
ON COMPACTNESS OF TOEPLITZ OPERATORS IN BERGMAN
SPACES

JARI TASKINEN AND JANI VIRTANEN

Abstract. In this paper we consider Toepliz operators with (locally) integrable
symbols acting on Bergman spaces Ap (1 < p < ∞) of the open unit disc of the
complex plane. We give a characterization of compact Toeplitz operators with
symbols in L1 under a mild additional condition. Our result is new even in the
Hilbert space setting of A2, where it extends the well-known characterization of
compact Toeplitz operators with bounded symbols by Stroethoff and Zheng.

1. Introduction and notation.

Consider the Banach space Lp := (Lp(D, dA), ‖ · ‖p), where 1 < p < ∞ and
dA is the normalized area measure on the unit disc D of the complex plane, and
the Bergman space Ap, which is the closed subspace of Lp consisting of analytic
functions. The Bergman projection P is the orthogonal projection of L2 onto A2,
and it has the integral representation

Pf(z) =

∫
D

f(ζ)

(1− zζ̄)2
dA(ζ).

It is also known to be a bounded projection of Lp onto Ap for every 1 < p < ∞.
For an integrable function a : D → C and, say, bounded analytic functions f , the
Toeplitz operator Ta with symbol a is defined by

Taf = P (af) =

∫
D

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ).(1.1)

In [8] and [9], we have given a generalized definition of Toeplitz operators, which
we denote here by Ta. In particular, we extended the definition to locally integrable
symbols and showed that the generalized Toeplitz operator is bounded under a weak
“averaging” condition (see (1.3) below). Since the generalized definition coincides
with (1.1), whenever the latter makes sense, our condition is the weakest known
sufficient condition for the boundedness of a Toeplitz operator. We recall this re-
sult in Theorem 1.1. The question of whether this condition is also necessary for
boundedness remains open.

Our main interest here is on compactness of Toeplitz operators. Unlike in Hardy
spaces, nontrivial Toeplitz operators may well be compact when acting on Bergman
spaces even with unbounded symbols. For a ∈ C(D), Ta is compact if and only if
a(z) = 0 for all z ∈ ∂D; see [4, 10]. For more general symbols, characterizations
are often given in terms of the Berezin transform: For any compact operator T on
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Ap, the Berezin transform of T vanishes on ∂D. This is also sufficient for compact-
ness of operators in the Toeplitz algebra generated by bounded symbols. However,
there are compact Toeplitz operators with unbounded symbols whose Berezin trans-
forms do not vanish. For further details on compactness and the Berezin transform,
see [1, 5] for operators on Ap(D), and [2, 3] and the references therein for more
general Bergman spaces. A different type of characterization, involving the Möbius
functions, was found by Stroethoff and Zheng [6, 7]. Their approach was based on
the use the reproducing kernel functions and other Hilbert space techniques.

In Section 3 we shall apply our methods to generalize the results of Stroethoff and
Zheng [7], which concern the characterization of compact Toeplitz operators with
only bounded symbols: we shall relax the boundedness assumption on the symbol
and extend their result from the Hilbert-space case to all Bergman spaces Ap with
1 < p <∞.

The following notation will be used throughout the paper. For all z, λ ∈ D we
write

ϕλ(z) =
λ− z
1− λ̄z

, W (z) = 1− |z|2 , Kλ(z) =
1

(1− λ̄z)2
,

kλ(z) = W (λ)Kλ(z) =
1− |λ|2

(1− λ̄z)2
.(1.2)

Given z ∈ D and S > 0, we write B(z, S) for the Euclidean disc with center z
and radius S and Dh(z, S) for the hyperbolic disc with center z and radius S; the
latter is the same as the hyperbolic disc D(z, S) in [11], Proposition 4.4. By C,C ′, c
etc. we denote positive constants, the exact value of which may vary from place to
place but not in the same chain of inequalities. If the constant depends on some
parameter or function, say, n or g, this is denoted by Cn or Cg etc. All function
spaces consist of functions on the disc D, unless otherwise stated. In particular, the
space of bounded analytic functions on the disc is denoted by H∞ and the space of
locally integrable functions on D is denoted by L1

loc. For clarity, we write Ck(D) for
the space of k times continuously differentiable functions in D. For 0 < ρ < 1 we
set Dρ := {z ∈ D : |z| ≤ ρ}. Given a ∈ L1

loc we denote by aρ the function, which
coincides with a on Dρ and equals 0 elsewhere.

