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Abstract. We study Toeplitz operators Ta on the Besov spaces
Bp in the case of the open unit disk D and 1 < p < ∞. We
prove that a symbol a satisfying a weak Lipschitz type condition
induces a bounded operator Ta. Such symbols do not need to be
bounded functions or have continuous extensions to the boundary
of D. We discuss the problem of the existence of nontrivial compact
Toeplitz operators and also consider Fredholm properties and prove
an index formula.

1. Introduction, main theorems.

The purpose of our work is to present new, weak sufficient conditions for
boundedness of Toeplitz operators Ta on analytic Dirichlet and Besov
spaces of the open unit disk. This main result is contained in Theorem
1.1. We also give examples of such operators having symbols which are
not bounded or even L1 in any neighbourhood of the unit circle. We
also consider Fredholm theory for Toeplitz operators on analytic Besov
spaces.

Toeplitz operators constitute one of the most important classes of
non-selfadjoint integral operators on function spaces, and they are de-
fined in general as follows. Let X be a Banach function space on some
domain Ω, and let Y ⊂ X be a closed subspace. Given a suitable func-
tion a on Ω, denote the pointwise multiplier operator by Ma : Y → X,
and let P be a bounded projection operator from X onto Y . Then, the
Toeplitz operator with symbol a is defined by Taf = PMaf for f ∈ Y .
In practise, Ma can be allowed to map to a larger space than X, as
long as Ta still makes sense. A typical choice for X is an Lp-space on
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Academy of Science and Letters and the Academy of Finland project ”Functional
analysis and applications”.

1
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the open unit disk D = {z ∈ C : |z| < 1} of the complex plane or on
the boundary {|z| = 1}, and for Y the subspace of analytic functions,
i.e., a Bergman or Hardy space.

In this paper we study a more complicated case, where X is an Lp-
Sobolev space on the unit disk D, 1 < p < ∞, and the corresponding
subspace of analytic functions Y is the Besov space Bp. Let us start
from the definition of the latter. An analytic f : D→ C belongs to Bp,
if f(0) = 0 and

‖f‖pBp := (p− 1)

∫
D

|f ′(z)|p(1− |z|2)p−2dA(z) <∞,(1.1)

where dA(z) = π−1dxdy is the normalised area measure, z = x+iy ∈ D.
The space B2 is also known as the Dirichlet space D, and the corre-
sponding norm is the square root of the area of f(D) taking into account
the multiplicities. Note that we accept the condition f(0) = 0 only for
technical convenience, although this choice also has the drawback that
the space Bp loses its conformal invariance. If one wishes to include
analytic functions with f(0) 6= 0 in the definition of the Besov space,
one has to add a term like |f(0)| to the right hand side of (1.1). We
leave the resulting changes completely to the reader.

The superspace X is easiest to describe in the case p = 2: it is the
Sobolev space W 1,2 consisting of those f ∈ L2 for which all first order
partial derivatives in the sense of distributions also belong to L2; see
e.g. [1] or [13]. (Here and in the following we always mean by Lp

the Lebesgue space with respect to the normalised area measure dA.)
Instead of the conventional norm of W 1,2 we use the equivalent norm
coming from the inner product

〈f, g〉W 1,2 =

∫
D

fdA

∫
D

ḡdA+

∫
D

(
∂f∂g + ∂̄f ∂̄g

)
dA,(1.2)

where ∂ = (∂x− i∂y)/2 and ∂̄ = (∂x + i∂y)/2 are the Wirtinger deriva-
tives; see for example Theorem 1.1.16 of [13]. Recall that for an analytic
f we have ∂f = f ′ and ∂̄f = 0.

In case 1 ≤ p < ∞, p 6= 2, we need weighted Sobolev spaces W 1,p
w .

