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Abstract. We define and study Toeplitz operators Ta with distribu-
tional symbols in the setting of weighted Fock spaces of entire functions
on the complex plane. Sufficient conditions for boundedness and com-
pactness are presented in terms of the symbol belonging to a weighted
Sobolev space W−m,∞

ω of negative order.

1. Introduction.

We consider Toeplitz operators Ta on weighted Fock spaces F p
γ of entire

functions on the complex plane. The Fock space is also known as the Segal-
Bargmann space in the case p = 2, and various aspects of Toeplitz operators
and their applications to canonical quantization theory of theoretical physics
have been considered in that case e.g. in [4], [5], [6], [8], [9]. More recent
studies are included in [2], [7], [10]. For related studies in Bergman spaces
we refer to [3], [11], [14], [16], [17], [19].

We are concerned in this paper with the problems of finding sufficient
conditions for the boundedness and compactness of Ta : F p

γ → F p
γ , if 1 ≤

p ≤ ∞, γ > 0. In the context of Bergman spaces, a weak sufficient condition
was recently found in [12] even for distributional symbols a. Our purpose is
to establish similar results in Fock spaces. The main result (Theorem 4.1)
states that Ta : F p

γ → F p
γ is bounded, if the symbol a can be presented (2.3)

as a sum of (in general, distributional) derivatives of functions vanishing
rapidly enough at infinity (the order of vanishing being equal to the order of
the derivative). This result is interesting already for function symbols, since
it yields plenty of examples of unbounded functions which induce bounded
Toeplitz operators. A quite dramatic case is presented in Example 4.2.
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Recall that, if 1 ≤ p <∞, F p
γ is the closed subspace of

Lpγ = Lp(C, e−γp|z|2/2dA)

consisting of analytic functions. The spaces are endowed with the norm

‖f ;Lpγ‖p :=

∫
D

|f(z)|pe−γp|z|2/2dA(z) =:

∫
D

|f(z)|pdAp,γ(z)(1.1)

where dA = dxdy is the area measure on the complex plane C. The space
F∞γ consists entire functions f such that z 7→ f(z)e−γ|z|

2/2 is bounded, and
the norm is given by

‖f ;L∞γ ‖ := sup
z∈C
|f(z)|e−γ|z|2/2(1.2)

Note that for every γ > γ′ > 0 and 1 ≤ p < q ≤ ∞, we have

F 1
γ ⊂ F p

γ ⊂ F q
γ ⊂ F∞γ and F p

γ′ ⊂ F p
γ

with bounded inclusions.
The Fock projection P is the orthogonal projection of L2

γ onto A2
γ, and it

has the integral representation

Pf(z) =

∫
C

f(w)eγzw̄e−γ|w|
2

dA(w).

It is also known to be a bounded projection of Lpγ onto Apγ for all 1 ≤ p ≤ ∞.
This fact depends on the correct form of the weight in (1.1): the boundedness

is not true for the norm of Lp(C, e−γ|z|2dA). Note also that unlike in the
Bergman spaces setting, things like the boundedness of the projection also
hold in the cases p = 1 and p =∞. Henceforth we will always assume that
p ∈ [1,∞].

For an essentially bounded a : C→ C and f ∈ F p
γ , the Toeplitz operator

Ta with symbol a is defined by setting

Taf = P (af).

Since P is bounded, it follows easily that Ta is a bounded operator F p
γ → F p

γ

for 1 ≤ p ≤ ∞. If a is a compactly supported distribution on C, one can
easily define the corresponding Toeplitz operator by

Taf(z) = 〈f(w)eγzw̄e−γ|w|
2

, a〉w(1.3)

where 〈·, ·〉w denotes the dual paring of the test function and distribution
spaces and the test function is considered as a function of the variable w
with z being a parameter. Analogously to the Bergman space case, we give
below a more general definition for distributional symbols without compact-
ness restrictions. Sufficient conditions for boundedness and compactness of
Toeplitz operators are given in Theorem 4.1, Section 4, and Proposition 5.1,
Section 5, respectively. The distributional symbol class will be a weighted
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Sobolev space of negative order, the analysis of which is the object of Sec-
tion 2. New integral estimates, specific to the Fock space case, are derived
in Section 3.

