Inverse problem for the minimal surface equation and nonlinear CGO calculus in dimension 2

Tony Liimatainen University of Helsinki Sep 8, 2023

Based on a work with C. Carstea, M. Lassas and L. Tzou

Introduction

The minimal surface equation (1)

A minimal surface, which is given as a graph $\subset \mathbb{R}^{n+1}$ of a function $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ satisfies the minimal surface equation

$$\begin{cases} \nabla \cdot \left(\frac{\nabla u}{(1+|\nabla u|)^{1/2}} \right) = 0 & \text{ in } \Omega, \\ u = f & \text{ on } \partial\Omega. \end{cases}$$
(1)

Quasilinear elliptic.

• A minimal surface has vanishing mean curvature; trace of the tensor $(X, Y) \mapsto \langle \nabla_X N, Y \rangle$ vanishes, X, Y tangential.

More generally, a minimal surface embedded in an (n + 1)-dimensional Riemannian manifold (M, \overline{g}) can be defined to be an *n*-dimensional submanifold whose mean curvature vanishes.

■ As mean curvature depends not only on the metric on the minimal surface, but also on the "ambient" metric \overline{g} , the form of the minimal surface equation will depend also on \overline{g} .

The minimal surface equation (2)

We consider n = 2. We work in Fermi coordinates relative to a surface Ω embedded in M, where the metric of (M, \overline{g}) reads

$$\overline{g}(s,x) = ds^2 + \sum_{k,l=1}^{2} g_{kl}(s,x) dx^k dx^l.$$

- Fermi coordinates always exist. Not a restriction of generality.
- The metric g on Ω is given by $g_{kl}(s,x)|_{s=0}$.
- If u is a function over Ω , we write $g_u(x) = g(u(x), x)$.

If a minimal surface embedded in (M,\overline{g}) is given as a graph of u over Ω , then u satisfies

$$-\frac{1}{\operatorname{\mathsf{Det}}(g_u)^{1/2}}\nabla\cdot\left(g_u^{-1}\frac{\operatorname{\mathsf{Det}}(g_u)^{1/2}}{\sqrt{1+|\nabla u|_{g_u}^2}}\right)\nabla u+f(u,\nabla u)=0,$$

where

$$f(u,\nabla u) = \frac{1}{2} \frac{1}{(1+|\nabla u|_{g_u}^2)^{1/2}} (\partial_s g_u^{-1})(\nabla u,\nabla u) + \frac{1}{2} (1+|\nabla u|_{g_u}^2)^{1/2} \mathrm{Tr}(g_u^{-1}\partial_s g_u).$$

The inverse problem and main results

Let us then assume $\Omega = (\Sigma, g)$ is itself a minimal surface and that the DN map Λ_g of the minimal surface equation is known. The problem is to determine the minimal surface (Σ, g) .

Theorem (C. Carstea, M. Lassas, T. L, L. Tzou 2023)

Let $(\Sigma_1, g_1) \subset (M_1, \overline{g}_1)$ and $(\Sigma_2, g_2) \subset (M_2, \overline{g}_2)$ be embedded 2D minimal surface surfaces with a mutual boundary $\partial \Sigma$. Assume that Σ_1, Σ_2 are diffeomorphic to a fixed domain in \mathbb{R}^2 . (Assume also boundary determination.)

If the DN maps of the associated minimal surface equations satisfy $\Lambda_{g_1} f = \Lambda_{g_2} f$, for $f \in C^{\infty}(\partial \Sigma)$ sufficiently small, then there is an isometry $F : \Sigma_1 \to \Sigma_2$,

$$F^*g_2 = g_1, \quad F|_{\partial\Sigma} = Id.$$

Also $F^*\eta_2 = \eta_1$, where η_β are the second fundamental forms of (Σ_β, g_β) , $\beta = 1, 2$.

If we only consider recovering a conformal class by assuming a priori g₂ = cg₁, then the assumption that Σ₁ and Σ₂ are topologically a fixed domain in ℝ² can be dropped.

Motivation

Special motivations for the study:

- Generalized boundary rigidity problem where the aim is to construct a manifold from the areas of minimal surfaces instead of lengths of minimal geodesics.
 - Areas of minimal surfaces determine the DN map of the minimal surface equation.
- AdS/CFT duality conjecture in physics by Ryu and Takayanagi (2006, thousands of citations) states that "entanglement entropies" of a quantum field theory living on the boundary determine areas of related minimal surfaces.
 - Entanglement entropy is the experienced entropy (i.e. state of disorder) of a physical system for an observer who has only access to a subregion of a larger space.
 - Is a (static) spacetime determined by entanglement entropies of a QFT living on the (asymptotic) boundary?
 - Physicists give examples where this is true, i.e. examples where generalized boundary rigidity problem is solvable.

