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Abstract. We characterize the boundedness and compactness of Toeplitz op-
erators Ta with radial symbols a in weighted H∞-spaces H∞

v on the open unit
disc of the complex plane. The weights v are also assumed radial and to satisfy
the condition (B) introduced by the second named author. The main technique
uses Taylor coefficient multipliers, and the results are first proved for them. We
formulate a related sufficient condition for the boundedness and compactness of
Toeplitz operators in reflexive weighted Bergman spaces on the disc.

We also construct a bounded harmonic symbol f such that Tf is not bounded in
H∞

v for any v satisfying mild assumptions. As a corollary, the Bergman projection
is never bounded with respect to the corresponding weighted sup-norms. However,
we also show that, for normal weights v, all Toeplitz operators with a trigonometric
polynomial as the symbol are bounded on H∞

v .

1. Introduction and preliminaries on Toeplitz operators.

In this paper we consider the boundedness and compactness of Toeplitz operators
on weighted sup-normed spaces of holomorphic functions H∞v on the open unit disc D
of the complex plane. By a weight v we mean here a continuous function D→]0,∞[
which is radial, vanishing on the boundary and decreasing with the radius, i.e. there
holds v(z) = v(|z|) for all z ∈ D, lim|z|→1 v(z) = 0 and v(r) ≥ v(s) if 1 > s > r > 0.
Moreover let µ be the area measure dA on D multiplied with v as density, i.e.
dµ(reiϕ) = vdA := v(r)rdrdϕ, where r, ϕ are the polar coordinates of the complex
plane. For 1 ≤ p <∞ consider first the spaces

Lpv =
{
g : D→ C measurable : ‖g‖pp,v :=

∫
D

|g|pdµ <∞
}

and

Apv = {h ∈ Lpv : h holomorphic },
which are denoted by Lp = (Lp, ‖ · ‖p) and Ap, respectively in the non-weighted case
(v is replaced by the constant 1). The Bergman space Apv is a closed subspace (see
below) of Lpv, and the Bergman projection Pv is defined as the orthogonal projection
of L2

v onto A2
v. In the non-weighted case it has the integral representation

Pg(z) =
1

π

∫
D

g(ζ)

(1− zζ̄)2
dA(ζ).

For an integrable function f ∈ L1, the Toeplitz operator Tf with symbol f is defined
in the space Apv 3 h by

Tfh(z) = Pv(fh)(z),(1.1)

if the expression on the right-hand side makes sense. (We will soon comment this
in detail for our case.) If, for example, the projection Pv is also a bounded operator
Lpv → Apv, 1 < p < ∞, it follows that Tf : Apv → Apv is bounded, whenever f is a
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bounded measurable function. The question of the boundedness of Tf on Apv with
unbounded symbols is a long-standing, still open problem. Examples of unbounded
symbols inducing bounded Toeplitz operators can be easily constructed, since the
behaviour of the symbol inside any compact subset of D is not important for the
boundedness of the operator. We refer to the papers [6], [7], [8], [10], [11], [16],
[17], [19], [21], [22], [23], [24], [25], [26], [27], [28], [29] for classical and recent results
on the boundedness and compactness of Toeplitz operators on Bergman spaces. In
particular a solution to the boundedness problem is known in the case of radial
symbols, if p = 2, also in many weighted cases and higher dimensional domains in
place of D. Also, the case of a positive symbol f(z) ≥ 0 ∀ z ∈ D can be treated with
the help of the Berezin transform. The references above mostly concern unweighted
Bergman spaces or spaces Apv with standard weights like v(z) = (1− |z|2)α, α > 0.

In the present paper, Theorem 3.6, we will provide a characterization of the
boundedness and compactness of Tf in the case p = ∞ and for a general class of
weights. Thus, in the case of radial symbols this question remains unsolved only for
1 ≤ p < 2 and 2 < p < ∞; however, our necessary and sufficient condition (3.7)
seems quite a lot more complicated for p = ∞ than for p = 2 (see (5.1)). Anyway,
both conditions involve the Hausdorff moments of the symbol on the unit interval,
see (3.23), (3.24). (We do not have an idea how to interpolate between the two
cases. The situation is somewhat analogous to the problem of describing the solid
hulls and cores of the spaces Apv and H∞v , see [2]. Both of these objects can be
described in the cases p = 2 and ∞, but for other p there are only partial results.
Actually, this phenomenon is not completely unrelated with Toeplitz operators.)

We define the Banach spaces to be considered by

h∞v = {h : D→ C : h harmonic, ‖h‖v := sup
z∈D
|h(z)|v(|z|) <∞}

and

H∞v = {h ∈ h∞v : h analytic };
we use the standard notation H∞ = (H∞, ‖·‖∞) in the non-weighted case. We need
to comment the definition of Toeplitz operators in the case of H∞v . In the Hilbert
spaces L2

v and A2
v we denote the inner product by

〈f, g〉 =

∫
D

fg dµ

Then, the functions ek(z) = Γ
−1/2
2k zk, where k ∈ N0 = {0, 1, 2, . . .} = N ∪ {0} and

Γk = 2π

∫ 1

0

rk+1v(r)dr for k ∈ N0,(1.2)

form an orthonormal basis of A2
v. We remark that the numbers Γk satisfy for all

0 < % < 1 and some constant Cv,% > 0 the following lower bound

Γk ≥ Cv,%%
k(1.3)

for every k ∈ N0. This follows from (1.2) by considering the integral e.g. over the
interval [%, 1− (1− %)/2] only.

Convergence in the space Apv, 1 < p <∞, with respect to the norm ‖ · ‖p,v implies
pointwise convergence (hence Apv is a closed subspace of Lpv), and thus the point eval-
uation functionals at any point of D are bounded functionals on Apv. Consequently,
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we find the reproducing kernel, i.e. a family of functions Kz ∈ A2
v, z ∈ D, such that

g(z) = 〈g,Kz〉 =

∫
D

g(w)Kz(w) dµ(w)(1.4)

for all g ∈ A2
v. The integral operator defined by the right hand side can be extended

to L2
v, and it actually defines the orthogonal projection from L2

v onto A2
v, i.e. the

Bergman projection Pv; see [4], [5]. Using the orthonormal basis we can write for
all z ∈ D

Pvg(z) =
∞∑
k=0

〈g, ek〉ek(z) =

∫
D

∞∑
k=0

zkwk

Γk
g(w)dµ(w).(1.5)

Here, the order of the summation and the integral can be changed, because (1.3)
leads for any fixed z ∈ D to the estimate∣∣∣zkwk