Given a continuously differentiable function f of a variable z = x+ iy = reiθ ∈ D,
we denote ∂1 = ∂/∂x, ∂2 = ∂/∂y, ∂r = ∂/∂r and ∂θ = ∂/∂θ.

We let D be a family of the sets D := D(r, θ) ⊂ D , where

D = {ρeiφ | r ≤ ρ ≤ 1− 1

2
(1− r) , θ ≤ φ ≤ θ + π(1− r)}

for all 0 < r < 1, θ ∈ [0, 2π]. We denote |D| :=
∫
D
dA and, for ζ = ρeiφ ∈ D(r, θ),

âD(ζ) :=
1

|D|

ρ∫
r

φ∫
θ

a(%eiϕ)%dϕd%.

In the sequel we will consider functions a ∈ L1 (or even a ∈ L1
loc) such that there

exists a constant C > 0 such that

|âD(ζ)| ≤ C(1.3)

for all D ∈ D and all ζ ∈ D. The following result is contained in Theorem 2.1 of [9].
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Theorem 1.1. Let 1 < p <∞. If a symbol a ∈ L1 satisfies the condition (1.3), then
the limit

Taf = lim
ρ→1

Taρf , where Taρf(z) =

∫
Dρ

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ) , f ∈ Ap,(1.4)

converges in the strong operator topology and defines a bounded operator Ta : Ap →
Ap for all 1 < p <∞.

Moreover, the transposed operator T∗a : Aq → Aq can be written as

T∗af(z) = lim
ρ→1

∫
Dρ

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ)(1.5)

for f ∈ Aq and this limit also converges in the strong operator topology.

The theorem actually holds as such for symbols a ∈ L1
loc. Notice that for a

fixed 0 < ρ < 1 the restriction of any f ∈ Ap to Dρ is a bounded function and
the operator Taρ is bounded in Ap. Formula (1.4) allows us to define the Toeplitz
operator even in many cases, where the defining integral of the conventional formula
(1.1) does not converge, and it is used throughout this paper. This generalization
of the definition of Toeplitz operators is a most natural one, it coincides with the
conventional definition whenever the integral formula (1.1) makes sense, and it is
considered from many points of view in [9].

2. Preliminary results.

Theorem 1.1 is based on the following lemma, the proof of which is included in
the calculations (3.6)–(3.13) of the citation [8].

Lemma 2.1. Assume that the symbol a ∈ L1 satisfies the condition (1.3), let 1 <
p <∞ and let f ∈ Ap. Then, there exists a constant Cp > 0 such that∣∣∣ ∫

D

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ)

∣∣∣ := lim
ρ→1

∣∣∣ ∫
Dρ

a(ζ)f(ζ)

(1− zζ̄)2
dA(ζ)

∣∣∣
≤ C

∫
D

|f(ζ)|+ |f ′(ζ)|W (ζ) + |f ′′(ζ)|W (ζ)2

|1− zζ̄|2
dA(ζ).

The lemma and the following proposition hold even for a ∈ L1
loc. Instead of going

into the details of the proof Lemma 2.1 we prove a technical generalization of it,
which is essential for the subsequent considerations. For the formulation of this
result we fix 1 < p < ∞ and let g ∈ L∞(D) ∩ C2(D) be a function such that given
S > 0, there exists a constant CS > 0 such that for every z ∈ D,

|(∂jr∂kθ g)(z)| ≤ CS inf
ζ∈Dh(z,S)

|(∂jr∂kθ g)(ζ)| , j, k = 0, 1,(2.1)

and such that for some Cg > 0

‖g‖∞ + max
j=1,2
‖W∂jg‖∞ + max

j,k=1,2
‖W 2∂j∂kg‖∞ ≤ Cg <∞.(2.2)

Moreover, let h ∈ C2(D), h(D) ⊂ D, be a function, which also satisfies (2.2) and in
addition, for some Ch > 0,

|1− zh(ζ)| ≥ Ch|1− zζ̄|(2.3)
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for every z, ζ ∈ D. For example, h could be a Möbius transform.