2. Preliminaries.

Concerning notation and basic definitions, we follow the terminology of
[13] for general theory of distributions, [1] for Sobolev spaces, and [18] for
operator theory and analytic function spaces. In the following we consider
various function and distribution spaces, all of which are defined on C. For
the norm of an element f of a Banach function space X we use the notation
‖f ;X‖; for the operator norm of a bounded linear operator T : X → Y we
write ‖T : X → Y ‖. The standard space of infinitely smooth compactly
supported test function in the plane is denoted by C∞0 = C∞0 (C), and its
dual, the space of distributions on C, is D′ = D′(C). The order of a multi–
index α ∈ N2, where N := {0, 1, 2, , . . .}, is denoted by |α| := α1 + α2. The
notation α ≥ β for the multi–indices α, β means that αj ≥ βj for j = 1, 2.
As for derivatives, the notation Dαf stands for

∂α1

∂xα1

∂α2

∂yα2
f,

if f is a function of z = x + iy, where x, y ∈ R, and α is a multi–index.
The same notation is used for both classical and distributional derivatives.
We also write Dα

wf , if it is necessary to indicate the differentiation of a
function f with respect to its variable w. For an analytic function f of
the variable z ∈ C, we denote by f (l) the l:th derivative with respect to
z, for all l ∈ N. By C, C ′, C1, c etc. (respectively, Cn etc.) we mean
positive constants independent of functions, variables or indices occurring
in the given calculations (respectively, depending only on n). These may
vary from place to place, but not in the same group of inequalities.

We define ω : D→ R+ to be the standard weight function

ω(z) = 1 + |z|.(2.1)

Given m ∈ N and 1 ≤ p < ∞ we denote by Wm,1
ω = Wm,1

ω (C) the weighted
Sobolev space consisting of measurable functions f on C such that

‖f ;Wm,1
ω ‖ :=

∑
|α|≤m

∫
C

|Dαf(z)|ω(z)−|α|dA(z) <∞.(2.2)

The following fact is known; the proof is easier than the one in the Bergman
space setting, [12], Lemma 2.2, since now it is possible to define suitable cut-
off functions χn with bounded derivatives, instead of those in the citation.

Lemma 2.1. The subspace C∞0 of compactly supported infinitely smooth
functions on C is dense in Wm,1

ω .
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Definition 2.2. Given m ∈ N we denote by W−m,∞
ω = W−m,∞

ω (C) the
weighted Sobolev space consisting of distributions a on C which can be
written in the form

a =
∑

0≤|α|≤m

(−1)|α|Dαbα,(2.3)

where bα ∈ L∞α := L∞(C, ω(z)|α|), i.e.,

‖bα;L∞α ‖ := ess sup
C
ω(z)|α||bα(z)| <∞.(2.4)

Here every bα is considered as a distribution like a locally integrable func-
tion, and the identity (2.3) contains distributional derivatives. Note that if
bα ∈ L∞α , then

|bα(z)| ≤ ‖bα;L∞α ‖(1 + |z|)−|α|,(2.5)

for almost every z ∈ C. In particular ‖bα;L∞‖ ≤ ‖bα;L∞α ‖.
We remark that using a representation (2.3) even for smooth symbols

yields interesting result on boundedness of Ta; see Example 4.2.
The representation (2.3) is not unique in general. Hence, we define the

norm of a by

‖a‖ := ‖a;W−m,∞
ω ‖ := inf max

0≤|α|≤m
‖bα;L∞α ‖,(2.6)

where the infimum is taken over all representations (2.3).

Lemma 2.3. The dual of Wm,1
ω is isometrically isomorphic to W−m,∞

ω with
respect to the dual paring

〈f, a〉 :=
∑

0≤|α|≤m

∫
C

(Dαf)bαdA,(2.7)

where the functions bα are as in (2.3).

The proof uses Lemma 2.1 and the arguments of [1], Sections 3.8–3.10.
See [12] for some more explanations.

Remark 2.4. If a ∈ W−m,∞
ω , the value of the expression on the right hand

side of (2.7) is unique, although the representation (2.3) is not. Namely, for
every ϕ ∈ C∞0 , the value of ∑

0≤|α|≤m

∫
C

(Dαϕ)bαdA

coincides with 〈ϕ, a〉, by the standard definition of distributional derivative,
and the uniqueness of (2.7) follows from Lemma 2.1.

We shall need a pointwise estimate for Fock functions, which follows from
[10], Lemma 1 in Section 2.
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Lemma 2.5. Let 1 ≤ p ≤ ∞ and γ > 0, and let f ∈ F p
γ . There exists a

constant C > 0 such that

|f(z)| ≤ Ceγ|z|
2/2‖f ;Lpγ‖

for all z ∈ C.