Γk

∣∣∣ ≤ cv,%

( |z|
%

)k
,(1.6)

and we can choose here % > |z| so that the sum on the right-hand side of (1.5)
converges well enough. Moreover, the estimate (1.6) implies that for every z ∈ D
the Bergman kernel Kz is a bounded function:

|Kz(w)| ≤ Cz for all w ∈ D.(1.7)

Now let f : D → C be a function which belongs to L1. We define the Toeplitz
operator Tf with symbol f on H∞v by

Tf (h) =

∫
D

f(w)h(w)Kz(w) dµ(w).(1.8)

It follows from (1.7) that the integral converges for all z ∈ D and for all h ∈ H∞v ,
since by definition hv ∈ L∞. Although Tfh of (1.8) is a well-defined holomorphic
function it might not be an element of H∞v and Tf might not be a bounded operator
H∞v → H∞v . Actually it is an elementary consequence of the closed graph theorem
that Tf is a bounded operator H∞v → H∞v if and only if Tf (H

∞
v ) ⊂ H∞v . (We remark

that the a priori assumption f ∈ L1 is usual also in the theory of Toeplitz operators
in the reflexive Bergman spaces, but in that case this assumption does not guarantee
that the defining integral (1.8) converges for all h ∈ Apv. From this point of view,
the case p =∞ is more simple.)

If h ∈ H∞v is such that f · h ∈ L2
v, we also have

(Tfh)(z) =
∞∑
n=0

〈f · h, en〉en(z)

=
∞∑
n=0

zn

Γ2n

∫
D

f(w)h(w)wnv(w)dA ,(1.9)

where the series converges in L2
v. However, the formula also holds for all h ∈ H∞v

(since we are assuming f ∈ L1) and the product fhv thus belongs to L1, and one
can commute the summation and integration in (1.8), due to (1.6). In the latter
case, the sum (1.9) converges uniformly for z in compact subsets of the disc.
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Remark 1.1. Let us make some general comments on the definition of Toeplitz
operators. In the case of Bergman spaces with weighted L2-norms, the way of
defining Toeplitz operators is clear, namely, by using the uniquely defined orthogonal
projection from L2

v onto the closed subspace of analytic functions. Concerning the
definition of Toeplitz operators in Banach spaces which are not Hilbert spaces, one
naturally proceeds in the same way, if the orthogonal projection is still a bounded
operator in the space in question; see also the above remark on the use of the closed
graph theorem.

This is however not the case here: in [5] it was shown that for the exponentially
decreasing weight v(z) = exp(−1/(1 − |z|)), the orthogonal projection L2

v → A2
v is

bounded in Lpv if and only if p = 2. We also extend this result here in Corollary
2.4. Moreover, in [14] the second named author proved that the mere existence of
a bounded projection from L∞v onto H∞v is equivalent to H∞v being isomorphic to
the Banach space `∞ which in turn is equivalent to v satisfying a so called condition
(B); see Definition 3.1, below. For example, the exponentially decreasing weight
mentioned above satisfies (B), but there also exist natural weights which do not, like
v(z) = (1−log(1−|z|))−1 (see the statement after Theorem 1.2. of [14] and Example
2.4. of the same paper for other examples). Even if condition (B) is satisfied, there
does not exist a natural choice of a bounded projection from L∞v onto H∞v . The
result in [14] is basically an existence proof for the bounded projection and does
not contain an explicit formula. Formulas for these projections were presented in
[15], but apparently there is no obvious choice for a canonical one, which could
replace the orthogonal projection. In view of these remarks it is natural to consider
Toeplitz operators defined via the orthogonal projection of L2

v, since this can be
done in all H∞v -spaces and the definition is in accordance with the tradition in the
simple cases like the standard weights v(r) = (1− r)α, α > 0; see [28]. The symbol
needs to satisfy non-trivial, relatively strong conditions in order to make the Toeplitz
operator bounded, cf. Theorem 2.3.

As for the contents of this paper, we recall in Section 2 the known fact that
a Toeplitz operator Tf on H∞v with holomorphic symbol is a bounded operator
H∞v → H∞v if and only if f is an element of H∞. The situation is completely different
if harmonic symbols are considered instead of holomorphic ones. In particular we
construct in Theorem 2.3 a bounded harmonic function f : D → C such that Tf
is unbounded on H∞v for every weight v. This result also has the consequence,
Corollary 2.4, that the Bergman projection Pv is never bounded on L∞v .

Moreover in Section 3 we give our characterization of the continuity and compact-
ness of Toeplitz operators with radial symbols in H∞v , see Theorem 3.6. Toeplitz
operators with radial symbols are nothing but Taylor coefficient multipliers. They
are studied at first in Section 3. Our main result for multipliers, Theorem 3.4, is a
generalization of a result in [13].

The negative result of Theorem 2.3 motivates the further studies of Toeplitz op-
erators with bounded symbols in Section 4. We show, among other things that any
Toeplitz operator with a trigonometric polynomial as the symbol is bounded, at
least if the weight is normal. In Section 5 we put the condition (3.7) of Theorem 3.6
into a form which is natural for the Bergman spaces Apv, 1 < p <∞, and show that
the condition is sufficient for the boundedness of Tf in that case, see Proposition
5.1.
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As for the notation on analytic function spaces and operators in them, we refer
to [28]. All function spaces are defined over the domain D unless otherwise stated.
In addition we only remark that c, C, Cr etc. denote generic positive constants the
exact value may change from place to place. We sometimes denote the pointwise
multiplication by f · h for clarity.

2. Toeplitz operators with holomorphic and harmonic symbols

Let us consider a symbol f : D → C which is holomorphic and integrable over
the disc, i.e. f ∈ A1. If h ∈ H∞v , then f · h is holomorphic on D so that there are
numbers an ∈ C with

(f · h)(reiϕ) =
∞∑
n=0

anr
neinϕ.

This implies in view of (1.8), (1.4) that Tf (h) = f ·h. Hence Tf is just the pointwise
multiplier with symbol f ; we denote this operator by Sf as the notation Mf will be
reserved for the coefficient multiplier, see Section 2.

The following result for multiplication operators is known, see [1], and by the
above explanation it can also be interpreted as a result for Tf , f ∈ A1. This
seemingly simple result should be compared with Theorem 2.3, below.

Proposition 2.1. Let f : D→ C be holomorphic. Then Sf is a bounded operator
H∞v → H∞v if and only if f ∈ H∞. Assuming in addition f ∈ A1, the operator Tf
is bounded H∞v → H∞v , if and only if f ∈ H∞.