The definition is similar to the case p = 2: a function f ∈ L1 belongs
to W 1,p

w , if its first order derivatives belong to the weighted Lp-space
defined by the weighted measure (1−|z|2)p−2dA(z). The norm of W 1,p

w

is defined by

‖f‖p
W 1,p

w
=
∣∣∣ ∫
D

fdA
∣∣∣p+(p− 1)

∫
D

(
|∂f(z)|p + |∂̄f(z)|p

)
(1− |z|2)p−2dA(z)
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All spaces W 1,p
w are complete, hence, W 1,2 is a Hilbert space.

When 1 < p <∞, the spaces Bp are closed subspaces of the respec-
tive W 1,p

w spaces, and the orthogonal projection Q : W 1,2 → B2 can be
written as the integral

Qf(z) =

∫
D

z∂f(w)

1− zw̄
dA(w).(1.3)

This is known to be a bounded projection W 1,p
w → Bp for all 1 < p <∞.

The formula for Q suggests the following definition for the Besov-
Toeplitz operators:

(1.4) Taf(z) =

∫
D

z∂(af)(w)

1− zw̄
dA(w).

This is a well-defined, bounded operator on Bp if, for instance, a and
∂a are both in L∞, see [6, 12].

The existing literature on the present topic includes the paper of Cao
[6] and the more recent works of Lee [9, 10] and Lee-Zhu [12] on the case
of the Dirichlet space, i.e., p = 2. These papers investigate Toeplitz
operators generated by the Sobolev-Dirichlet projection Q of (1.3),
and the operator symbols belong to the Sobolev space W 1,∞. Note
that W 1,∞ agrees almost everywhere with functions that are Lipschitz
continuous on the closed unit disk, see Theorem 4.1 of [8]; in particular,
the symbols are bounded functions. We also want to mention the
paper of Rochberg and Wu [17], where a Dirichlet-Toeplitz operators
are defined in a different manner.

There exists another approach to Toeplitz operators on Besov spaces:
using the notation of the beginning of Section 2, we denote by Lpα the
Lp-space with respect to the area measure (1−|z|2)αdA(z) and by P the
classical Bergman projection. As is known, P : Lpα → Lpα is bounded
whenever p > α + 1. When α ≤ −1, the spaces of analytic functions
with respect to the measure (1− |z|2)αdA(z) degenerate. However, by
passing to derivatives, the case α = −2 can be identified with the Besov
space Bp, and the Bergman projection is bounded and onto Lp−2 → Bp.
One can then also study more general operators Pβ for suitable weight
parameters β.

It makes sense to study Bergman-Toeplitz operators in the described
setting, as is done in the paper by Wu, Zhao and Zorboska [21] and
in the recent work of Tchoundja [20]. The drawback of this approach
is the fact that Bp is not a norm subspace of Lpα, so the Bergman
projection is not a projection, strictly speaking.
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The setting of the present paper, a general p and Ta defined in terms
of Q, does not seem to appear in the literature at all, in spite of the
obvious inclusion Bp ⊂ W 1,p

w . It is not so surprising that many of our
results are new even for p = 2, and thus the recording of such results
in this paper is well motivated.

We introduce the local Sobolev space W 1,1
loc consisting of measurable

functions a : D → C such that a and the distributional derivatives ∂a
and ∂̄a are locally integrable functions. By the Sobolev embedding the-
orem, [1], Theorem 5.4, the elements of W 1,1

loc are locally L2-functions,

but they do not need to be continuous, since for example |z|−δ ∈ W 1,1
loc

for all 0 < δ < 1. However, as a consequence of Lemma A.5.2 of [4], for
instance, integrals over circular arcs and line segments of such functions
make sense almost everywhere.

We aim to prove the following result, which contains a sufficient
condition for the boundedness of Ta. We shall show in Remark 3.2
that there are unbounded symbols, which satisfy this condition and
which cannot be continuously extended to the boundary of D. We also
remark that if the symbol a belongs to the Sobolev space W 1,∞, then it
satisfies the assumptions of Theorem 1.1. The condition (1.5) appears
in the main theorem of [18], see also (2.3) below, and the other two
conditions are differentiated versions of it.