Proposition 2.2. Let p, a and f be as in Lemma 2.1, and let the functions g and h
be as in (2.1)–(2.3). Then, the limit

lim
ρ→1

∫
Dρ

a(ζ)f(ζ)g(ζ)

(1− zh(ζ))2
dA(ζ)(2.4)

converges in Ap and there exists a constant Cp,g,h > 0 such that∣∣∣ lim
ρ→1

∫
D

a(ζ)f(ζ)g(ζ)

(1− zh(ζ))2
dA(ζ)

∣∣∣
≤ Cp,g,h

∫
D

|f(ζ)|+ |f ′(ζ)|W (ζ) + |f ′′(ζ)|W (ζ)2

|1− zζ̄|2
dA(ζ).(2.5)

Proof. The result follows from the proof of Theorem 2.1. of [9], but some changes
are needed. We present them as briefly as we can; for more details the reader is asked
to see the citation. Following the notation of the citation, we define the countably
many sets D

(
1 − 2−m+1, 2π(µ − 1)2−m

)
∈ D, where m ∈ N, µ = 1, . . . , 2−m, which

form a decomposition of the disc D. These are indexed in some order into a family
(Dn)∞n=1, so that every Dn is of the form

Dn = { z = reiθ | rn < r ≤ r′n, θn < θ ≤ θ′n}

where, for some m and µ,

rn = 1− 2−m+1 , r′n := 1− 2−m, θn = π(µ− 1)2−m+1 , θ′n := πµ2−m+1.

Given f ∈ Ap and n = n(m,µ) we write

Fnf(z) =

∫
Dn

a(ζ)f(ζ)g(ζ)

(1− zh(ζ))2
dA(ζ) ∀ z ∈ D.

For all n ∈ N we define Dn = {Dν : ν ∈ N, Dν ∩Dn 6= ∅}. There exist constants
N , M ∈ N such that any set Dn contains at most N elements Dν and on the other
hand, any set Dν belongs to at most M sets Dn. By the choice of the sets Dn, for
all given Dn and w ∈ Dn the subdomain ∪D∈DnD always contains a Euclidean disc
B(w,R(n)) such that |B(w,R(n))| ≥ C|Dn|. Now, let f̃ : D → C be an analytic
analytic function and let g be as in the assumption. We claim that for each n ∈ N,
j, k = 0, 1, and w ∈ Dn,

|f̃(w)∂jr∂
k
θ g(w)| ≤ C

|Dn|
∑
D∈Dn

∫
D

|f̃(ζ)∂jr∂
k
θ g(ζ)|dA(ζ).(2.6)

To see this let B(w,R(n)) ⊂ ∪D∈DnD be as above. Then, f̃ has the subharmonicity
property

|f̃(w)| ≤ C

|B(w,R(n))|

∫
B(w,R(n))

|f̃(ζ)|dA(ζ).

Moreover, by the choice of the family Dn, there exists S > 0, which can be chosen
independently of n, such that for every w ∈ Dn, B(w,R(n)) is contained in the
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hyperbolic disc Dh(w, S). Then, by (2.1)

|f̃(w)∂jr∂
k
θ g(w)| ≤ C

|B(w,R)|

∫
D(w,R)

|f̃(ζ)∂jr∂
k
θ g(ζ)|dA(ζ)

≤ C ′

|Dn|
∑
D∈Dn

∫
D

|f̃(ζ)∂jr∂
k
θ g(ζ)|dA(ζ).

For every n, a double integration by parts in polar coordinates yields∫
Dn

a(ζ)f(ζ)g(ζ)

(1− zζ̄)2
dA(ζ) =

( r′n∫
rn

θ′n∫
θn

a(%eiϕ)%dϕd%
)f(r′ne

iθ′n)g(r′ne
iθ′n)

(1− zh(r′ne
iθ′n))2

−
r′n∫
rn

( r∫
rn

θ′n∫
θn

a(%eiϕ)%dϕd%
)
∂r
f(reiθ

′
n)g(reiθ

′
n)

(1− zh(reiθ′n))2
dr

−
θ′n∫
θn

( r′n∫
rn

θ∫
θn

a(%eiϕ)%dϕd%
)
∂θ
f(r′ne

iθ)g(r′ne
iθ)

(1− zh(r′ne
iθ))2

dθ

+

r′n∫
rn

θ′n∫
θn

( r∫
rn

θ∫
θn

a(%eiϕ)%dϕd%
)
∂r∂θ

f(reiθ)g(reiθ)

(1− zh(reiθ))2
dθdr

=: F1,n(z) + F2,n(z) + F3,n(z) + F4,n(z) = Fn(z).