Since the reference does not contain a proof and since our weights are pretty
general, we prove the necessity statement for the multiplier; the other parts are
quite trivial. Indeed, if Sf is continuous on H∞v , then its transpose map S∗f :

(H∞v )∗ → (H∞v )∗ is continuous in the dual space
(
(H∞v )∗, ‖ · ‖∗

)
. Clearly, given

z ∈ D, the point evaluation functional δz : f 7→ f(z) belongs to the dual, and we
have S∗f (δz) = f(z)δz for each z ∈ D. Therefore

|f(z)| = ‖S∗f (δz)‖∗/‖δz‖∗ ≤ ‖S∗f‖op = ‖Sf‖op
for all z ∈ D, where we denoted by ‖ · ‖op the operator norm in the relevant spaces.
We get f ∈ H∞.

We have the following corollary.

Corollary 2.2. For any weight v there is an element f ∈ H∞v ∩L1 such that Tf is
unbounded on H∞v .

For the same reason as above, let us sketch the proof that the set (H∞v ∩L1)\H∞
is non-empty. First, the usual argument based on Montel’s theorem and the assump-
tion on the vanishing of the weight v on the boundary imply that the embedding
H∞ ↪→ H∞v is compact. The sequence of monomials (zn)∞n=1 is bounded in H∞ and
converges to 0 uniformly on compact subsets of D, hence ‖zn‖v → 0 as n→∞ (see
[20], Section 2.4). Also ‖zn‖1 → 0 and ‖zn‖∞ = 1 for all n, by direct calculations.

If the space H∞ were equal to H∞v ∩ L1, the closed graph theorem would yield a
constant C > 0 such that

‖h‖∞ ≤ C max(‖h‖v, ‖h‖1)(2.1)
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for all h ∈ H∞ (since the converse of the inequality (2.1) holds trivially). We get a
contradiction from the above norm estimates for the monomials zn.

We proceed to study the case of harmonic symbols, which is much more compli-
cated. Since the Bergman projection is known to be unbounded with respect to the
norm ‖ · ‖v for many weights v, one may expect that there are examples of bounded
symbols f ∈ L∞ so that Tf is not a bounded operator from H∞v into itself. While
we do not exactly know such examples in the literature, let us mention Section 5 of
[18], where possible pathologies of Toeplitz operators with bounded symbols were
considered in the case of reflexive Bergman spaces on polygonal domains. In the
following theorem we find a very strong negative example; cf. also Proposition 2.1.

Theorem 2.3. There is a bounded harmonic function f : D → C such that Tf is
not a bounded operator H∞v → H∞v for any weight v on D.

Since the pointwise multiplication with a bounded function f is always a bounded
operator H∞v → L∞v , this result immediately implies the following conclusion.

Corollary 2.4. The Bergman projection Pv is never (for any weight under consid-
eration) a bounded mapping L∞v → L∞v .

Namely, if Pv were bounded, this would imply Tf : H∞v → H∞v is bounded for
every f ∈ L∞, which would contradict Theorem 2.3.

As was already explained in Remark 1.1, in spite of Corollary 2.4 the Banach space
H∞v is quite often complemented in L∞v , which means that there exists a bounded
projection P : L∞v → H∞v different from Pv. This happens, if and only if H∞v is
isomorphic to `∞, and if and only if the weight v satisfies condition (B) of Definition
3.1. This is true for example for all normal weights, see [14] for details.

To prove Theorem 2.3 we need some lemmas. Fix a weight v on D. Let f̃0 : ∂D→
C be the map with

f̃0(e
iϕ) =

{
1 , if − π/2 ≤ ϕ ≤ π/2
0 else .

Then, the following is true.

Lemma 2.5. Let f0 be the harmonic extension of f̃0 on D. We have

f0(z) =
1

2
+

1

π

∞∑
k=0

(−1)k

2k + 1

(
z2k+1 + z̄2k+1

)
, z ∈ D.

Clearly, f0 is bounded on the disc due to the maximum principle.

Proof. Let ak, k ∈ Z, be the Fourier coefficients of f̃0. Then we have

ak =
1

2π

π/2∫
−π/2

e−iktdt =
eikπ/2 − e−ikπ/2

2kπi
=
ei|k|π/2 − e−i|k|π/2

2|k|πi

=

{
(−1)j

(2j+1)π
, if |k| = 2j + 1

0 else,

provided that k 6= 0. Moreover, a0 = 1/2. This proves the lemma. �
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Lemma 2.6. Let

f(z) =
∞∑
k=0

a2k+1z
2k+1, z ∈ D,

for some ak. Put (Sf)(z) = (f(z)− if(iz))/2. Then

(Sf)(z) =
∞∑
k=0

a4k+1z
4k+1 and sup

|z|=r
|(Sf)(z)| ≤ sup

|z|=r
|f(z)|

for all r.

Proof. The first assertion follows from

1− i · i2k+1 = 1 + (−1)k =

{
2 if k is even
0 if k is odd.

The second assertion is trivial. �

Consider m > 0 and let rm be a point where the function rmv(r) attains its
absolute maximum on [0, 1]. We easily see that rn ≥ rm if n ≥ m and limm→∞ rm =
1; see for example [12] for details.

Let us set for all m ∈ N0

gm(reiϕ) =
rmeimϕ

rmmv(rm)
, reiϕ ∈ D.

Then ‖gm‖v = 1. Recalling the notation (1.2) for Γk we state the following result.

Lemma 2.7. Let f : D→ C be harmonic, say f(reiϕ) =
∑∞

k=−∞ bkr
|k|eikϕ. For all

m ∈ N0 we have

Tf (gm)(reiϕ) =
m∑
k=0

bk−m
Γ2m

Γ2k

rkeikϕ

rmmv(rm)
+

∞∑
k=m+1

bk−m
rkeikϕ

rmmv(rm)
(2.2)

Proof. This follows from

f(reiϕ) · gm(reiϕ) =
∑
j∈Z

bj
rm+|j|ei(j+m)ϕ

rmmv(rm)

=
∞∑

k=m+1

bk−m
rkeikϕ

rmmv(rm)
+

m∑
k=−∞

bk−m
r2m−keikϕ

rmmv(rm)

and (1.9). �

Proof of Theorem 2.3. We take f0 of Lemma 2.5 and show that Tf0 is un-
bounded on H∞v . Put

f1(z) =
∞∑
j=0

(−1)j

2j + 1

(
z2j+1 + z̄2j+1

)
.

It suffices to show that Tf1 is unbounded since Tf0 = T1/2 + π−1Tf1 and T1/2 is
bounded. Fix a positive integer m, say m = 4m0 for m0 ∈ N. Then

k −m is

{
odd if k is odd
even if k is even

and j − 2m0 is

{
odd if j is odd
even if j is even.
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Lemma 2.7 yields with bk = 0, if k is even, and with bk = (−1)k/|2k + 1| if k is odd

Tf1(gm)(reiϕ) =
m∑
k=0,
k odd

bk−m
Γ2m

Γ2k

rkeikϕ

rmmv(rm)
+

∞∑
k=m+1,
k odd

bk−m
rkeikϕ

rmmv(rm)
.