Earlier results

Inverse problems for the minimal surface equation:

- C. Carstea, Lassas, T. L, L. Oksanen (2022), determination of a minimal surface (Σ, g) embedded in Σ × ℝ.
- J. Nurminen (2022, 2023), results for conformally Euclidean metric in \mathbb{R}^n .

Generalized boundary rigidity & manifold construction in AdS/CFT duality:

- S. Alexakis, T. Balehowsky & A. Nachman (2020) "How to determine a 3 dimensional manifold from the areas of their minimal surfaces".
- Physics papers by: S. Bilson, N. Bao et al, V. Hubeny, N. Jokela, A. Pönni...

Recent advances in inverse problem for nonlinear equations:

- Kurylev, Lassas & Uhlmann (2018), inverse problem for $\Box_g u(x,t) + q(x,t)u^2(x,t) = 0$.
- A. Feizmohammadi & L. Oksanen and Lassas, T.L, Y-H. Lin & M. Salo (2019), inverse problems for Δ_gu + qu^m = 0, m ≥ 2.
- Other recent results for nonlinear elliptic by K. Krupchyk, T. Zhou, Y. Kian, R-Y. Lai, H. Liu, L. Tzou, B. Harrach, T. Tyni, L. Potenciano-Machado...

Proof of main theorem

How to recover an embedded minimal surface from the DN map (1)

The recovery is based on the higher order linearization method: Consider $f_j \in C^{\infty}(\partial \Sigma)$, j = 1, 2, 3, 4 and denote by $u = u_{\varepsilon_1 f_1 + \dots + \varepsilon_4 f_4}$ the solution to the minimal surface equation with boundary data $\varepsilon_1 f_1 + \dots + \varepsilon_4 f_4$. Denote $\varepsilon = (\varepsilon_1, \dots, \varepsilon_4)$.

By taking the derivative $\partial_{\varepsilon_j}|_{\varepsilon=0}$ of the solution $u_{\varepsilon_1f_1+\dots+\varepsilon_4f_4}$, we see that the function

$$v^j := \frac{\partial}{\partial \varepsilon_j}\Big|_{\varepsilon=0} u_{\varepsilon_1 f_1 + \dots + \varepsilon_4 f_4}$$

solves the first linearized equation

$$\Delta_g v + qv = 0$$

where q(x) is the quantity $\frac{1}{2}\frac{d}{d\varepsilon}\Big|_{\varepsilon=0}{\rm Tr}(g_u^{-1}\partial_s g_u).$

- Under the assumption that Σ is topologically a domain in \mathbb{R}^2 , it is possible to recover (Σ, g) up to a conformal mapping by the result of O. Y. Imanuvilov, G. Uhlmann, and M. Yamamoto (2012).
- The conformal factor will be found only from the third linearization.

How to recover an embedded minimal surface from the DN map (2)

Let us denote by $\eta(X,Y) = \langle \nabla_X N, Y \rangle_{\overline{g}}$ the (scalar) second fundamental form. The function $w^{jk} := \frac{\partial^2}{\partial \varepsilon_j \partial \varepsilon_k} \big|_{\varepsilon=0} u_{\varepsilon_1 f_1 + \dots + \varepsilon_4 f_4}$ satisfies the second linearized equation

 $(\Delta_g+q)w^{jk}={\rm terms}$ of the form $\eta(\nabla v^j,\nabla v^k)+{\rm lower}$ order terms.

Lower order terms are terms contain at most one gradient of a linearized solution v_j . Since we know the DN map of second linearization, it follows that the integral

$$\int_{\Sigma} v^{1} \eta(\nabla v^{2}, \nabla v^{3}) dV + \int_{\Sigma} v^{2} \eta(\nabla v^{1}, \nabla v^{3}) dV + \int_{\Sigma} v^{3} \eta(\nabla v^{1}, \nabla v^{2}) dV + \text{lower order terms} \quad (2)$$

is known.

The aim is to recover the matrix field η next from (2). This is done by choosing special CGO solutions for the linearized equation (Δ_g + q)v = 0.

