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Abstract. We study the well-posedness of the linearized water-wave problem in
a periodic channel with fixed or freely floating compact bodies. Floquet-Bloch-
Gelfand-transform techniques lead to a generalized spectral problem with qua-
dratic dependence on a complex parameter, and the asymptotics of the solutions
at infinity can be described using Floquet waves. These are constructed from
Jordan chains, which are related with the eigenvalues of the quadratic pencil and
which are calculated in the paper in some typical cases.

Posing proper radiation conditions requires a careful study of spaces of incoming
and outgoing waves, especially in the threshold situation. This is done with the
help of a certain skew-Hermitian form q, which is closely related to the Umov-
Poynting vector of energy transportation. Our radiation conditions make the
problem operator into a Fredholm operator of index zero and provides natural
(energy) classification of outgoing/incoming waves. They also lead to a novel,
most natural properties and interpretation of the scattering matrix, which becomes
unitary and symmetric even at threshold.

1. Introduction.

1.1. Preamble. We consider the linearized water-wave problem in a periodic water
channel Π ⊂ R3, which contains fixed submerged and/or surface piercing obstacles
Θ; see Section 4.1 for geometric details and Remark 2.1 for the case of freely floating
objects. The problem consists of the Poisson equation in Ω := Π\Θ for the unknown
ϕ (velocity potential) and given f ,

−∆xϕ(x) = f(x), x ∈ Ω,

homogeneous Neumann (no penetration) conditions ∂νϕ(x) = 0 on the boundary ex-
cept for the free water surface Γ, where a Steklov type spectral (kinematic) condition
∂νϕ(x) = λϕ(x) is posed with λ as a spectral parameter. The problem as described
here is not well-posed: think for example about the special case of a straight cylin-
der, where it is easy to observe that the above mentioned boundary conditions with
λ ∈ R+ = (0,+∞) cannot guarantee the uniqueness or existence of the solution
in Sobolev spaces, and the same remains true for general periodic domains. The
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main goal of the present paper thus becomes to supplement this linear water-wave
problem with proper radiation conditions.

To that end, we write the problem as an equation Aβ(λ)ϕ = F containing a linear
operator Aβ(λ) : W 1

β (Ω) → W 1
−β(Ω)∗, where W 1

β (Ω), β ∈ R, denotes a weighted
Sobolev space the elements of which have, roughly speaking, the growth (β < 0) or
decay (β > 0) no more than e−β|x1| in the unbounded x1-directions of the channel.
For small β > 0 the operators A±β are Fredholm (Theorem 4.1), however, the index
of Aβ(λ) is strictly positive and that of A−β(λ) negative. The point will be a careful
study of the solutions of the above written equation, more precisely, the description
of incoming and outgoing waves in the preimage A−β(λ)−1W 1

−β(Ω)∗ and their relation
to the domain and kernel spaces of A±β; this division of wave classes is the most
intriguing issue especially at the threshold of the continuous spectrum, see Sections
4.2–4.3. It turns out that restricting the operator A−β(λ) to a subspace, which in
particular does not contain incoming waves, makes the operator index equal zero, see
Theorem 4.8. This is the appropriate radiation condition, which renders the original
problem well-posed. This investigation is motivated by the well-known shortcomings
of the Sommerfeld radiation principle in periodic domains or at thresholds.

As for the basic mathematical tools, our approach is based on the Floquet-Bloch-
Gelfand-(FBG-)transform, see Section 3.2. This enables us to convert the problem in
the unbounded quasicylinder (periodic set) into a problem in a bounded periodicity
cell, depending on a complex parameter η, which is the dual variable of the FBG-
transform. We end up with a two-fold spectral problem, since η can be treated as a
new spectral parameter. However, the dependence of the problem on η is quadratic
instead of linear: to each η-eigenvalue there may correspond a system of Jordan
chains consisting of eigenfunctions and their associated functions φq,pj . The above
mentioned incoming and outgoing waves u±n can be constructed with help of the
Floquet waves (3.16), which contain the functions φq,pj as ingredients. The structure
of the Jordan chains is in general complicated and it is hard to calculate explicitly
the coefficients of the functions φq,pj in the formulas of u±n , however, it has been
proven in [20, Ch. 5] that it is always possible to find a proper normalization. In the
final section of this paper we complete perform these calculations for Jordan chains
in some particular cases.