Using Lemma 2.6 we obtain

S(Tf1(gm))(reiϕ) =
∑

0≤4j+1≤m

b4j+1−m
Γ2m

Γ8j+2

r4j+1ei(4j+1)ϕ

rmmv(rm)

+
∑

m+1≤4j+1<∞

b4j+1−m
r4j+1ei(4j+1)ϕ

rmmv(rm)
.

Recall that b4j+1−m = 1/|4(j −m0) + 1|. So if we take ϕ = 0 then all summands in
the preceding sum are non-negative. Hence

rm
5

log

(
1

1− r4m

)
=
rm
5

∞∑
j=1

(r4m)j

j
≤

∞∑
j=0

r4j+1
m

4j + 1

=
∑

m+1≤4j+1<∞

b4j+1−m
r4j+1
m v(rm)

rmmv(rm)
≤ S(Tf1(gm))(rm)v(rm)

≤ ‖S(Tf1(gm))‖v ≤ ‖Tf1(gm)‖v.

Since limm→∞ rm = 1, the left-hand side of the preceding estimate grows to the
infinity, when m→∞. Hence Tf1 and also Tf0 cannot be bounded. �

3. Multipliers from h∞v into H∞v and Toeplitz operators

Toeplitz operators with radial (thus in general non-harmonic) symbols on the disc
correspond to Taylor coefficient multipliers so we proceed to study them. At first we
mention some general results concerning the Banach space h∞v . These are collected
from the references [12], [14] and [15]. We recall that the numbers rm ∈]0, 1[ were
defined above Lemma 2.7.

Definition 3.1. (i) The weight v satisfies the condition (B), if

∀b1 > 1 ∃b2 > 1 ∃c > 0 ∀m,n > 0(
rm
rn

)m
v(rm)

v(rn)
≤ b1 and m,n, |m− n| ≥ c ⇒

(
rn
rm

)n
v(rn)

v(rm)
≤ b2.

(ii) Also, v is called normal if

sup
n∈N

v(1− 2−n)

v(1− 2−n−1)
<∞ and inf

k∈N
lim sup
n→∞

v(1− 2−n−k)

v(1− 2−n)
< 1.

Note that in (i), m and n need not be integers. Condition (B) is crucial for the
structure, in particular for the isomorphic character of H∞v . Actually it is equivalent
to the fact that H∞v is isomorphic to the Banach space `∞ of bounded sequences
(Theorem 1.1 of [14]). Examples of weights satisfying (B) are all normal weights, in
particular the standard weights v(r) = (1− r)α (or v(r) = (1− r2)α) where α > 0.
Moreover, for β > 0 and γ > 0 the weight v(r) = exp(−γ/(1− r)β) satisfies (B) but
is not normal; see [14].
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Fix b > 2. We define by induction the indices 0 ≤ m1 < m2 < . . . such that

b = min

((
rmn
rmn+1

)mn v(rmn)

v(rmn+1)
,

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

)
.

This is always possible according to Lemma 5.1. of [14]. (Actually it suffices to
choose the indices such that the preceding minimum lies between b and some con-
stant b1 > b.)

Now let the numbers bk ∈ C, k ∈ Z, be given and denote by h(ϕ) =
∑

k∈Z bke
ikϕ

a series which may or may not converge. We take the preceding numbers mn and
put for all n ∈ N

(Wnh)(ϕ) =
∑

mn−1<|k|≤mn

|k| − [mn−1]

[mn]− [mn−1]
bke

ikϕ +
∑

mn<|k|≤mn+1

[mn+1]− |k|
[mn+1]− [mn]

bke
ikϕ

=:
∑
k∈Z

wnkbke
ikϕ

where m0 = 0. Here [r] is the largest integer not greater than r. The operators Wn

are also considered as acting on the harmonic functions by

Wn :
∞∑

k=−∞

bkr
|k|eikϕ 7→

∞∑
k=−∞

wnkbkr
|k|eikϕ

For any function g : D→ C and radius 0 ≤ r ≤ 1 we denote

M∞(g, r) = sup
|z|=r
|g(z)|.

The Riesz projection P is defined by

P
(∑
k∈Z

akr
|k|eikϕ

)
=
∞∑
k=0

akr
keikϕ.(3.1)

Theorem 3.2. Let v satisfy (B). Then there are constants c1, c2 > 0 such that,
for all g ∈ h∞v ,

c1 sup
n∈N

M∞(Wng, rmn)v(rmn) ≤ ‖g‖v ≤ c2 sup
n∈N

M∞(Wng, rmn)v(rmn)(3.2)

and

c1M∞(Wng, rmn)v(rmn) ≤ ‖Wng‖v ≤ c2M∞(Wng, rmn)v(rmn)(3.3)

for all n. Moreover,

sup
n

(mn+1 −mn)/(mn −mn−1) <∞.(3.4)

Finally, the Riesz projection P : h∞v → H∞v is bounded.

This is Theorem 1 of [15]. See also Propositions 4.1. and 5.2. of [14]. One can
even show that the boundedness of the Riesz projection in h∞v is equivalent to (B)
(for details, see [14]).

Remark 3.3. If a sequence (bk)
∞
k=−∞ of complex numbers is given such that

sup
n∈N

M∞

( ∞∑
k=−∞

wnkbkr
|k|eikϕ, rmn

)
v(rmn)
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= sup
n∈N

sup
ϕ∈[0,2π]

∣∣∣∣ ∑
mn−1<|k|≤mn+1

wnkbkr
k
mne

ikϕ

∣∣∣∣v(rmn) <∞,(3.5)

then the series defining the harmonic function g(reiϕ) =
∑∞

k=−∞ bkr
|k|eikϕ converges

in the compact-open topology, and g belongs to h∞v and ‖g‖v is bounded by a
constant times the expression in (3.5). For this statement, see Remark 1, (iii) of
[15].

Examples. If v is normal then one can take mn = 2kn for suitable fixed k > 0
(see [14], Example 2.4., and [12]). For v(r) = exp(−γ/(1 − r)β) one can take
mn = β2(β/γ)1/βn2+2/β − β2n2, see [2].

We next turn to a theorem which was proven for a more restricted class of weights
in Theorem 4.1 of [13]. In the theorem we assume that a sequence (γk)

∞
k=0 of com-

plex numbers is given, and consider the formal series f(ϕ) =
∑∞

k=0 γke
ikϕ and the

multiplier Mf with

(Mfh)(reiϕ) =
∞∑
k=0

γkbkr
keikϕ(3.6)

for harmonic functions h(reiϕ) =
∑∞

k=−∞ bkr
|k|eikϕ. By definition, Mfh is holomor-

phic, if the series (3.6) converges.