Theorem 1.1. Assume that a ∈ W 1,1
loc and that there is a constant C > 0

such that for all 0 ≤ r < 1 and θ ∈ [0, 2π],

∣∣∣ s∫
r

φ∫
θ

a(%eiϕ)%dϕd%
∣∣∣ ≤ C(1− r)2 ,(1.5)

∣∣∣ s∫
r

(
%a(%eiθ)− %a(%eiφ)

)
d%
∣∣∣ ≤ C(1− r)2 , and(1.6)

∣∣∣ φ∫
θ

(
r2a(reiϕ)− s2a(seiϕ)

)
dϕ
∣∣∣ ≤ C(1− r)2(1.7)

for all s with r ≤ s ≤ (1 + r)/2 and all φ with θ ≤ φ ≤ θ + π(1 − r).
Then Ta is a well defined and bounded operator Bp → Bp, 1 < p <∞.

It seems possible to formulate an estimate for the operator norm on
Ta in terms of the infimum of all constants C appearing in (1.5)–(1.7).
However, we skip the details, since this would require the checking of
several steps including the proof of Theorem 2.3 of [18].
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We also refrain from formulating a ”little-o” theorem on compact
Toeplitz operators. In fact, it is known that for symbols a ∈ W 1,∞

there exist no nontrivial compact Toeplitz operators on B2, see [11]. In
Section 4 we shall prove an analogue of this fact for any p ∈ (1,∞) and
all compactly supported distributional symbols. It remains an open
question whether there are any W 1,1

loc -symbols that generate nontrivial
compact Toeplitz operators, although this seems improbable.

2. Preliminaries on Bergman spaces.

Sections 2 and 3 are devoted to the proof of Theorem 1.1. The idea is
to return the proof to the Bergman space setting and to use the results
of [18]. In this section we review the Bergman space theory and the
result of the citation, which we actually need in a slightly more general
form.

For every 1 < p < ∞ and α > −1 we denote by Lpα the weighted
Lp-space, which is endowed with the norm

‖f‖pp,α := (α + 1)

∫
D
|f(z)|p(1− |z|2)αdA(z),(2.1)

where we note that (α+1)(1−|z|2)αdA(z) is a probability measure on D.
The weighted Bergman space Apα is the closed subspace of Lpα consisting
of analytic functions. The Bergman projection P is the orthogonal
projection of L2 onto A2, and it has the integral representation

Pf(z) =

∫
D

f(w)

(1− zw̄)2
dA(w).

It is also a bounded projection from Lp onto Ap, when 1 < p <∞, but
much stronger results are known to hold true. Namely, the maximal
Bergman projection P is a nonlinear operator defined by

Pf(z) =

∫
D

|f(w)|
|1− zw̄|2

dA(w),

and it has the following boundedness property.

Lemma 2.1. Given 1 < p <∞ and α > −1 such that p > α+ 1, there
exists a constant C = C(p, α) with

‖Pf‖p,α ≤ C‖f‖p,α(2.2)

for all f ∈ Lpα.

We shall apply this lemma to the case α = p − 2. The lemma
is proven in [23], which generalises the original work of Forelli and
Rudin, [7]. It also follows by applying the Schur test (see Theorem
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3.2.2 of [26]) to the kernel K(z, w) := (1− |w|2)−α|1− zw̄|−2, measure
dµ(w) := (1− |w|2)αdA(w) and test function h(w) := (1− |w|2)−pq.

The standard definition of Toeplitz operators T (a) in Bergman spaces
is

T (a)f = P (af) =

∫
D

a(w)f(w)

(1− zw̄)2
dA(w),

where a : D → C is at least measurable and the integral is assumed
to converge for f ∈ Apα. In general, Ta 6= T (a). Since P is a bounded
operator, T (a) extends to a bounded operator Apα → Apα for 1 < p <∞
and p− 1 > α > −1, whenever a is a bounded function.