How to recover an embedded minimal surface from the DN map (3)

To recover η , we use as solutions v^k , $(\Delta_g + q)v^k = 0$, the CGOs constructed by C. Guillarmou and L. Tzou (2011, GAFA) of the form

 $e^{\Phi/h}(a+r_h),$

where $\Phi = \phi + i\psi$ is a holomorphic Morse function, h small, a is a holomorphic function and r_h is a correction term given by

$$r_h = -\overline{\partial}_{\psi}^{-1} \sum_{j=0}^{\infty} T_h^j \overline{\partial}_{\psi}^{*-1}(qa),$$

where $\overline{\partial}_{\psi}^{-1}$ is defined (modulo localization) by $\overline{\partial}_{\psi}^{-1}f = \overline{\partial}^{-1}(e^{-2i\psi/h}f)$, where $\overline{\partial}^{-1}$ is the Cauchy-Riemann operator that solves $\overline{\partial}^{-1}\overline{\partial} = \operatorname{Id}$.

• The form of T_h is not important, but what is important to note is that the *h*-dependence of r_h is quite implicit and not polynomial.

How to recover an embedded minimal surface from the DN map (4)

Plugging in the CGOs $v^k = e^{\Phi_k/h}(a_k + r_{k,h}),$ to the integral identity

$$\int_{\Sigma} v^1 \eta(\nabla v^2, \nabla v^3) dV + \int_{\Sigma} v^2 \eta(\nabla v^1, \nabla v^3) dV + \int_{\Sigma} v^3 \eta(\nabla v^1, \nabla v^2) dV + \dots = 0,$$

yields the term

$$I_{leading} = \int_{\Sigma} \hat{v}^1 \eta (\nabla \hat{v}^2, \nabla \hat{v}^3) dV + \int_{\Sigma} \hat{v}^2 \eta (\nabla \hat{v}^1, \nabla \hat{v}^3) dV + \int_{\Sigma} \hat{v}^3 \eta (\nabla \hat{v}^1, \nabla \hat{v}^2) dV,$$

where $\hat{v}^k = e^{\Phi_k/h} a_k$ and integral I_{other} of other terms that contain products of $e^{\Phi_k/h} r_{k,h}$ and their gradients. We wish to use stationary phase for $I_{leading}$ to recover η and consider I_{other} as a negligible term.

Stationary phase yields $I_{leading} = O(1)$ as $h \to 0$ while L^p estimates $||r_{k,h}||_{L^p}, ||\nabla r_{k,h}||_{L^p} = O(h^{1/p})$ yield $I_{other} \sim O(h^{-1})$. Thus

 $I_{other} > I_{leading}, \quad h \to 0$

by just using L^p estimates. A problem.

Solution: Nonlinear CGO calculus

Nonlinear CGO calculus is a collection estimates that can be considered to be stationary phase type estimates for a class of h-dependent functions. The main estimate is

Theorem (C. Carstea, M. Lassas, T. L, L. Tzou 2023) Let f be C_c^{∞} smooth outside a finite number of points and $deg(f) \ge l \ge 0$, then

$$\int e^{4i\psi/h} f \partial^l r_h = o(h^{\lfloor (\deg(f) - l)/2 \rfloor + 1}).$$

- $\lfloor \cdot \rfloor$ is the floor function. The degree $\deg(f)$ of a function f is roughly the order it vanishes at critical points of ψ ; if $\deg(f) = l$, then $f(z) = z^k \overline{z}^m + O(|z|^{l+1})$, k + m = l.
- The theorem yields improved estimate $I_{other} = o(1)$. Thus $I_{other} < O(1) = I_{leading}$, and we recover 2nd fundamental form η . 3rd order linearization recovers the conformal factor.
- Note that for $n \ge 3$, typical CGOs used in geometric inverse problems can be made to have correction terms R_h with $R_h = O_{H^k}(\tau^{-R})$, for any $k, R \in \mathbb{N}$, so that nonlinear CGO calculus is not needed. Recall that we have only $r_h = O_{L^p}(h^{1/p})$.

Summary

- Recovery of a general 2D minimal surface from the DN map of minimal surface equation under a topological assumption.
 - Conformal factor can be recovered in without the topological assumption.
 - Also recovered second fundamental form; information about the ambient space.
- Introduction of the recent higher order linearization method for inverse problems into the AdS/CFT correspondence in physics.
 - Entanglement entropies of CFT determine the DN map of minimal surface equation.
- 3 Nonlinear CGO calculus to handle contributions from products of CGOs needed in studies of nonlinear models in 2D.
 - CGO calculus is independent of the application to inverse problem for the minimal surface equation.
 - Needed not only in geometric settings, but useful in inverse problems for quasilinear elliptic equations in R².

Slides will be available at https://www.mv.helsinki.fi/home/tjliimat/