Theorem 3.4. Let the weight v satisfy condition (B). Then Mf maps h∞v into H∞v
and is bounded, if and only if

sup
n∈N

2π∫
0

|(Wnf)(ϕ)|dϕ <∞.(3.7)

Moreover, assume (3.7) holds. Then Mf : h∞v → H∞v is compact, if and only if

2π∫
0

|(Wnf)(ϕ)|dϕ→ 0 as n→∞.(3.8)

Proof. Assume (3.7) holds. We first remark that Mf is a convolution operator,
i.e. at least in the case of only finitely many non-zero entries γk, the expression (3.6)
can be written as

(Mfh)(reiϕ) =
1

2π

2π∫
0

f(ϕ− ψ)h(reiψ)dψ.

So, if h ∈ h∞v , then we have for all reiϕ ∈ D

|(MWnfh)(reiϕ)|v(r) ≤ 1

2π

2π∫
0

|(Wnf)(ϕ)|dϕ ‖h‖v.(3.9)

Hence,

M∞(MWnfh, r)v(r) ≤ C‖h‖v
for all n and r, where the constant C > 0 is the supremum on the left- hand side
of (3.7). This bound and Remark 3.3 imply that the series on the right-hand side
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of (3.6) converges in the compact-open topology, defines an element of H∞v and is
bounded by ‖h‖v. In other words, Mf maps h∞v continuously into H∞v .

As for compactness of the operator Mf , let (hj)
∞
j=1 be a sequence which converges

to 0 uniformly on compact subsets of D and which is contained in the closed unit
ball of h∞v . It suffices to show that Mf maps such a sequence into a one converging
to 0 with respect to the norm; see for example [20], Section 2.4. Let ε > 0. If (3.8)
is assumed, we can fix N ∈ N such that

2π∫
0

|(Wnf)(ϕ)|dϕ < ε(3.10)

for n > N . Moreover, we note that for every n ∈ N, the operator

WnMf :
∞∑

k=−∞

bkr
|k|eikϕ =

∞∑
k=0

wnkγkbkr
keikϕ

is bounded in the space h∞v when this space is endowed with the norm

sup
|z|≤rmn

|h(z)|;(3.11)

to see this notice that every functional

g 7→ r−kmn

2π∫
0

g
(
rmne

ikϕ
)
e−ikϕdϕ , g ∈ h∞v ,

is bounded with respect to the norm (3.11) on h∞v , and WnMf is a finite linear
combination of these functionals. Consequently, due to the uniform convergence on
compact sets, we can choose a large enough J = J(N) ∈ N such that

sup
|z|≤rmn

|WnMfhj(z)|v(z) < ε(3.12)

for all n ≤ N , all j ≥ J . For such j we obtain by Theorem 3.2

c−12 ‖Mfhj‖v
≤ sup

n≤N
M∞(WnMfhj, rmn)v(rmn) + sup

n>N
M∞(WnMfhj, rmn)v(rmn)(3.13)

The first term on the right-hand side of (3.13) is bounded by ε due to (3.12), and
the second one can be estimated in the same way as in (3.9), and (3.10) implies that
this term is bounded by ε. Thus, Mf is compact.

To prove the necessity of (3.7) for the boundedness, we fix an arbitrary 0 < ε < 1,
and n ∈ N and ψ ∈ [0, 2π] and find, by, for example, the Fejer approximation
theorem, a trigonometric polynomial h, depending on n, ψ and ε,

h(reiϕ) =
∑
k∈Z

hkr
|k|eikϕ

such that ∣∣∣h(rmne
iϕ)− Wnf(ψ − ϕ)

|Wn(ψ − ϕ)|v(rmn)

∣∣∣ < ε

v(rmn)
(3.14)

for all ϕ ∈ [0, 2π|, in particular

M∞(h, rmn)v(rmn) ≤ 2.(3.15)
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As a consequence,

1

2π

2π∫
0

|(Wnf)(ϕ)|dϕ =
1

2π

2π∫
0

|(Wnf)(ψ − ϕ)|dϕ

≤ 1

2π

∣∣∣∣
2π∫
0

(Wnf)(ψ − ϕ)h(rmne
iϕ)dϕ

∣∣∣∣ v(rmn) + ε

=
1

2π

∣∣∣∣
2π∫
0

f(ψ − ϕ)(Wnh)(rmne
iϕ)dϕ

∣∣∣∣ v(rmn) + ε

= |MfWnh(rmne
iψ)| v(rmn) + ε.(3.16)

We obtain

1

2π

2π∫
0

|(Wnf)(ϕ)|dϕ ≤ ‖Mf‖ · ‖Wnh‖v + ε.(3.17)

For any r > 0, Lemma 3.3. of [14] implies

M∞(Wnh, r) ≤ 4
( [mn+1]− [mn−1]

[mn]− [mn−1]

)(
3 + 4

[mn+1]− [mn−1]

[mn+1]− [mn]

)
M∞(h, r).(3.18)

Due to Theorem 3.2 (in particular (3.4)) and (3.15) we find a universal constant
d > 0 such that

‖Wnh‖v ≤ c2M∞(Wnh, rmn)v(rmn) ≤ c2dM∞(h, rmn)v(rmn) ≤ 2c2d.

Hence supn
2π∫
0

|(Wnf)(ϕ)|dϕ <∞.

Finally, to prove the necessity of the condition (3.8) for the compactness of Mf ,
we first observe that given any k ∈ N we have, for all r ≤ rk,( r

rmn

)mn v(r)

v(rmn)
→ 0 as n→∞.(3.19)

To see this, fix k for a moment and denote for all m ∈ N and r ∈ [0, 1[

Gm(r) =
( r

rm

)m v(r)

v(rm)
and ck = sup

r≤rk
Gk(r) <∞.