Remark 2.2. Concerning Toeplitz operators in weighted Bergman spaces
Apα, one usually defines them using the orthogonal projection Pα : L2

α →
A2
α,

Pαf(z) = (α + 1)

∫
D

f(w)(1− |w|2)αdA(w)

(1− zw)2+α
,

Pα and Tα(a). However, since our primary objects are Toeplitz opera-
tors on Besov spaces, we are forced to use the unweighted P in weighted
Bergman spaces, which leads to some difficulties in the last section.

It is known and easy to see, that a does not need to be bounded in
order to induce a bounded Toeplitz operator. In order to present our
results in as general form as possible, we need to improve the main
result of [18] for the boundedness of T (a) in Bergman spaces.

Theorem 2.3. Assume that b : D→ C is a locally integrable function,
and let 1 < p < ∞, α > −1 and p > α + 1. Then T (b) : Apα → Apα
is well defined and bounded, if there exists a constant C > 0 such that,
for all 0 ≤ r < 1, θ ∈ [0, 2π],

∣∣∣ s∫
r

φ∫
θ

b(%eiϕ)%dϕd%
∣∣∣ ≤ C(1− r)2(2.3)

for all s, φ with r ≤ s ≤ (1 + r)/2 and θ ≤ φ ≤ θ + π(1− r).

In the case the condition (2.3) holds, the operator T (b) is defined by
expressing the value of T (b)f(z) as an absolutely convergent numerical
series for every z ∈ D. The definition is described in more detail in
Remark 3.1.

Proof. In the case α = 0 this result is Theorem 2.3 of [18]. To prove
the present, more general version we notice that the formulas (3.13)
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and (3.6) of [18] show that

|T (b)f(z)| ≤ C

∫
D

|g(w)|
|1− zw̄|2

dA(w) = CPg(z),(2.4)

where

g(z) := |f(z)|+ |f ′(z)|(1− |z|2) + |f ′′(z)|(1− |z|2)2.(2.5)

As in [18], this leads to the proof of the theorem, since we can conclude
from (2.4) and Lemma 2.1 that the modulus of the function T (b)f is
pointwise majorised by a function F ∈ Lpα with ‖F‖p,α ≤ C‖f‖p,α. To
this end we only need the following observation: for all f ∈ Apα there
exists a constant C such that

‖f ′(z)(1− |z|2)‖p,α ≤ C‖f‖p,α and(2.6)

‖f ′′(z)(1− |z|2)2‖p,α ≤ C‖f‖p,α.

But this is well known: using the Bergman projection formula and
differentiating under the integral sign we get for f ∈ Ap ∩ Apα

|f ′(z)|(1− |z|2) ≤ C

∫
D

|f(w)|(1− |z|2)
|1− zw̄|3

dA(w)

≤ C

∫
D

|f(w)|
|1− zw̄|2

dA(w) = C ′Pf(z),

so that |f ′(z)|(1− |z|2) is pointwise bounded by the function CPf(z),
and this has a bounded Lpα-norm, again by Lemma 2.1. The case of
the second derivative is treated in the same way. Finally, the subspace
Ap ∩ Apα is dense in Apα. �

At the end of this section we still recall the following lemma.

Lemma 2.4. For every 1 < p <∞ we have Bp ⊂ App−2. Moreover, the
identity map i : Bp → App−2 is compact.

Proof. Obviously, ∂ : Bp → App−2 is bounded. Also, the Volterra
integration operator

(2.7) Vg(z) =

z∫
0

g(t)dt

is compact on App−2, which, for instance, is a special case of a result of
Aleman and Siskakis [2]. Now, the claim follows since i = V∂. �
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3. Proof of the main result.

Let us complete the proof of Theorem 1.1. The idea is to use an iso-
morphy between Besov and Bergman spaces and then apply Theorem
2.3. An analytic f : D→ C vanishing at 0 belongs to Bp if and only if
f ′ belongs to App−2. In fact, the operator ∂ : Bp → App−2 is an isometric
isomorphism, and its inverse is given by V defined in (2.7). It is crucial
that f(0) = 0 for ∂ : Bp → App−2 to be injective.