Another key tool is the skew-Hermitian form q (defined in (4.7), or (2.18) in a
simplified case), which acts in the above mentioned weighted spaces, the spaces of
waves. The q-form will be used to distinguish between incoming and outgoing waves
(Theorem 4.3), and thus also to find the correct domain space for the operator Aβ(λ).
The natural connection of the q-form with the Umov-Poynting vector yields physical
motivation for the radiation conditions, which we introduce by mathematical con-
siderations. The conditions are of Mandelstam type: any incoming wave must bring
energy form infinity, and on the contrary, outgoing waves radiate energy to infinity.
We emphasize that in the threshold case, when Jordan chains of length larger than
one appear, not every Floquet wave is able to drive energy along the waveguide.
Accordingly, only a special choice of wave packets (linear combinations) yields an
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appropriate basis in the linear spaces of incoming and outgoing waves, so that the
scattering matrix with respect to this basis becomes unitary and symmetric.

There are several known approaches to composing radiation conditions, and in
some sense our way to supply the problem with a Fredholm operator is standard.
Our methods are inspired by the work [20]; see also [21, Ch. 5], which contains both
an account of the FBG-transform and q-form techniques. The method using the
q-form is general and flexible, and it was also applied in [22] for the water-wave
problem in a completely different geometric situation.

The paper is composed as follows. In Section 2 we review, for the sake of making
an analogy to the periodic case, the much more simple case of a straight channel,
where one can use the Fourier transform instead of the FBG-transform. We also
make a remark on the case of freely floating objects in Section 2.1. The Sommerfeld
principle is usually sufficient for rendering the problem well-posed, see Proposition
2.4. However, in the threshold case, the incoming and outgoing waves are rather
wave packages determined by the q-form, as we show in Proposition 2.5. Thus, the
q-form can provide a way to extend the physical radiation conditions to this case,
though this is done in detail only in the general case of Section 4.

Section 3 contains a study of the linear water-wave problem in the unperturbed
periodic channel. Here we use the FBG-transform and give the operator theoretic
formulation of the problem in the bounded periodicity cell. Basic facts concerning
the η-spectrum, Jordan chains and Floquet waves are introduced.

In Section 4, which contains the main results, we consider the full water-wave
problem containing the fixed obstacle in the periodic channel and present a novel
approach to radiation conditions. Starting with existing literature, we recall in
Theorem 4.1 the connection of the Fredholm property of Aβ(λ) and the η-spectrum,
and in Theorem 4.5, the known solutions of the linear water-wave equation. The
analysis of the Fredholm properties of the problem operator A−β(λ) : W 1

−β(Ω) →
W 1
β (Ω)∗ leads to the formulation of the radiation conditions via Theorem 4.8 and to

the calculation of the (unitary) scattering matrix in Theorem 4.10. We also establish
the connection of our radiation conditions with the Mandelstam radiation principle
by determining the relation of the Umov-Poynting and the q-form, see Theorem 4.12.
The investigation is completed by the final Section 5, where we calculate explicitly
in some special cases the incoming and outgoing waves in terms of the Jordan chains
and Floquet waves of Section 3.

2. Straight channels.

Before proceeding to the general case of periodic channels, we consider the water-
wave problem in straight channels. The results of this section are in principle known,
but we present them here in order to demonstrate the analogy with the case of
periodic channels.

2.1. Formulation of the problem. We consider the boundary value problem of
linearized water-wave theory (see, e.g., [11, 25]) in a cylindrical channel Π := R×ω =
{x = (x1, x2, x3) = (x1, x

′) : x1 ∈ R , x′ ∈ ω} containing a fixed submerged or
surface piercing obstacle Θ, the closure of which is a compact subset of Π ⊂ R3.
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It is assumed that ω ⊂ R2 is bounded and Lipschitz. The boundary ∂Π consists
of the bottom and walls of the channel, Σ\ = ∂Π ∩ {x : x3 < 0} and the water
surface Γ\ = ∂Π ∩ {x : x3 = 0}. Furthermore, the water domain Ω = Π \ Θ ⊂ R3

is also required to be connected and Lipschitz. We denote Σ = ∂Ω ∩ {x : x3 < 0}
and Γ = ∂Ω ∩ {x : x3 = 0} ⊂ Γ\. Since the closure of Θ is compact, the domain
Ω coincides with Π outside the set {x : |x| < R0} for some large enough R0 > 0,
which we fix now.