We consider F2,n(z). By (2.3) and (4.8) of [11],

|1− zh(reiθ′n)| ≥ Ch|1− zre−iθ
′
n| ≥ C ′h|1− zζ̄|(2.7)

for all z ∈ D, ζ ∈ D, all D ∈ Dn. Performing the differentiation, using (2.6) for f

and its derivative in the place of f̃ , and then using (2.1), (2.2), (2.7) we thus get∣∣∣∂r f(reiθ
′
n)g(reiθ

′
n)

(1− zh(reiθ′n))2

∣∣∣
≤ C

|Dn|
∑
D∈Dn

∫
D

( |f(ζ)||g(ζ)|
|1− zh(reiθ′n)|3

+
|f(ζ)||∂rg(ζ)|
|1− zh(reiθ′n)|2

+
|f ′(ζ)||g(ζ)|
|1− zh(reiθ′n)|2

)
dA(ζ)

≤ Ch
|Dn|

∑
D∈Dn

∫
D

( |f(ζ)| ‖g‖∞
|1− zζ̄|3

+
|f(ζ)|W (ζ)−1‖W∂rg‖∞

|1− zζ̄|2

+
|f ′(ζ)| ‖g‖∞
|1− zζ̄|2

)
dA(ζ)

≤ Cg,h
|Dn|

∑
D∈Dn

∫
D

( |f(ζ)|
|1− zζ̄|3

+
|f(ζ)|

W (ζ)|1− zζ̄|2
+
|f ′(ζ)|
|1− zζ̄|2

)
dA(ζ)

Thus, F2,n can be estimated by

|F2,n(z)| ≤
r′n∫
rn

∣∣∣ r∫
rn

θ′n∫
θn

a(%eiϕ)%dϕd%
∣∣∣∣∣∣∂r f(reiθ

′
n)g(reiθ

′
n)

(1− zh(reiθ′n))2

∣∣∣dr
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≤ Cg,h

r′n∫
rn

∣∣∣ r∫
rn

θ′n∫
θn

a(%eiϕ)%dϕd%
∣∣∣

· 1

|Dn|
∑
D∈Dn

∫
D

( |f(ζ)|
|1− zζ̄|3

+
|f(ζ)|

W (ζ)|1− zζ̄|2
+
|f ′(ζ)|
|1− zζ̄|2

)
dA(ζ)dr

≤ C ′g,h
∑
D∈Dn

r′n∫
rn

∫
D

( |f(ζ)|
|1− zζ̄|3

+
|f(ζ)|

W (ζ)|1− zζ̄|2
+
|f ′(ζ)|
|1− zζ̄|2

)
dA(ζ)dr

≤ C ′′g,h
∑
D∈Dn

∫
D

( |f(ζ)|
|1− zζ̄|2

+
|f ′(ζ)|W (ζ)

|1− zζ̄|2
)
dA(ζ).(2.8)

where the bound for the integral of a follows from (1.3) and we use |rn−r′n| ≤ CW (ζ)
to cancel the factors |1 − zζ̄|−1 and W (ζ)−1. The terms F1,n, F3,n and F4,n can be
estimated with similar calculations, and we obtain for Fn the estimate (2.7) of [9].
From here on, the proof goes by a word-to-word repetition of the citation, except
that the symbol g has a different meaning in [9]. �

Corollary 2.3. Let p, a and f be as in Lemma 2.1, and let λ ∈ D (considered as a
fixed parameter). Then, the limit

lim
ρ→1

∫
ϕλ(Dρ)

a ◦ ϕλ(ζ)f(ζ)

(1− zζ̄)2
dA(ζ)(2.9)

converges in Ap and there exists a constant C = C(p, λ) > 0 such that∣∣∣ lim
ρ→1

∫
ϕλ(Dρ)

a ◦ ϕλ(ζ)f(ζ)

(1− zζ̄)2
dA(ζ)

∣∣∣
≤ C

∫
D

|f(ζ)|+ |f ′(ζ)|W (ζ) + |f ′′(ζ)|W (ζ)2

|1− zζ̄|2
dA(ζ),(2.10)

Proof. We perform a change of variable ([11], Proposition 4.2) to obtain∫
ϕλ(Dρ)

a ◦ ϕλ(ζ)f(ζ)

(1− zζ̄)2
dA(ζ) =

∫
Dρ

a(ζ)f ◦ ϕλ(ζ)

(1− zϕλ(ζ))2
|kλ(ζ)|2dA(ζ).