With this in mind we make the following formal calculation:

∂Taf(z) =

∫
D

d

dz

( z

1− zw̄

)
∂(af)(w)dA(w)

=

∫
D

1

(1− zw̄)2
(
f(w)∂a(w) + a(w)∂f(w)

)
dA(w)

= T (∂a)f(z) + T (a)f ′(z).(3.1)

Hence,

Ta = V
(
T (∂a)i + T (a)∂

)
.(3.2)

As a conclusion, if we know that T (∂a) and T (a) are bounded on App−2,
the operator Ta will be bounded on Bp. Moreover, the boundedness of
T (a) : App−2 → App−2 follows directly from (1.5) and Theorem 2.3, cf.
(2.3).

It remains to consider the boundedness of T (∂a) in App−2. Instead of
directly proving this, we still introduce simplifying technical tricks. Let
us denote by χ : D→ R the characteristic function, which vanishes in
the set {|z| < 1/2} and equals one in {1/2 ≤ |z| ≤ 1}. It is quite clear
that T (∂a) : App−2 → App−2 is bounded, if and only if T (χ∂a) : App−2 →
App−2 is bounded. Moreover, the multiplier f(z) 7→ z−1χ(z)f(z) is a
bounded operator App−2 → L2

p−2, hence, in order to prove that T (∂a) is
bounded on App−2 it is enough to show that

T (zχ∂a) : App−2 → App−2

is bounded. Since the conditions (2.3) and (1.5)–(1.7) are written in
polar coordinates, we recall that

∂r = cos θ∂x + sin θ∂y, ∂θ = −r sin θ∂x + r cos θ∂y,

hence, for |z| ≥ 1/2,

∂ =
e−iθ

2

(
∂r −

i

r
∂θ

)
(3.3)
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So, integrating by parts with respect to %, the integral (2.3) for b(z) =
χ(z)z∂a(z), for r ≥ 1/2, becomes

s∫
r

φ∫
θ

%eiϕ(∂a)(%eiϕ)%dϕd%

=
1

2

s∫
r

φ∫
θ

(
%2(∂%a)(%eiϕ)− i%(∂ϕa)(%eiϕ)

)
dϕd%

=
1

2

φ∫
θ

([
%2a(%eiϕ)

]%=s
%=r
−

s∫
r

2%a(%eiϕ)d%

)
dϕ

− i
2

s∫
r

[
%a(%eiϕ)

]ϕ=φ
ϕ=θ

d%(3.4)

Obviously, the moduli of the first, second, and third integrals on the
right hand side are bounded by C(1− r)2 due to (1.7), (1.5), and (1.6),
respectively. This yields (2.3) for χ(z)z∂a, and the desired boundedness
follows. �

Remark 3.1. It is worthwhile to describe the actual definition of Ta
in detail. By the identity (3.2), it is enough to explain the definition
in the case of Bergman space Toeplitz operators, so, let b be a symbol
satisfying the condition of Theorem 2.3, that is, one of the symbols a
or zχ∂a. The proof of Theorem 2.3 of [18] uses a decomposition of the
disk D into infinitely many standard hyperbolic rectangles Dn, n ∈ N,
and it shows that in the expression

T (b)f(z) =
∞∑
n=1

∫
Dn

f(w)b(w)

(1− zw̄)2
dA(w)

every integral over the set Dn converges, and moreover, the sum over
n converges absolutely at least for almost every z ∈ D. In other words,
the Toeplitz operator is defined as a sum of integrals rather than by a
usual integral formula.