The water-wave problem is formulated in the domain Ω and on its boundaries as
follows (see e.g. [11]):

−∆xϕ(x) = f(x), x ∈ Ω,(2.1)

∂νϕ(x) = 0, x ∈ Σ,(2.2)

∂zϕ(x) = λϕ(x), x ∈ Γ.(2.3)

Here, ∆x is the Laplace operator in x, ∂ν is the outward normal derivative defined
almost everywhere on ∂Ω, while ∂ν = ∂z = ∂/∂z on Γ. Later we will use ∆x′ and
∇x′ for the Laplacian and gradient in the variable x′ = (x2, x3). Moreover, ϕ is
the velocity potential, λ = κ2/g > 0 is a spectral parameter with the oscillation
frequency κ > 0 and the acceleration g > 0 due to gravity. The known function f
expresses external effects and it will belong to a suitably chosen function space.

Remark 2.1. In the case of a freely floating body Θ, which is assumed to be
connected for simplicity, the boundary condition (2.2) becomes inhomogeneous on
∂Ω ∩ ∂Θ, due to possible rigid motions of Θ. These are described by a column
vector a ∈ R6, which contains three translations and three rotations. The PDE-
problem (2.1)– (2.3) must be coupled with an algebraic 6 × 6-system for a, which
contains weighted integrals of ∂νϕ over ∂Ω ∩ ∂Θ, i.e. the momenta and torques of
hydrodynamical forces acting on the body. The complete formulation of this problem
can be found in [6, 7]. The variational formulation of the problem and its reduction
to a self-adjoint Hilbert space operator are presented in [5], [23], and this approach
allows to adapt all results of the present paper to the case of a freely floating body
in both straight and periodic channels. The reason is that our approach only uses
the parts of the channel which are of some distance from the body. We will not
comment on this generalization in the sequel.

Consider the corresponding homogeneous problem in the unperturbed cylinder,

−∆xϕ(x) = 0, x ∈ Π,(2.4)

∂νϕ(x) = 0, x ∈ Σ\,(2.5)

∂zϕ(x) = λϕ(x), x ∈ Γ\.(2.6)

The standard approach to this (and also to (2.1)–(2.3)) consists of separation of
variables and the Fourier transform with respect to the variable x1. This leads to
the following model problem on the cross-section ω:

−∆x′W (x′) + ξ2W (x′) = 0, x′ ∈ ω,(2.7)

∂νW (x′) = 0, x′ ∈ ς ′,(2.8)
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∂zW (x′) = λW (x′), x′ ∈ γ′,(2.9)

where ς ′ and γ′ are parts of the boundary ∂ω ⊂ R2 corresponding to the channel
bottom and walls, and the free water surface, respectively, and the parameter ξ ∈ R
is the separation of variables constant . We take the new spectral parameter µ =
−ξ2, and replace (2.7) by

−∆x′W (x′) = µW (x′) , x′ ∈ ω.(2.10)

The weak formulation, see [14], formula II.2.6, of the problem (2.8)–(2.10) means
finding W ∈ H1(ω) such that

(∇x′W,∇x′V )ω − λ(W,V )γ′ = µ(W,V )ω for all V ∈ H1(ω).(2.11)

This is derived from (2.7) by multiplying with an arbitrary V ∈ H1(ω), integrating,
using the Green formula and the boundary conditions (2.8) and (2.9). Let us denote
by B(λ) the sesquilinear form on H1(ω) × H1(ω) defined by the left hand side of
(2.11). Due to the standard trace inequality

‖W ;L2(γ′)‖ ≤ ε‖∇x′W ;L2(ω)‖+ Cε(ω, γ
′)‖W ;L2(ω)‖ ,(2.12)

valid for every ε > 0, the form B(λ) is closed in H1(ω) and lower semi-bounded,
hence, by [1, Ch. 10], it determines a lower semi-bounded self-adjoint operator A(λ)
such that the problem (2.11) is equivalent to the spectral problem

A(λ)W = µ(λ)W , W ∈ L2(ω).

Due to the compactness of the embedding H1(ω) ↪→ L2(γ′), there exists an increas-
ing sequence of eigenvalues for A:

µ1(λ) < µ2(λ) ≤ · · · ≤ µj(λ) ≤ · · · → +∞.(2.13)

The functions λ 7→ µj(λ) are monotone decreasing for λ ∈ R+, by [1, Thm. 10.2.4].
For all j ∈ N we denote by Wj the eigenfunction corresponding to µj, indexed and
normalized such that

(Wj,Wl)ω = δj,l,(2.14)

where δj,l is the Kronecker symbol. By [1, Thm. 10.2.2], the eigenvalues µj can be
computed from the max-min-principle