The result follows from the previous proposition by setting g = |kλ|2 and h = ϕλ: it is
well-known or a routine matter to show that these functions satisfy the assumptions
(2.1)–(2.3), since λ is fixed. Of course, we also have f ◦ ϕλ ∈ Ap. �

Corollary 2.3 implies the following observation.

Corollary 2.4. If a ∈ L1 satisfies (1.3) and λ ∈ D, then P (a ◦ ϕλ) ∈ Ap for every
1 < p <∞.

Indeed, if f ≡ 1 in Corollary 2.3, then f belongs to Ap for every 1 < p <∞, and
the limit (2.9) converges in any Ap to P (a ◦ ϕλ).
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Remark 2.5. We actually get the result of Corollary 2.4 for every a ∈ L1
loc satisfying

condition (1.3), if we generalize the expression P (a ◦ ϕλ) as

P(a ◦ ϕλ)(z) := lim
ρ→1

∫
Dρ

a ◦ ϕλ(ζ)

(1− zζ̄)2
dA(ζ) , z ∈ D.(2.11)

3. Characterization of compact Toeplitz operators.

In this section we generalize the compactness characterization result [7], Theorem
6, for unbounded symbols and Ap-spaces with arbitrary p ∈ (1,∞). In the follow-
ing theorem, the operator Ta is the generalized Toeplitz-operator of (1.4), but as
explained below Theorem 1.1 and in [9], it coincides with the usual definition, if
af ∈ L1 for every f ∈ Ap. Also, we use Corollary 2.4 to assure that the Lq-norm
of P (a ◦ ϕλ) is finite for every q ∈ (1,∞). The theorem would hold true by merely
assuming a ∈ L1

loc instead of a ∈ L1 and using Remark 2.5.

Theorem 3.1. Assume that the symbol a : D → C belongs to L1 and satisfies the
condition (1.3), and let 1 < p < ∞. Then, the following conditions (i)–(iii) are
equivalent:

(i) Ta : Ap → Ap is compact,

(ii) ‖P (a ◦ ϕλ)‖q → 0 as λ→ ∂D for some q ∈ [1,∞),

(iii) ‖P (a ◦ ϕλ)‖q → 0 as λ→ ∂D for every q ∈ [1,∞).

Before proceeding to the proof we need to generalize known facts to our setting.
The next lemma would hold even in the case of locally integrable symbols, but the
proof is less simple, see Remark 3.4.

Lemma 3.2. Let 1 < p <∞ and let a ∈ L1 satisfy (1.3). Then, for every λ ∈ D,

TaKλ = TaKλ = KλP (a ◦ ϕλ) ◦ ϕλ(3.1)

Proof. First, notice that the function Kλ is bounded, hence the function aKλ

belongs to L1, and indeed TaKλ coincides with the conventional definition.
The identity (3.1) is known to be true, if a ∈ L∞, see for example Proposition 1

of [7]. Hence, defining for every R > 0

a(R)(z) =

{
a(z), if |a(z)| ≤ R,
a(z)|a(z)|−1, if |a(z)| > R,

we have

Ta(R)
Kλ = KλP (a(R) ◦ ϕλ) ◦ ϕλ.(3.2)

By the dominated convergence theorem, the left hand side converges pointwise to
TaKλ, as R→∞. For the same reason we have on the right P (a(R)◦ϕλ)→ P (a◦ϕλ)
pointwise. Thus also

KλP (a(R) ◦ ϕλ) ◦ ϕλ → KλP (a ◦ ϕλ) ◦ ϕλ
pointwise as R→∞, and the claim follows from (3.2). �

Lemma 3.3. Let 1 < p <∞ and let a ∈ L1 satisfy (1.3). Given ε > 0, we have for
every z ∈ D, ∫

D

|P (a ◦ ϕλ)(ϕλ(z))| |Kλ(z)| 1

W (λ)ε
dA(λ) ≤ C(a, ε)

W (z)ε
(3.3)
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Proof. By Lemmas 3.2 and 2.1 we have

|P (a ◦ ϕλ)(ϕλ(z))| |Kλ(z)| =
∣∣∣ ∫
D

a(ζ)