Remark 3.2. There exist symbols a satisfying the assumptions of The-
orem 1.1, which are not bounded or even L1 on the unit disk and which
do not have boundary values. Such examples can be constructed based
on cancellation in the integrals (1.5)–(1.7), if a happens to be a rapidly
oscillating function. Indeed, given any integer N greater than 2, let us
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consider the function

a(reiθ) =
χ(θ)

r(1− r)N−2
exp

(
i

θ

(1− r)N
)
, r ≥ 1

2
, θ ∈ [0, 2π].(3.5)

Here, the C∞-function χ : [0, 2π] → [0, 1] is defined such that the
function a becomes smooth on the positive real axis, say, χ(θ) = 0 for
0 ≤ θ ≤ 1 and 2π − 1 ≤ θ ≤ 2π and χ(θ) = 1 for π/2 ≤ θ ≤ 3π/2.
Obviously, a is continuously differentiable in its domain of definition
and it can be extended to be continuously differentiable in D. Hence,
a belongs to W 1,1

loc , but not to L1, due to the factor (1− r)2−N .
We show that a satisfies the conditions (1.5)–(1.7). Given r and θ as

in Theorem 1.1 we make the change of variable y = θ(1− %)−N with

1

(1− %)N−2
d% = −θ

3/N

N

dy

y3/N
.

We denote Y = θ(1− r)−N and use 0 ≤ χ(θ) ≤ 1 and
∫ x+2π

x
eiydy = 0

to obtain, for r ≥ 1/2,∣∣∣ 1∫
r

a(%eiθ)%d%
∣∣∣ = χ(θ)

∣∣∣ 1∫
r

1

(1− %)N−2
exp

(
i

θ

(1− %)N

)
d%
∣∣∣

≤ Cθ3/N
∣∣∣ ∞∫
Y

1

y3/N
eiy dy

∣∣∣ = Cθ3/N
∣∣∣ ∞∑
n=0

Y+2π(n+1)∫
Y+2πn

1

y3/N
eiy dy

∣∣∣
= Cθ3/N

∣∣∣ ∞∑
n=0

Y+2π(n+1)∫
Y+2πn

( 1

y3/N
− 1

(Y + 2πn)3/N

)
eiy dy

∣∣∣
≤ Cθ3/N

∞∑
n=0

Y+2π(n+1)∫
Y+2πn

∣∣∣ 1

y3/N
− 1

(Y + 2πn)3/N

∣∣∣dy
≤ C ′θ3/N

∞∑
n=J(r,θ)

1

n1+3/N

≤ C ′′θ3/NY −3/N ≤ C ′′(1− r)3 ≤ C ′′(1− r)2,(3.6)

where J(r, θ) is the largest integer not larger than Y . This yields (1.5)
and also (1.6), since we obtain from (3.6) the bound∣∣∣ s∫

r

a(%eiθ)%d%
∣∣∣ ≤ ∣∣∣ 1∫

r

a%d%
∣∣∣+
∣∣∣ 1∫
s

a%d%
∣∣∣ ≤ C(1− r)2,(3.7)



TOEPLITZ OPERATORS ON DIRICHLET-BESOV SPACES 11

and the same for the term with a(%eiφ). Moreover, (1.7) is also true,
since ∣∣∣ φ∫

θ

exp
(
i

ϕ

(1− r)N
)
dϕ
∣∣∣ ≤ 2(1− r)N ;

this implies, using integration by parts and the bound |χ′(θ)| ≤ C,

|
∫ φ

θ

r2a(reiϕ)dϕ| = r

(1− r)N−2
∣∣∣ φ∫
θ

χ(ϕ) exp
(
i

ϕ

(1− r)N
)
dϕ
∣∣∣

≤ C(1− r)−N+2
∣∣∣χ(φ)

φ∫
θ

exp
(
i

ϕ

(1− r)N
)
dϕ
∣∣∣

+C(1− r)−N+2
∣∣∣ φ∫
θ

χ′(ϕ)

ϕ∫
θ

exp
(
i

ψ

(1− r)N
)
dψdϕ

∣∣∣
≤ C ′(1− r)2

and the same for s replacing r, cf. (1.7).

4. Compactness and Fredholm theory

In this final section we discuss the existence of nontrivial compact
Toeplitz operators and also the Fredholm theory of Toeplitz operators
on Besov spaces.