µj(λ) = sup
Hj

inf
W∈Hj

‖∇x′W ;L2(ω)‖2 − λ‖W ;L2(γ′)‖2

‖W ;L2(ω)‖2
,

where the supremum is taken over all (j−1) -codimensional subspaces Hj of H1(ω).
Choosing W = 1 reveals that µ1(λ) < 0, and from (2.12) we find that there are
finitely many non-positive eigenvalues µj, j = 1, . . . , J(λ) ∈ N. Since the functions
λ 7→ µj(λ) are decreasing, J(λ) is an increasing function of λ.
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2.2. Waves. Returning to the problem (2.4)–(2.6) for the unperturbed cylinder, for
each j ≤ J(λ) with µj(λ) 6= 0, there are two oscillating wave solutions

ϕ±j (x) = e±ix1|µj(λ)|1/2Wj(x
′)(2.15)

where ±|µj(λ)|1/2 is the wave number, and, according to the Sommerfeld principle,
the wave ϕ+

j travels from −∞ to +∞ and the wave ϕ−j to the opposite direction.
The physical explanation of this is as follows: the corresponding time-dependent
problem, including the wave equation, has solutions

φ±j (x, t) = e−i(κt∓ix1|µj(λ)|1/2)Wj(x
′).(2.16)

The direction of the propagation, as t increases, is determined by the sign of the
wave number in (2.16). However, if µj(λ) = 0, the wave (2.15) becomes standing
and its direction remains ambiguous. This has the consequence that the Sommerfeld
radiation condition fails, although it usually makes the problem (2.1)–(2.3) well-
posed by excluding incoming waves from the solutions. However, we will show in
Proposition 2.5 that incoming and outgoing waves can be identified as wave packages
by using the skew-Hermitian Q-form of (2.18).

The solutions (2.15) are used for the study of the original problem (2.1)–(2.3) as
follows. First, pick C∞-smooth cut off functions χ±, depending on x1 only, such
that χ+ has the properties 0 ≤ χ+ ≤ 1, χ+(x1) = 0 for x1 ≤ R0 and χ+(x1) = 1
for x1 ≥ R0 + 1, where R0 is as in Section 2.1. Set χ−(x1) = χ+(−x1). Assuming
µj(λ) 6= 0 for all j, let us denote

w+
n (x) =

1√
2|µj(λ)|1/4

χ±(x1)e±ix1|µj(λ)|1/2Wj(x
′) ,

w−n (x) =
1√

2|µj(λ)|1/4
χ±(x1)e∓ix1|µj(λ)|1/2Wj(x

′),(2.17)

where j = 1, . . . , J(λ) and the functions w+
n and w−n , n = 1, . . . , 2J(λ), are indexed

in an unspecified order. From the point of view of the body Θ, the waves w−n are
incoming, and w+

n outgoing, cf. the explanation above. As remarked in Proposition
2.4 below, this classification of waves is enough to make the Sommerfeld radiation
condition work, if µj(λ) 6= 0 for all j.

In order to classify the standing and resonance (i.e. linearly growing) waves
occurring in the case µj(λ) = 0, we introduce the form

Q(u, v) =
∑
±

±
∫
ω

(
v(x)

∂u

∂x1

(x)− u(x)
∂v

∂x1

(x)

)∣∣∣∣
x1=±R

dx′ , R ≥ R0,(2.18)

which is defined for solutions u, v of the Helmholtz equation (2.1) belonging to
H1

lOc(Ω). It is plain that Q is sesquilinear and anti-Hermitian, in short, skew-

Hermitian: Q(u, v) = −Q(v, u). Notice that we will usually calculate Q for functions
like (2.17), and in that case only one term ± in (2.18) may be nonzero, due to the
cut-off functions. The integral in (2.18) can be replaced by an integral over a sub-
domain with positive volume; this is done in a more general setting in (4.8), and
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it is based on the following observation. We denote ΩS = {x ∈ Π : |x1| > S} for
S ≥ R0.

Lemma 2.2. Assume that both u and v satisfy (2.1)–(2.3) with f = 0 (or (2.4)–
(2.6)) in ΩR0, Σ∩ΩR0 and Γ∩ΩR0 instead of Ω, Σ and Γ. Then the value of Q(u, v)
does not depend on the value of R > R0.