Proof. When p =∞, this is trivial because of the definition of the norm.
When p < ∞, enlarge the integration domain from the disc B(z, r) to the
entire plane and take the p:th root in the reference. �

3. Integral estimates in Fock spaces.

In this section we present some integral estimates, which imply a weighted
norm estimate for the differentiation operator in the Fock spaces, see Lemma
3.4. estimates. The proofs in this section rely on a simple but useful integral
splitting trick.

Denote by P̄ the maximal projection;

P̄ f(z) =

∫
C

|f(w)| |eγzw̄|e−γ|w|2dA(w).

The following fact is proven in [7]. Again, the validity of this result depends
on the particular form of the Fock norm for p 6= 2.

Lemma 3.1. The maximal projection P̄ is bounded Lpγ → F p
γ , i.e. ‖P̄ f ;Lpγ‖ ≤

C‖f ;Lpγ‖.

The boundedness of the maximal projection gives us more freedom when
dealing with integral estimates. We use this to prove the following.

Lemma 3.2. Let α ∈ N2 be any multi-index and 1 ≤ p ≤ ∞. The operator

Tkf(z) := zk
∫
C

f(w)eγzw̄e−γ|w|
2

bα(w)dA(w)

is bounded Lpγ → F p
γ , whenever k ≤ |α| and bα ∈ L∞α . Moreover, ‖T‖ ≤

C‖bα;L∞α ‖ for some positive constant C = C(p, γ, α).

Proof. Let first p <∞. Write Tk = T 1
k + T 2

k , where

T 1
k f(z) := zk

∫
{|w|≤|z|/4}

f(w)eγzw̄e−γ|w|
2

bα(w)dA(w)

and

T 2
k f(z) := zk

∫
{|w|>|z|/4}

f(w)eγzw̄e−γ|w|
2

bα(w)dA(w).
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For T 1
k we note that if |w| ≤ |z|/4, then |eγzw̄| ≤ eγ|z|

2/4. This, lemmas 2.5
and 3.1 and the remark following (2.5) imply for f ∈ Lpγ

‖T 1
k f ;Lpγ‖p =

∫
C

|T 1
k f(z)|pe−γp|z|2/2dA(z)

≤
∫
C

|z|kpeγp|z|2/4
(∫

C

|f(w)||bα(w)|e−γ|w|2dA(w)

)p
e−γp|z|

2/2dA(z)

=

∫
C

|z|kpeγp|z|2/4
(
P (|fbα|)(0)

)p
e−γp|z|

2/2dA(z)

≤ C ′
∫
C

|z|kpeγp|z|2/4‖bαf ;Lpγ‖pe−γp|z|
2/2dA(z)

≤ C ′
∫
C

|z|kpeγp|z|2/4‖bα;L∞‖p‖f ;Lpγ‖pe−γp|z|
2/2dA(z)

≤ C ′′‖f ;Lpγ‖p‖bα;L∞‖p
∫
C

|z|kpe−γp|z|2/4dA(z)

≤ C ′′′‖f ;Lpγ‖p‖bα;L∞α ‖p.

This shows that T 1
k is bounded.

To show that T 2
k is bounded, just note that if |w| > |z|/4, then

|T 2
k f(z)| ≤

∫
C

4k|wkf(w)eγzw̄bα(w)| e−γ|w|2dA(w).

Using the fact that

|w|k|bα(w)| ≤ ‖bα;L∞α ‖,

whenever k ≤ |α|, and the boundedness of the maximal projection, we
conclude that T 2

k is also bounded.
The above things also work when p = ∞; the reasoning is completely

similar, even though the norm is not defined as an integral. The details are
left as an easy exercise for the reader.

Combining the above estimates we see that

‖Tk‖ ≤ C(p, γ, α)‖bα;L∞α ‖,

as claimed. Note that Tkf is clearly analytic. �

The following is a corollary of the proof rather than the lemma itself. The
norm on the left hand side is for the function of the variable z.
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Corollary 3.3. If the assumptions of Lemma 3.2 are satisfied, we have the
bound ∥∥∥∫

C

ω(z)kω(w)−|α| |f(w)eγzw̄| e−γ|w|2dA(w) ;Lpγ

∥∥∥ ≤ C‖f ;Lpγ‖

for f ∈ Lpγ. The same is still true, if ω(z)k is replaced by zk.

The proof of the following result uses similar ideas.

Lemma 3.4. The operator Sk defined by

Skf(z) := ω−|α|(z)f (k)(z)

is bounded F p
γ → Lpγ, whenever k ≤ |α|.