While [11] provides an example of rank 1 Dirichlet-Toeplitz operator
on a general domain, it is known that there are no symbols a ∈ W 1,∞,
which induce non-zero compact Toeplitz operators on B2 on the disk,
see Corollary 13 of [11]. We next show that the same is true, if the
symbol is a compactly supported distribution in D. We shall use a re-
cent approach to Bergman-Toeplitz operators of the papers [3] and [14].
Given a compactly supported distribution a, the natural generalisation
of the Bergman-Toeplitz operator is the following,

T (a)f(z) = 〈f(w)(1− zw̄)−2, a〉w,(4.1)

where 〈·, ·〉w denotes dual pairing of the space C∞ = C∞(D) and its
dual, the space of compactly supported distributions in D. The dual is
taken with respect to the variable w in the subscript. Of course, the
pair (4.1) is well defined, since the function w 7→ f(w)(1 − zw̄)−2 is
infinitely smooth, the number z ∈ D being considered as a parameter.

For all compactly supported L1-functions a, the above definition of
T (a) coincides with the classical one. Now, note that for a smooth f
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and a compactly supported distribution a, the distribution ∂(af) with
compact support acts on C∞ by

〈g, ∂(af)〉 = −〈f∂g, a〉,
according to the standard definition of distributional derivatives. Thus,
it is clear for us that a natural definition for Besov-Toeplitz operator
is

Taf(z) = 〈z/(1− zw̄), ∂(af)〉w, z ∈ D,(4.2)

if a is a distribution with compact support.

Proposition 4.1. Assume that a is a compactly supported distribution.
Then the Besov-Toeplitz operator Ta given by (4.2) is the zero operator.

Proof. By definition,

Taf(z) = 〈z/(1− zw̄), ∂(af)〉w = −〈f∂(z/(1− zw̄)), a〉w
for all z ∈ D. The rightmost expression is always zero because w 7→
z/(1− zw̄) is conjugate analytic. �

We finally turn to the Fredholm properties of Besov-Toeplitz oper-
ators. Recall that a bounded operator T acting on the Banach space
X is Fredholm if its kernel kerT and cokernel X/T (X) are both finite
dimensional. In this case, its index is given by

indT = dim kerT − dim
(
X/T (X)

)
.

Our idea is to demonstrate how the representation

Ta = V(T (∂a)i + T (a)∂)

yields the Fredholm properties for Ta, a ∈ W 1,∞, as a consequence of
Bergman space case. To our knowledge, the only paper dealing with
this subject is the paper of Cao [6], which establishes Fredholm theory
for the case p = 2. The symbol class W 1,∞ is larger than the classes
considered in Cao’s paper, and the present setting works also for the
whole range of p ∈ (1,∞).

By [8], Theorem 4.1, all functions a ∈ W 1,∞ are Lipschitz continuous
on D; in particular, the boundary values are well-defined. Let us denote
by a∗ : ∂D → C the continuous function defined by these boundary
values.

Theorem 4.2. Let a ∈ W 1,∞. Then Ta : Bp → Bp is a Fredholm
operator, if and only if a∗ has no zeroes. In the case Ta is Fredholm,
its index is given by the formula

indTa = −wind a∗.
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Here, wind a∗ denotes the winding number of the function a∗ with
respect to 0.

Proof. We recall that since a ∈ W 1,∞, all the assumptions of Theo-
rem 1.1 are satisfied and we can thus use the representation

Ta = V(T (∂a)i + T (a)∂),

see (3.2). By Proposition 2.4, the operator VT (∂a)i is compact. Thus,
the Fredholm properties of Ta are the same as those of VT (a)∂. Since
both V : App−2 → Bp and ∂ : Bp → App−2 are isometric isomorphisms,
the Fredholm properties of Ta coincide with those of T (a) : App−2 →
App−2. Thus, the proof is completed by Lemma 4.4, which we prove
shortly. �

The essential spectrum σess(T ) of a bounded linear operator T is
defined by

σess(T ) = {λ ∈ C : T − λ is not Fredholm}.