For all r ≤ rk we get

Gmn(r)

Gk+1(r)
=
( r

rmn

)mn(rk+1

r

)k+1 v(r)

v(rmn)

v(rk+1)

v(r)

=
( r

rk+1

)mn−(k+1) rmnk+1v(rk+1)

rmnmnv(rmn)
≤
( r

rk+1

)mn−k−1
,

where the last inequality follows from the definition that rmn is the maximum point
of the function rmnv(r). We see that (3.19) holds, since

sup
r≤rk

Gmn(r) ≤ ck sup
r≤rk

Gmn(r)

Gk+1(r)
≤ ck sup

r≤rk

( r

rk+1

)mn−k
→ 0 as n→∞.
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We next choose for every n and ψ the trigonometric polynomial h =: hn,ψ with
ε = 1/n, as in (3.14). As a consequence of Theorem 3.2, (3.15) and Lemma 3.3. of
[14] (cf. (3.18)),

M∞(Wnhn,ψ, rmn−1)v(rmn−1) ≤ ‖Wnhn,ψ‖v
≤ c2M∞(Wnhn,ψ, rmn)v(rmn) ≤ CM∞(hn,ψ, rmn)v(rmn) ≤ C ′.(3.20)

Let us again fix k ∈ N. We claim that for every δ > 0 there exists N such that

sup
|z|≤rk

|Wnhn,ψ|v(z) < δ(3.21)

for all n ≥ N and ψ. To see this, notice that the smallest power of r in the
trigonometric polynomial Wnhn,ψ is mn−1, hence, assuming n is so large that mn−1 >
k, Lemma 3.1.(b) of [14] yields for all |z| ≤ rk

|Wnhn,ψ,ε(z)| ≤ 2
( |z|
rmn−1

)mn−1

M∞(Wnhn,ψ, rmn−1).(3.22)

We obtain (3.21) for large enough N by using (3.22), (3.19), (3.20), since

sup
|z|≤rk

|Wnhn,ψ,ε(z)|v(z)

≤ 2M∞(Wnhn,ψ, rmn−1)v(rmn−1) sup
|z|≤rk

( |z|
rmn−1

)mn−1 v(z)

v(rmn−1)
.

In other words, the functions Wnhn,ψ form a sequence converging to zero uniformly
on compact subset of the open disc (and also uniformly with respect to ψ). Fixing
ψ ∈ [0, 2π], the compact operatorMf maps the sequence (Wnhn,ψ)∞n=1 into a sequence
converging to 0 in the norm. Taking this into account in the estimate (3.16)–(3.17),
we get (3.8). �

Corollary 3.5. Let the weight v satisfy condition (B). Then Mf maps H∞v con-
tinuously into H∞v if and only if

sup
n

2π∫
0

|(Wnf)(ϕ)|dϕ <∞.

Moreover, a bounded Mf : H∞v → H∞v is compact, if and only if

sup
n→∞

2π∫
0

|(Wnf)(ϕ)|dϕ = 0.

Proof. The sufficiency follows directly from Theorem 3.4. As for necessity, note
that the Riesz projection P is bounded, by the assumption and Theorem 3.2. Thus,
if Mf |H∞v is bounded then Mf is also bounded on h∞v , and the necessary condition
follows from Theorem 3.4. The statements concerning compactness can be proven
by analogous arguments. �

Now we go back to Toeplitz operators. Let Ta be a Toeplitz operator on H∞v with
a given radial symbol a ∈ L1, i.e. where a(z) = a(|z|) for all (almost every) z. Then,
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with h(z) =
∑∞

n=0 hnz
n ∈ H∞v , (1.9) reduces to

Tah(z) =
∞∑
n=0

zn

Γ2n

1∫
0

2π∫
0

a(r)h(reiϕ)rn+1e−inϕv(r) dϕdr

=
∞∑
n=0

zn

Γ2n

1∫
0

a(r)r2n+1v(r)hndr =
∞∑
n=0

γnhnz
n = Mfah(z)(3.23)

where

γn =
1

Γ2n

1∫
0

r2n+1v(r)a(r)dr and fa(ϕ) =
∞∑
k=0

γke
ikϕ.(3.24)

We obtain by Corollary 3.5

Theorem 3.6. Let the weight satisfy (B). If a ∈ L1 is radial then Ta is bounded
as operator H∞v → H∞v if and only if

sup
n

2π∫
0

|(Wnfa)(ϕ)|dϕ <∞,

and Ta is a compact operator H∞v → H∞v , if and only if

lim
n→∞

2π∫
0

|(Wnfa)(ϕ)|dϕ = 0.

4. More on Toeplitz operators.

Since it was observed above that the boundedness of a symbol is not enough to
guarantee the boundedness of the Toeplitz operator, we present in this section some
complementary results and examples on this topic; see also the remark at the end
of this section. In the following we denote by Qm, m ∈ N0, the projection

Qm

( ∞∑
k=0

bke
ikϕ
)

=
m∑
k=0

bke
ikϕ or Qm

( ∞∑
k=0

bkz
k
)

=
m∑
k=0

bkz
k(4.1)

It is well-known that∣∣∣Qm

( ∞∑
k=0

cke
ikϕ
)∣∣∣ ≤ d logm sup

0≤ψ≤2π

∣∣∣ ∞∑
k=0

cke
ikψ
∣∣∣

where d > 0 is a universal constant independent of m and ck.
At first we show

Theorem 4.1. Let aj ∈ L1,j = −n, . . . , n, be radial functions and define

f(z) =
n∑

j=−n

aj(|z|)zj, z ∈ D \ {0},

and fj(z) = aj(|z|)zj. Then the following are equivalent:
(i) Tf is bounded on H∞v .
(ii) Tfj are bounded on H∞v for all j.
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(iii) Taj are bounded on H∞v for j = −n, . . . , 0 and Taj ◦ (id−Qj−1) are bounded on
H∞v for j = 1, . . . , n.
(iv) The multipliers Mgj are bounded on H∞v for all j where

gj(ϕ) =
∞∑

k=max(j,0)

1

Γ2k

1∫
0

r2k+1aj(r)v(r)dreikϕ.

We prove Theorem 4.1 below. Notice that any f ∈ L1 can be expanded as follows:

f(z) ∼
∞∑

j=−∞

aj(|z|)zj,

for some radial functions aj. (Expand f(reiϕ) into a Fourier series for each fixed
r ∈ [0, 1[.)

Example. Let f(z) = 1/z. Then f ∈ L1 and Tf is bounded according to Theorem
4.1. since f(z) = 1 · z−1 and T1 = id is bounded but f is unbounded. This is no
contradiction to Theorem 2.1 since f is not holomorphic in 0.

Let h(z) =
∑∞

k=0 bkz
k for given constant coefficients bk. Notice that we have

|bk|rkv(r) =
1

2π

∣∣∣∣
2π∫
0

e−ikϕh(reiϕ+iψ)dψ

∣∣∣∣v(r) ≤ |h(reiϕ)|v(r) ≤ ‖h‖v(4.2)

for each r. For j ∈ Z we introduce the shift

Sj(h)(z) =
∞∑

k=−min(j,0)

bkz
k+j.

For ψ ∈ R let Rψ be the translation

Rψ(h)(z) = h(eiψz) =
∞∑
k=0

bkz
keikψ.

Lemma 4.2. Rψ and Sj are bounded operators on H∞v . Moreover, we have

SjS−j =

{
idH∞v , if j ≤ 0(
idH∞v −Qj−1

)
, if j > 0.