(1− zζ̄)2
Kλ(ζ)dA(ζ)

∣∣∣
≤ C

∫
D

|Kλ(ζ)|+ |K ′λ(ζ)|W (ζ) + |K ′′λ(ζ)|W (ζ)2

|1− zζ̄|2
dA(ζ)

≤ C ′
∫
D

1

|1− λζ̄|2|1− zζ̄|2
dA(ζ),

where we also used at the end the evident estimates |K ′λ(ζ)|W (ζ) ≤ C|Kλ(ζ)| and
|K ′′λ(ζ)|W 2(ζ) ≤ C|Kλ(ζ)| for some constant C > 0, for all ζ and λ. Thus∫

D

|P (a ◦ ϕλ)(ϕλ(z))|
|1− zλ̄|2(1− |λ|2)ε

dA(λ)

≤ C

∫
D

1

|1− zζ̄|2

∫
D

1

|1− λζ̄|2(1− |λ|2)ε
dA(λ)dA(ζ).

The bound (3.3) follows by applying twice the Forelli-Rudin estimate, see [11],
Lemma 3.10. �

To prove that (iii) ⇒ (i) in Theorem 3.1, we denote by p′ the dual exponent of
p, and for every 0 < ρ < 1 we define the operator Sρ : Ap

′ → Lp
′
,

Sρg(λ) = χρ(λ)

∫
D

g(ζ)P (a ◦ ϕλ)(ϕλ(ζ))Kλ(ζ)dA(ζ)(3.4)

where χρ is the characteristic function of Dρ. We observe by Corollary 2.4 that
P (a ◦ ϕλ) ∈ Lr for every r ∈ (1,∞) (in particular r = p) and every λ ∈ D, and for
some constants C,Cr > 0,

sup
λ∈Dρ

sup
ζ∈D
|Kλ(ζ)| ≤ C and sup

λ∈Dρ
‖P (a ◦ ϕλ)‖r ≤ Cr.(3.5)

This implies that the integral in (3.4) converges, since g ∈ Ap′ is assumed. We show
that the operator Sρ : Ap

′ → Lp
′

is compact. To this end we fix r < p′ and estimate,
for all g ∈ Ar,

‖Sρg‖p′ ≤ ‖χρ‖p′ sup
λ∈Dρ

∣∣∣ ∫
D

g(ζ)P (a ◦ ϕλ)(ϕλ(ζ))Kλ(ζ)dA(ζ)
∣∣∣

≤ sup
λ∈Dρ
‖g‖r

(∫
Dρ

∣∣∣P (a ◦ ϕλ)(ϕλ(ζ))Kλ(ζ)
∣∣∣r′dA(ζ)

)1/r′

(3.6)

where r′ ∈ (1,∞) is the dual exponent of r and the Hölder inequality was used.
Using (3.5) we can bound (3.6) by

C‖g‖r sup
λ∈Dρ
‖P (a ◦ ϕλ)‖r′ ≤ C ′‖g‖r

and together with (3.6) this shows that the operator Sρ is bounded Ar → Lp
′
. Since

r < p′, the embedding Ap
′
↪→ Ar is compact (see Chapter 4, Exercise 2 in [11]), and

thus Sρ : Ap
′ → Lp

′
is compact.
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The rest of the proof goes as in [7], with straightforward changes. For the conve-
nience of the reader we expose the details. By our assumptions on a, Ta : Ap → Ap

is bounded and thus so is T ∗a : Ap
′ → Ap

′
. The proof is completed by showing that

Sρ → T ∗a in the operator norm Ap
′ → Ap

′
as ρ → 1, because then T ∗a and Ta are

compact. The definition of an adjoint and a change of variables yield

T ∗a g(λ)− Sρg(λ) = 〈T ∗a g,Kλ〉 − Sρg(λ)

=

∫
D

Xρ(λ)g(ζ)P (a ◦ ϕλ)(ϕλ(ζ))Kλ(ζ)dA(ζ) =:

∫
D

Rρ(λ, ζ)g(ζ)dA(ζ),

where Xρ = 1− χρ. We will find a function h : D→ R+ such that∫
D

Rρ(λ, ζ)h(λ)pdA(λ) ≤ C1(a)h(ζ)p,

∫
D

Rρ(λ, ζ)h(λ)p
′
dA(λ) ≤ Cρh(ζ)p

′
(3.7)

where C1(a) is independent of ρ and Cρ → 0 as ρ→ 1. Then, the operator norm of
T ∗a − Sρ : Ap

′ → Lp
′

tends to 0, by the Schur test, [11], Theorem 3.6., and the proof
is complete.