Corollary 4.3. Let a ∈ W 1,∞. Then σess(Ta) = a∗(∂D).

Recently in [10] it was proved that Coburn’s lemma remains true for
Toeplitz operators on the Dirichlet space; that is, if Ta is nonzero, then
either Ta is one-to-one or T ∗a is one-to-one. It follows that if a ∈ W 1,∞,

σ(Ta) = a∗(∂D) ∪ {λ ∈ C \ a∗(∂D) : wind(a− λ) 6= 0}.

It is also important to determine when the points λ ∈ σ(Ta) are eigen-
values of Ta. If λ /∈ σess(Ta), by a standard argument as in Hardy
spaces, it follows from Coburn’s lemma that λ is an eigenvalue if and
only if wind(λ − a∗) > 0. A considerably more difficult question is to
determine when λ ∈ σess(Ta) is an eigenvalue. The approach in Hardy
spaces may offer some ideas of how to deal with this question—see [16]
and the references therein.

The Fredholm properties are well-known, when the Toeplitz oper-
ator is defined using the reproducing kernel of A2

p−2 (see Remark 2.2

and [15]), while here the kernel is that of the (unweighted) space A2
0.

However, as we will see, the proof for this case is not that difficult:

Lemma 4.4. Let α > −1, p ∈ (1,∞) and a ∈ C(D). Then the operator
T (a) is Fredholm on Apα, if and only if a has no zeroes on the boundary.
In this case, we have the index formula

indT (a) = −wind a∗.
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Proof. We sketch the steps of the proof, which is quite close to the
classical one.

Step 1. Suppose first that a has no zeroes on the boundary. Then,
there exists b ∈ C(D) such that ab = 1 on the boundary. Thus, denot-
ing by M(f) multiplication by the function f , we obtain

T (a)T (b) = T (ab) + PM(a)(I − P )M(b) = I +K1 + PM(a)H(b),

and similarly for T (b)T (a). To show that T (a) is Fredholm, it there-
fore suffices to show that the unweighted Hankel operator H(b) =
(I−P )M(b) is compact on Apα. This follows from Theorem 20 of [24] by
taking α = 0 and λ = p− 2. Note that, in our particular case, this can
be proven without Zhu’s result by simply showing that H(zn) is com-
pact (as H(zkzn) = H(zn)M(zk) and we can use the Stone-Weierstrass
theorem).

Step 2. By Step 1, the operators T (zn) and T (zn) are Fredholm on
Apα. Clearly, T (zn) has a trivial kernel and its image has codimension
n. By an easy calculation based on orthogonality, the dimension of the
kernel of T (zn) is n. Moreover, monomials zn+k are mapped to the
linear span of zk. Thus, the image of T (zn) contains all polynomials.
By Step 1, the operator is Fredholm and therefore has closed range.
Hence T (zn) is surjective. In conclusion,

indT (zn) = −n = − indT (zn).

Step 3. The general index formula is obtained by homotopy, see
either [15] or [19]. Finally, to see that the Fredholmness of T (a) implies
that a has no zeroes on the boundary, use the standard perturbation
argument. �

Remark 4.5. The main difference between Lemma 4.4 and the more
standard case of [15] lies, rather surprisingly, on Step 2. Indeed, note
that with the present definition the adjoint of T (a) is not T (a), since
the operator P is not self-adjoint, unless α = 0.

We note that in addition to Fredholm properties of Bergman-Toeplitz
operators, the proof of Theorem 4.2 only needs the assumption that the
symbol a satisfies the requirements of Theorem 1.1. This observation
opens an approach for generalisations of Theorem 4.2. However, we
refrain from presenting such results, since is might be not so easy to
find a satisfactory, simple enough formulation, like in Theorem 4.2.
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[15] A. Perälä, J. Virtanen, A note on the Fredholm properties of Toeplitz opera-
tors on weighted Bergman spaces with matrix-valued symbols. Oper. Matri-
ces, 5 (2011), no. 1, 97–106.
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