Proof. The boundedness of Rψ is a direct consequence of the definition. If j ≥ 0
then Sj(h)(z) = zjh(z) and hence Sj is bounded.

Now let j < 0. Put h(z) =
∑∞

k=0 bkz
k. Then

Sj(h)(z) =
∞∑

k=|j|

bkz
k−|j| = zj

(
(idH∞v −Q|j|−1)h

)
(z).

Hence, if |z| > 1/2 then |Sj(h)(z)|v(|z|) ≤ 2d1(1 + log |j|)‖h‖v for some universal
constant d1. By the preceding and (4.2), where r = 3/4, we have for |z| ≤ 1/2,

|Sj(h)(z)|v(|z|) ≤
∞∑

k=|j|

|bk|
1

2k−|j|
v(0)
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≤
∞∑

k=|j|

‖h‖v
v(3/4)

(
4

3

)k (
1

2

)k−|j|
v(0) = 3

(
4

3

)|j|
v(0)

v(3/4)
‖h‖v.

Thus Sj is bounded. The last identities of Lemma 4.2 follow from the definition. �

Proof of Theorem 4.1 The implication (ii) ⇒ (i) follows from the fact that
Tf =

∑n
j=−n Tfj .

Using (3.23) we see that, with h(z) =
∑∞

k=0 bkz
k, we have

Tfj(h)(z) =
∞∑

k=−min(j,0)

1

Γk+j

1∫
0

aj(r)r
k+j+1v(r)dr bkz

k+j = TajSj(h)(z)(4.3)

so that (iii)⇒ (ii) follows from (4.3) and Lemma 4.2.
For (i)⇒ (iii) we note that (1.9) implies

Tf (Rψh)(z) =
∞∑
n=0

1

2πΓ2n

2π∫
0

1∫
0

f(reiϕ)h(reiϕ+iψ)rn+1e−inϕv(r)drdϕzn

=
∞∑
n=0

1

2πΓ2n

2π∫
0

1∫
0

f(reiϕ−iψ)h(reiϕ)rn+1e−in+inψϕv(r)drdϕzn

= TR−ψf (h)(eiψz) =
n∑

j=−n

e−ijψTfj(h)(eiψz).

This yields

Tfj(h)(z) =
1

2π

2π∫
0

R−ψTf (Rψh)(z)eijψdψ

and hence
‖Tfj(h)‖v ≤ ‖Tf‖ · ‖Rψh‖v = ‖Tf‖ · ‖h‖v.

Therefore Tfj is bounded for all j. Now (4.3) and Lemma 4.2 imply

Tfj ◦ S−j =

{
Taj if j ≤ 0

Taj ◦ (id−Qj−1) if j > 0.

Finally, (iii)⇔ (iv) follows from Taj = Mgj , if j ≤ 0, and Taj ◦ (id−Qj−1) = Mgj ,
if j > 0. �

Theorem 4.3. Assume that v is normal. Let aj be polynomials in r, hence fj ∈ L1,
where fj(z) = aj(|z|)zj, j = −n, . . . , n. Put

f(z) =
n∑

k=−n

aj(|z|)zj.

Then Tf is bounded on H∞v .

We prove Theorem 4.3 at the end of this section. We immediately get, in contrast
to Theorem 2.3,

Corollary 4.4. Let v be normal. Then, for any trigonometric polynomial f , the
Toeplitz operator Tf is bounded on H∞v .
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Proof. Let fj(re
iϕ) = αjr

|j|eijϕ and f =
∑n

j=−n fj. Then all fj ∈ L1. Put

aj(r) = αj if j ≥ 0 and aj(r) = αjr
2|j| if j < 0. Then fj(z) = aj(|z|)zj for all j and

the corollary follows from Theorem 4.3 �

To prove Theorem 4.3 we need the following

Lemma 4.5. Let v be normal. Then there is a universal constant c > 0 such that,
for any k,m with 0 < k ≤ m ≤ 2k, we have

Γk−1
Γm−1

≤ c.

Proof. It follows from the definition of normal weight that there is a constant
d > 0 with sup0≤r<1 v(r2)/v(r) < d. With the substitution s(m+1)/(k+1) = r we see
that

Γk−1 =

1∫
0

rkv(r)dr =
m+ 1

k + 1

1∫
0

smv(s(m+1)/(k+1))ds ≤ 2d

1∫
0

smv(s)ds = 2dΓm−1.

Here we used s(m+1)/(s+1) ≥ s2 and hence v(s(m+1)/(k+1)) ≤ v(s2) ≤ dv(s). Hence
the lemma follows with c = 2d. �

Proposition 4.6. Assume that v is normal. Let a ∈ L1 be radial such there is a
constant d > 0 with

rk|a(r)| ≤ d

k
for all k ∈ N.(4.4)

or

rk|a(r)− 1| ≤ d

k
for all k ∈ N.(4.5)

Then Ta is bounded on H∞v .

Proof. Since v is normal it satisfies condition (B). Let mn be the indices of
Theorem 3.2 and let γn and fa be as in (3.24). We have to study the boundedness
of the multiplier Mfa = Ta. At first assume that a satisfies (4.4). We obtain

|γk| ≤
1

Γ2k

1∫
0

r2k+1v(r)|a(r)|dr ≤ d

kΓ2k

1∫
0

r2k+1v(r)
1

rk
dr =

d

k

Γk
2πΓ2k

.

Let D > 0 be the supremum in (3.4). We have

2π∫
0

|(Wnfa)(ϕ)|dϕ

≤ d

( ∑
mn−1<k≤mn

k − [mn−1]

[mn]− [mn−1]

Γk
kΓ2k

+
∑

mn<k≤mn+1

[mn+1]− k
[mn+1]− [mn]

Γk
kΓ2k

)
≤ Dd

∑
mn−1<k≤mn+1

Γk
kΓ2k

≤ cDd
mn+1 −mn−1

mn−1

where c is the constant of Lemma 4.5. We can apply (3.4) again to conclude

sup
n

∫ 2π

0

|(Wnfa)(ϕ)|dϕ <∞.
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According to Theorem 3.6 Ta is bounded.
If (4.5) holds then ã = a−1 satisfies (4.4). Hence Tã is bounded. But Ta = Tã+T1

and T1 = id which implies Ta is bounded. �

The idea of the proof of the last statement can clearly be generalized: if b ∈ L1

is a symbol such that Tb is bounded in H∞v and ã ∈ L1 is another symbol such that
a := b− ã is a radial function satisfying (4.4), then Tã is bounded in H∞v .