Proof. Let first p < ∞. Assume that f ∈ F p
γ . Using the reproducing

property, we have

f(z) =

∫
C

f(w)eγzw̄e−γ|w|
2

dA(w).

Differentiating k times under the integral sign, we see that Sk has the rep-
resentation

Skf(z) =

∫
C

(γw̄)kω(z)−|α|f(w)eγzw̄e−γ|w|
2

dA(w).

Now Sk = S1
k + S2

k , where

S1
kf(z) =

∫
{|w|≥4|z|}

(γw̄)kω(z)−|α|f(w)eγzw̄e−γ|w|
2

dA(w)

and

S2
kf(z) =

∫
{|w|<4|z|}

(γw̄)kω(z)−|α|f(w)eγzw̄e−γ|w|
2

dA(w).

For S1
k , note that |eγzw̄| ≤ eγ|w|

2/4, since |z| ≤ |w|/4. Using the pointwise
estimate in Lemma 2.5 for f , we get

‖S1
kf ;Lpγ‖p =

∫
C

|S1
kf(z)|pe−γp|z|2/2dA(z)

≤
∫
C

( ∫
{|w|≥4|z|}

|γw̄|k‖f ;Lpγ‖eγ|w|
2/2eγ|w|

2/4e−γ|w|
2

dA(w)

)p
e−γp|z|

2/2dA(z)

≤ C‖f ;Lpγ‖p
∫
C

(∫
C

|w̄|ke−γ|w|2/5dA(w)

)p
e−γp|z|

2/2dA(z)

≤ C ′‖f ;Lpγ‖.
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For the operator S2
k , note that |z| > |w|/4 and k ≤ |α|, hence, (w̄γ)kω(z)−|α|

is bounded and the claim easily follows from the boundedness of the maximal
projection.

Again, the case p =∞ bears no additional difficulties. �

4. Boundedness of Toeplitz operators with distributional
symbols.

The main result about the boundedness of Ta can be stated as follows.

Theorem 4.1. Assume the symbol a ∈ D′ = D′(C) belongs to W−m,∞
ω for

some m. Then the Toeplitz operator Ta, defined by the formula

Taf(z) =
∑

0≤|α|≤m

∫
C

Dα
w

(
f(w)eγzw̄e−γ|w|

2
)
bα(w)dA(w) , f ∈ F p

γ ,(4.1)

is well defined and bounded F p
γ → F p

γ for all 1 ≤ p ≤ ∞, γ > 0. The resulting
operator is independent of the choice the representation (2.3). Moreover,
there is a constant C1 > 0 such that

‖Ta‖ ≤ C1‖a;W−m,∞
ω ‖.(4.2)

Proof. Fix a representation (2.3) for a such that ‖a;W−m,∞
ω ‖ ≥ max|α|≤m ‖bα, L∞α ‖/2.

For |α| ≤ m, we have∣∣Dα
w

(
f(w)eγzw̄e−γ|w|

2)
bα(w)

∣∣
≤C

∑
β≤α

|Dα−β
w (f(w))Dβ

w(eγzw̄e−γ|w|
2

)bα(w)|.

Furthermore, for each multi-index β we have

|Dβ
w(eγzw̄e−γ|w|

2

)| ≤ Cβ
∑
σ≤β

ω(z)|σ|ω(w)|β|−|σ| |eγzw̄| e−γ|w|2 ,

for some positive constant Cβ. This can be seen by a direct calculation. We
arrive at ∣∣Dα

w

(
f(w)eγzw̄e−γ|w|

2)
bα(w)

∣∣
≤ C ′

∑
β≤α

∑
σ≤β

ω(z)|σ|ω(w)|β|−|σ|
∣∣f (|α|−|β|)(w)eγzw̄

∣∣ e−γ|w|2 ∣∣bα(w)
∣∣

≤ C ′′‖bα;L∞α ‖
∑
β≤α

∑
σ≤β

∣∣ω(w)−|α|+|β|f (|α|−|β|)(w)
∣∣

·ω(z)|σ|ω(w)−|σ| |eγzw̄| e−γ|w|2 .(4.3)

Notice that by Lemma 3.4 the function

w 7→ |ω(w)−|α|+|β|f (|α|−|β|)(w)|
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belongs to Lpγ, with norm bounded by a constant times ‖f ;Lpγ‖. Hence,
integrating with respect to w and applying Corollary 3.3 to each of the
terms (4.3) separately, yields the bound

‖Dα
w

(
f(w)eγzw̄e−γ|w|

2)
bα;Lpγ‖ ≤ C‖f ;Lpγ‖.