We define the test function

h(λ) = W (λ)−1/(1+p′).

Lemma 3.3 with ε = p/(1 + p′) yields for all 0 < ρ < 1∫
D

Rρ(λ, ζ)h(λ)pdA(λ)

≤
∫
D

∣∣P (a ◦ ϕλ)(ϕλ(ζ))
∣∣ |Kλ(ζ)|W (λ)−p/(1+p′)dA(λ)

≤ C1(a)W (ζ)−p/(1+p′) = C1(a)h(ζ)p,(3.8)

where obviously the constant C1(a) can be chosen independently of ρ.
Moreover, using the change of variables ζ = ϕλ(z) and the identities

W (ζ) = W (ϕλ(z)) = W (λ)W (z)|Kλ(z)|

|Kλ(ζ)| = |Kλ(ϕλ(z)| = 1

W (λ)2 |Kλ(z)|
,

where the first one follows from Proposition 4.1 of [11] and the second one is an
immediate consequence, and denoting δ = p′/(1 + p′) ∈ (1

2
, 1), we can estimate∫

D

Rρ(λ, ζ)h(ζ)p
′
dA(ζ)

≤
∫
D

Xρ(λ)
∣∣P (a ◦ ϕλ)(ϕλ(ζ))

∣∣ |Kλ(ζ)|W (ζ)−δdA(ζ)

= W (λ)−δXρ(λ)

∫
D

∣∣P (a ◦ ϕλ(z)
∣∣ |kλ(z)|2

W (λ)2 |Kλ(z)|
|Kλ(z)|−δW (z)−δdA(z)

= W (λ)−δXρ(λ)

∫
D

∣∣P (a ◦ ϕλ(z)
∣∣ |Kλ(z)|1−δW (z)−δdA(z).(3.9)
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We finally choose e.g. r = 1 + (1− δ)/10 and recall δ > 1/2 so that

rδ = δ + (1− δ) δ
10

< 1 ,

2r(1− δ) = 2 +
2(1− δ)

10
− 2rδ ≤ 2− 1

4
− rδ,

and we thus can use the Forelli-Rudin-estimates [11], Lemma 3.10., to see that the
integral ∫

D

|Kλ(z)|r(1−δ) W (z)−rδdA(z) =

∫
D

(1− |z|2)−rδ

|1− λ̄z|2− 1
4
−rδ

dA(z)

converges and has a bound independent of λ ∈ D. Denote the dual exponent of r
by r̃. Then, (3.9) can be estimated using the Hölder inequality by

W (λ)−δ
(∫

D

|Kλ(z)|r(1−δ) W (z)−rδdA(z)
)1/r

Xρ(λ)‖P (a ◦ ϕλ)‖r̃

≤ Ch(λ)p
′
Xρ(λ)‖P (a ◦ ϕλ)‖r̃.(3.10)

By the assumption (iii), Xρ(λ)‖P (a◦ϕλ)‖r̃ → 0 as ρ→ 1. Thus, (3.8), (3.10) imply
(3.7).

The proof for the implication (ii)⇒ (iii) is well-known (see [7], proof of Theorems
6 and 7): if (ii) is true for some q̃ ∈ [1,∞), we trivially have (ii) for all q ≤ q̃. For
q > q̃ one uses Hölder,

‖P (a ◦ ϕλ)‖qq ≤ ‖P (a ◦ ϕλ)‖1/2
q̃ ‖P (a ◦ ϕλ)‖q−1/2

s

with s = q̃(2q− 1)/(2q̃− 1), and observes that the last factor is uniformly bounded
with respect to λ, by the boundedness of the Bergman projection. Hence, (iii) holds
true.