Proof of Theorem 4.3. In view of Theorem 4.2. it suffices to show that Ta
is bounded when a(r) = r` for some ` > 0. But this follows from Proposition 4.6
since a satisfies (4.5). Indeed, fix k and consider the polynomial g(r) = rk − rk+`,
0 ≤ r ≤ 1. Clearly, g attains its supremum at (k/(k + `))1/` and we have

0 ≤ g(r) ≤
(

k

k + `

)k/`
`

k + `
≤ `

k + `
≤ `

k
for all r. �

We finally remark that condition (4.4) holds for symbols a(r) = (1 − r)α, if
and only if α ≥ 1. This is not a precise condition for the boundedness of Ta,
since for the normal weights v(r) = (1 − r)δ, 0 < δ < 1, any symbol a with
|a(z)| ≤ C(1− r)δ, produces a bounded Toeplitz operator Ta in H∞v . This so since
the pointwise multiplier Sa : h 7→ a·h maps H∞v into the space L∞, and the Bergman
projection only causes at most logarithmic singularity on the boundary of the disc,
i.e. it maps L∞ into H∞w with the weight w(r) = 1/(| log(1− r)|+ 1), and this space
is of course continuously embedded into H∞v .

A more careful study of these growth estimates is postponed to a planned future
work.

5. Remarks on operators on reflexive Bergman spaces.

For radial symbols, the boundedness of Ta as an operator from the Bergman-
Hilbert space A2

v into itself is characterized by the condition

sup
n∈N
|γn| <∞,(5.1)

where the numbers γn are as in (3.24). However, the conditions (3.7) and (5.1) seem
not to ”interpolate” easily in a way, which would characterize the boundedness and
compactness of Ta : Apv → Apv for 2 < p < ∞ (or 1 < p < 2). Nevertheless we will
still show that a condition analogous to (3.7) is sufficient for the boundedness of Ta in
Apv. Let us remark that in [16] the authors used somewhat similar methods to show
the connection of the boundedness problem for Ta : Apv → Apv to the boundedness
problem for multipliers in Hardy spaces.

We need to introduce some more notation and definitions: for details of these, see
[16]. For a holomorphic g(z) =

∑∞
k=0 gkz

k and 0 < r < 1 we define

Mp(g, r) =

(
1

2π

2π∫
0

|g(reiϕ)|pdϕ
)1/p

and recall the notation Qng(z) =
∑n

k=0 gkz
k, see (4.1). It is well-known that, for

1 < p <∞, there are universal constants cp > 0 with Mp(Qng, r) ≤ cpMp(g, r) where
cp does not depend on g, n or r. Moreover, we fix a number β > 16·3p−1(1+2p)cpp+2
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and use induction to obtain the increasing numerical sequences 0 = `1 < `2 < `3 . . .
and 0 ≤ s1 < s2 . . . < R such that

(5.2)

sn∫
0

r`npdµ = β

R∫
sn

r`npdµ and

sn∫
0

r`n+1pdµ =
1

β

R∫
sn

r`n+1pdµ.

(These numbers were calculated in some examples in the paper [3].) We define for
all n ∈ N

Znf = (Q[`n+1] −Q[`n])f,

and

ωn =

( sn∫
0

( r
sn

)`np
dµ+

R∫
sn

( r
sn

)`n+1p

dµ

)1/p

.

We get for the norm of Apv a representation analogous to (3.2): there are constants
d1, d2 > 0 such that, for every f ∈ Apµ,

d1‖f‖p,v ≤
( ∞∑
n=1

ωpnM
p
p (Znf, sn)

)1/p
≤ d2‖f‖p,v.(5.3)

This was shown in [9] for p = 1 and in [15] for 1 < p <∞ and R = 1,

Proposition 5.1. Let the weight satisfy (B), let a ∈ L1 be a radial function and let
fa(ϕ) =

∑∞
k=0 γke

ikϕ be as in (3.24). Then the Toeplitz operator Ta is a well-defined,
bounded operator from Apv into itself, if

sup
n∈N

2π∫
0

|(Znfa)(ϕ)|dϕ <∞.(5.4)

Moreover, Ta : Apv → Apv is compact, if

2π∫
0

|(Znfa)(ϕ)|dϕ→ 0 as n→∞.(5.5)

Proof. Let us denote by Mf the convolution operator, or the sequence space
multiplier, corresponding to Ta, see (3.24). So, if h ∈ Apv then for all reiϕ ∈ D we
get by the usual orthogonality relations of functions eikϕ,

(ZnMfh)(reiϕ) = (MZnfh)(reiϕ) =

2π∫
0

Znf(ϕ− ψ)h(reidψ)dψ

=

2π∫
0

Znf(ϕ− ψ)Znh(reidψ)dψ.

We apply the Young inequality

‖a ∗ b‖Lp(∂D) ≤ ‖a‖L1(∂D)‖b‖Lp(∂D)
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to get

Mp(ZnMfh, r) ≤
2π∫
0

|(Znf)(ϕ)|dϕMp(Znh, r)(5.6)

The inequality ‖Mfh‖p,v ≤ C‖h‖p,v thus follows by applying (5.4) and (5.3) to
both ‖Mfh‖p,v and ‖h‖p,v. This shows that (5.4) is sufficient for Ta to map Apv
continuously into itself.

If (5.5) holds, the proof for the compactness of Ta is similar to the corresponding
proof in Theorem 3.4. We again let (hj)

∞
j=1 be a sequence which is contained in the

unit ball of Apv and which converges to 0 uniformly on compact subsets of D, and

assume ε > 0 is given. We choose N ∈ N such that
∫ 2π

0
|(Znf)(ϕ)|dϕ < ε. Then, we

use the convergence of our sequence in the compact-open topology and the argument
in the proof of Theorem 3.4 to find a large enough J ∈ N such that

sup
|z|≤rmn

|ZnMfhj(z)|v(z) <
ε

2πNωn
⇒ Mp(ZnMfhj, rmn) <

ε

Nωn

for all n ≤ N , all j ≥ J . In view of (5.6) and (5.3) this implies

‖Mfhj‖pp,v ≤
N∑
n=1

ωpnMp(ZnMfhj, rmn)p +
∞∑

n=N+1

ωpnMp(ZnMfhj, rmn)p

≤ ε+ ε
∞∑

n=N+1

ωpnMp(Znhj, rmn)p ≤ 2ε‖hj‖pp,v ≤ 2ε. �
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[4] O. Constantin, J.A. Peláez, Boundedness of the Bergman projection on Lp-spaces with ex-
ponential weights, Bull. Sci. Math. 139 (2015) 245–268.

[5] M. Dostanic, Unboundedness of the Bergman projections on Lp spaces with exponential
weights, Proc. Edinb. Math. Soc. 47 (2004) 111–117.
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