The operator above is also unambiguously defined; Using Lemmas 3.2 and
3.4 and some simple estimates it is not difficult to see that if f ∈ F p

γ for any
p ∈ [1,∞], then

w 7→ f(w)eγzw̄e−γ|w|
2

is an element of the space Wm,1
ω . This, by the reasoning in Remark 2.4,

implies the uniqueness of Ta. �

Example 4.2. 1◦. Consider the function

b(1,0)(z) =
sin(exp100(x2))

ω(z)

where z = x+ iy and expk(x) := exp(expk−1(x)) for all natural numbers k .
The function a := D(1,0)b(1,0) = ∂b(1,0)/∂x is very far from being L1, but, by
Theorem 4.1, Ta is still bounded.

2◦. We provide an example of a distributional symbol with noncompact
support. Consider

a := b(0,0) +D(1,0)b(1,0) =
∂

∂x
b(1,0),(4.4)

where

b(0,0)(z) =

{
0 , if x ≤ 0
−2x/(1 + r2)2 , if x > 0

and

b(1,0)(z) =

{
0 , if x ≤ 0
1/(1 + r2) , if x > 0

with z = x+ iy, r = |z|. We have b(1,0) = Y (x)/(1 + r2), where Y (x) is the
usual step function of one variable, and moreover

a = b(0,0) +D(1,0)b(1,0) = δ0/(1 + y2).

Here δ0 denotes the Dirac measure in variable x ∈ R, so the symbol a is a
weighted Dirac measure of the imaginary axis. Since a ∈ W−1,∞

ω , it defines
a bounded Toeplitz operator Ta : F p

γ → F p
γ (it is even compact, see below).



10 ANTTI PERÄLÄ, JARI TASKINEN, AND JANI VIRTANEN

5. Compactness of Toeplitz operators with distributional
symbols.

The observation in Proposition 4.1 of [12] remains true also in the Fock
space case.

Proposition 5.1. An arbitrary compactly supported distribution a ∈ D′
belongs to the Sobolev space W−m,∞

ω and defines a compact Toeplitz operator
F p
γ → F p

γ .

The proof is the same as in the citation.

Theorem 5.2. Let a ∈ D′ belong to W−m,∞
ω for some m. The Toeplitz

operator Ta, (4.1), is compact, if a has a representation (2.3) such that the
functions bα satisfy

lim
r→∞

ess sup
|z|≥r

ω(z)−|α||bα(z)| = 0.(5.1)

Proof. We pick up functions bα, 0 ≤ |α| ≤ m, as in (5.1). For 0 < r <∞,
we define for all α the compactly supported functions

bα,r(z) =

{
bα(z) , if |z| ≤ r,
0 , if |z| > r

Let also ar =
∑

0≤|α|≤m(−1)|α|Dαbα,r, where the derivatives are distribu-
tional. Of course, ar is a distribution with compact support, hence, by the
remark above, the Toeplitz operator Tar : F p

γ → F p
γ is compact for every r.

On the other hand, due to the definition (2.6), the property (5.1) and the
norm estimate (4.2), the operator norm ‖Ta − Tar‖ can be made arbitrarily
small choosing r close enough to 1. Consequently, Ta must be a compact
operator. �

Example 5.3. Returning to the example 4.2, the symbol

D(1,0)b(1,0)(z) = D(1,0)
(sin(exp100(x2))

ω(z)2

)
defines a Toeplitz operator which is even compact.

In view of Theorem 5.2, also the symbol (4.4) defines a compact Toeplitz
operator.

References

[1] R.A. Adams, Sobolev spaces. Academic Press, 1975.
[2] A. Alexandrov, G. Rozenblum, Finite rank Toeplitz operators: some extensions of D.

Luecking’s theorem. J. Funct. Anal. 256 (2009), no. 7, 2291–2303.
[3] S. Axler, D. Zheng, Compact operators via the Berezin transform. Indiana Univ.

Math. J. 47 (1998), no. 2, 387–400.
[4] F.A. Berezin, Quantization. Math. USSR Izv. 8 (1974), 1109–1163.



TOEPLITZ OPERATORS ON FOCK SPACES 11

[5] F.A. Berezin, Quantization in complex symmetric spaces. Math. USSR Izv. 9 (1975),
341–379.

[6] C.A. Berger, L.A.Coburn, Toeplitz operators on the Segal-Bargmann space. Trans.
Amer. Math. Soc. 301 (1987), no. 2, 819–827.
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