach, T. Tyni, L. Potenciano-Machado... 6



Proof of main theorem



How to recover an embedded minimal surface from the DN map (1)

The recovery is based on the higher order linearization method: Consider fj ∈ C∞(∂Σ),

j = 1, 2, 3, 4 and denote by u = uε1f1+···+ε4f4 the solution to the minimal surface equation

with boundary data ε1f1 + · · ·+ ε4f4. Denote ε = (ε1, . . . , ε4).

By taking the derivative ∂εj |ε=0 of the solution uε1f1+···+ε4f4 , we see that the function

vj :=
∂

∂εj

∣∣∣
ε=0

uε1f1+···+ε4f4

solves the first linearized equation

∆gv + qv = 0,

where q(x) is the quantity 1
2
d
dε

∣∣∣
ε=0

Tr(g−1
u ∂sgu).

Under the assumption that Σ is topologically a domain in R2, it is possible to recover

(Σ, g) up to a conformal mapping by the result of O. Y. Imanuvilov, G. Uhlmann, and M.

Yamamoto (2012).

The conformal factor will be found only from the third linearization. 7



How to recover an embedded minimal surface from the DN map (2)

Let us denote by η(X,Y ) = 〈∇XN,Y 〉g the (scalar) second fundamental form. The function

wjk := ∂2

∂εj∂εk

∣∣
ε=0

uε1f1+···+ε4f4 satisfies the second linearized equation

(∆g + q)wjk = terms of the form η(∇vj ,∇vk) + lower order terms.

Lower order terms are terms contain at most one gradient of a linearized solution vj . Since we

know the DN map of second linearization, it follows that the integral∫
Σ

v1η(∇v2,∇v3
)
dV +

∫
Σ

v2η(∇v1,∇v3
)
dV +

∫
Σ

v3η(∇v1,∇v2
)
dV

+ lower order terms (2)

is known.

The aim is to recover the matrix field η next from (2). This is done by choosing special

CGO solutions for the linearized equation (∆g + q)v = 0.
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How to recover an embedded minimal surface from the DN map (3)

To recover η, we use as solutions vk, (∆g + q)vk = 0, the CGOs constructed by C. Guillarmou

and L. Tzou (2011, GAFA) of the form

eΦ/h(a+ rh),

where Φ = φ+ iψ is a holomorphic Morse function, h small, a is a holomorphic function and

rh is a correction term given by

rh = −∂−1

ψ

∞∑
j=0

T jh∂
∗−1

ψ (qa),

where ∂
−1

ψ is defined (modulo localization) by ∂
−1

ψ f = ∂
−1

(e−2iψ/hf), where ∂
−1

is the

Cauchy-Riemann operator that solves ∂
−1
∂ = Id.

The form of Th is not important, but what is important to note is that the h-dependence

of rh is quite implicit and not polynomial.
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How to recover an embedded minimal surface from the DN map (4)

Plugging in the CGOs vk = eΦk/h(ak + rk,h), to the integral identity∫
Σ

v1η(∇v2,∇v3)dV +

∫
Σ

v2η(∇v1,∇v3)dV +

∫
Σ

v3η(∇v1,∇v2)dV + · · · = 0,

yields the term

Ileading =

∫
Σ

v̂1η(∇v̂2,∇v̂3)dV +

∫
Σ

v̂2η(∇v̂1,∇v̂3)dV +

∫
Σ

v̂3η(∇v̂1,∇v̂2)dV,
where v̂k = eΦk/hak and integral Iother of other terms that contain products of eΦk/hrk,h and

their gradients. We wish to use stationary phase for Ileading to recover η and consider Iother as

a negligible term.

Stationary phase yields Ileading = O(1) as h→ 0 while Lp estimates

‖rk,h‖Lp , ‖∇rk,h‖Lp = O(h1/p) yield Iother ∼ O(h−1). Thus

Iother > Ileading, h→ 0

by just using Lp estimates. A problem.
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Solution: Nonlinear CGO calculus

Nonlinear CGO calculus is a collection estimates that can be considered to be stationary phase

type estimates for a class of h-dependent functions. The main estimate is

Theorem (C. Carstea, M. Lassas, T. L, L. Tzou 2023)
Let f be C∞c smooth outside a finite number of points and deg(f) ≥ l ≥ 0, then∫

e4iψ/hf∂lrh = o(hb(deg(f)−l)/2c+1).

b · c is the floor function. The degree deg(f) of a function f is roughly the order it

vanishes at critical points of ψ; if deg(f) = l, then f(z) = zkzm +O(|z|l+1), k +m = l.

The theorem yields improved estimate Iother = o(1). Thus Iother < O(1) = Ileading, and

we recover 2nd fundamental form η. 3rd order linearization recovers the conformal factor.

Note that for n ≥ 3, typical CGOs used in geometric inverse problems can be made to

have correction terms Rh with Rh = OHk(τ−R), for any k,R ∈ N, so that nonlinear CGO

calculus is not needed. Recall that we have only rh = OLp(h1/p).
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Summary

1 Recovery of a general 2D minimal surface from the DN map of minimal surface equation

under a topological assumption.

Conformal factor can be recovered in without the topological assumption.

Also recovered second fundamental form; information about the ambient space.

2 Introduction of the recent higher order linearization method for inverse problems into the

AdS/CFT correspondence in physics.

Entanglement entropies of CFT determine the DN map of minimal surface equation.

3 Nonlinear CGO calculus to handle contributions from products of CGOs needed in studies

of nonlinear models in 2D.

CGO calculus is independent of the application to inverse problem for the minimal

surface equation.

Needed not only in geometric settings, but useful in inverse problems for quasilinear

elliptic equations in R2.

Slides will be available at https://www.mv.helsinki.fi/home/tjliimat/ 12
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