We finally consider the implication (i)⇒ (ii). We first assume that (i) holds and
1 < p ≤ 2 and denote kλ,p = W (λ)2−2/pKλ so that ‖kλ,p‖p ∼= 1. Thus,

〈g, kλ,p〉 = W (λ)2−2/p〈g,Kλ〉 = W (λ)2−2/pg(λ)

for every g ∈ H∞, which implies that kλ,p → 0 weakly, due to the normalization
of kλ,p, since every f ∈ Ap can be approximated by functions g ∈ H∞. Hence,
‖Takλ,p‖pp → 0 as λ→ 1. On the other hand,

‖Takλ,p‖pp =

∫
D

∣∣P (a ◦ ϕλ) ◦ ϕλ
∣∣p|Kλ|pW 2p−2dA

=

∫
D

∣∣P (a ◦ ϕλ) ◦ ϕλ(ζ)
∣∣p( 1− |λ|2

|1− λ̄ζ|

)2p

W (ζ)−2dA

≥ Cp

∫
D

∣∣P (a ◦ ϕλ) ◦ ϕλ(ζ)
∣∣p( 1− |λ|2

|1− λ̄ζ|

)4

W (ζ)−2dA

= Cp

∫
D

∣∣P (a ◦ ϕλ) ◦ ϕλ
∣∣p|kλ|2dA = Cp‖P (a ◦ ϕλ)‖pp
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where we used p ≤ 2, (1− |λ|2)/|1− λ̄ζ| ≤ 2 and (3.1). Hence, (ii) follows.
If 2 < p < ∞, the operator T∗a : Ap

′ → Ap
′

is compact, by Schauder’s theorem;
here again p′ ∈ (1, 2) is the dual exponent of p. By our Theorem 1.1, or Theorem
2.1 of [9], T∗a = Tā, and we get the condition (ii) for ā. This again implies the
compactness of Tā : A2 → A2, by what we have already proven. Then, Ta : A2 → A2

is compact by Schauder’s theorem. By the above proof, we obtain (ii) for a. �.

Remark 3.4. If the symbol a is only in the space L1
loc, the proof of Lemma 3.2 needs

to be modified, since TaKλ may not be defined directly by the integral formula and
thus the use of the dominated convergence theorem cannot be justified. However,
for every 0 < ρ < 1, the symbol aρ belongs to L1, the expression TaρKλ is defined
by the conventional formula, and the identity (3.1),

TaρKλ = KλP (aρ ◦ ϕλ) ◦ ϕλ.(3.11)

holds by the existing proof of Lemma 3.2. By (1.4), the left hand side converges in
Lp to TaKλ, as ρ→ 1. On the right we have

P (aρ ◦ ϕλ)(z) =

∫
Dρ

a ◦ ϕλ(ζ)

(1− zζ̄)2
dA(ζ)

so that by Corollary 2.3, P (aρ ◦ ϕλ)→ P (a ◦ ϕλ) in Lp. Thus also

KλP (aρ ◦ ϕλ) ◦ ϕλ → KλP (a ◦ ϕλ) ◦ ϕλ

in Lp. The formula (3.1) follows from (3.11).
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[5] D. Suárez, The essential norm of operators in the Toeplitz algebra on Ap(Bn). Indiana Univ.
Math. J. 56, no. 5, (2007) 2185–2232.

[6] K. Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34 (1990),
no. 1, 159–174.

[7] K. Stroethoff and D. Zheng, Toeplitz and Hankel operators on Bergman spaces, Trans. Amer.
Math. Soc. 329 (1992), no. 2, 773–794.

[8] J. Taskinen and J. A. Virtanen, Toeplitz operators on Bergman spaces with locally integrable
symbols, Rev. Mat. Iberoam. 26 (2010), no. 2, 693–706.

[9] J. Taskinen and J. A. Virtanen, Arch. Math. (2017). https://doi.org/10.1007/s00013-017-1124-
2

[10] U. Venugopalkrishna, Fredholm operators associated with strongly pseudoconvex domains in
Cn, J. Functional Analysis 9 (1972), 349–373.

[11] K. Zhu, Operator Theory in Function Spaces, 2nd edition, Mathematical Surveys and Mono-
graphs, 138, American Mathematical Society, Providence, RI, 2007.



12 JARI TASKINEN AND JANI VIRTANEN

Department of Mathematics, University of Helsinki, 00014 Helsinki, Finland
E-mail address: jari.taskinen@helsinki.fi

Department of Mathematics, University of Reading, Whiteknights, P.O. Box 220,
Reading RG6 6AX, UK

E-mail address: j.a.virtanen@reading.ac.uk