Proof. Let us denote for a moment by QR and QS the expressions (2.18) corre-
sponding to the values R > S > R0, respectively. The difference QR(u, v)−QS(u, v)
contains integrals over parts of the boundary of ΩR,S := ΩR \ ΩS, and applying the
Green formula in ΩR,S hence yields

QR(u, v)−QS(u, v) =

∫
Σ∩ΩR,S

(
v∂νu− u∂νv

)
dsx

+

∫
Γ∩ΩR,S

(
v∂νu− u∂νv

)
dsx +

∫
ΩR,S

(
v∆u− u∆v

)
dx.(2.19)

The integrals in (2.19) vanish due to (2.1), (2.2), and (2.3). �

A direct calculation shows the following property of Q for the waves (2.17):

Lemma 2.3. For all n,m = 1, . . . , 2J(λ) we have

Q(w±n , w
±
m) = ±iδn,m and Q(w±n , w

∓
m) = 0.(2.20)

Proof. Let j and l be the indices corresponding to n and m in (2.17). In the case
of Q(w+

n , w
+
m), the integral over the cross-section ω×{R} in (2.18) equals, by (2.17)

and (2.14),

1

2

1

|µj(λ)|1/4|µl|1/4

∫
ω

(
e−iR|µl|

1/2

i|µj(λ)|1/2eiR|µj(λ)|1/2

− eiR|µj(λ)|1/2(−i)|µl|1/2e−iR|µl|
1/2
)
Wj(x

′)Wl(x
′) dx′ = iδj,l.

Hence, Q(w+
n , w

+
m) = iδn,m. The other cases are similar. �

We observe from (2.20) that the Q-form can identify outgoing and incoming waves:
a wave v is outgoing, if ImQ(v, v) > 0 and incoming, if ImQ(v, v) < 0. Moreover,
this classification extends to the situation when standing and resonance waves exist,
i.e. µj(λ) = 0 for some j, see Proposition 2.5. (The skew-Hermitian form will be
put in full use in Section 4 with general periodic channels, where the much more
complicated Floquet waves (3.16) with no obvious direction will replace the simple
oscillating waves (2.15).)
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2.3. Radiation condition via Q-form for the threshold case in straight
channels. We first recall that exponentially decaying solutions of the homogeneous
problem (2.1)–(2.3) may exist, and they are called trapped modes according to
[8, 27] and others. Trapped modes are nothing but eigenfunctions of the problem
(2.1)–(2.3) in the Sobolev space H1(Ω), corresponding to the eigenvalue λ. Let
L0 ⊂ H1(Ω) denote the subspace of trapped modes.

Let us first restrict to the case µj(λ) 6= 0 for all j. It is known that given a
function f which decays exponentially as x1 → ±∞, any bounded solution ϕ of the
problem (2.1)–(2.3) can be written as

ϕ = ϕ̃+

2J(λ)∑
n=1

c+
nw

+
n +

2J(λ)∑
n=1

c−nw
−
n

where c+
n and c−n are constants and |ϕ̃(x)| decreases exponentially as x1 → ±∞. For

the exact formulation of this result, see [10], also [21, § 5.1], or Theorem 4.5 below.
The Sommerfeld radiation principle excludes incoming waves from the solution of
the wave propagation problem, and under our assumption on the eigenvalues µj(λ),
this is enough to make the problem well-posed: in particular, the following holds
true.

Proposition 2.4. Assume that the eigenvalues (2.13) of the problem (2.4)–(2.6)
satisfy µj(λ) 6= 0 for all j. Then, if ϕ is a solution of the homogeneous problem
(2.1)–(2.3) subject to the Sommerfeld condition, i.e.

ϕ = ϕ̃+

2J(λ)∑
n=1

cnw
+
n ,(2.21)

where eβ|x1|ϕ̃, eβ|x1|∇xϕ̃ ∈ L2(Ω) for some small β > 0, then cn = 0 for all n so that
ϕ ∈ L0 is a trapped mode.

The non-homogeneous problem (2.1)–(2.3) with eβ|x1|f ∈ L2(Ω) will only be
treated rigorously in the periodic case in Section 4.

Proof. If ϕ is a solution of the homogeneous problem as in (2.21), we get for any
R > R0 and ΩR = {x ∈ Ω : |x1| ≥ R}, using the Green formula

0 =

∫
ΩR

(
(∆ϕ)ϕ− ϕ∆ϕ

)
dx =

∫
∂ΩR

(
(∂νϕ)ϕ− ϕ∂νϕ

)
dsx

=

∫
∂ΩR\(Σ∪Γ)

(
(∂νϕ)ϕ− ϕ∂νϕ

)
dsx = Q(ϕ, ϕ)

= Q(ϕ̃, ϕ̃) +Q
(
ϕ̃,
∑
n

cnw
+
n

)
+ Q

(∑
n

cnw
+
n , ϕ̃

)
+Q

(∑
n

cnw
+
n ,
∑
n

cnw
+
n

)
.(2.22)

Since ϕ̃ is exponentially decaying, the first three terms on the right-hand side can
be made arbitrarily small by increasing R. Since Q is independent of R, the identity
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(2.20) yields

0 = Q
(∑

n

cnw
+
n ,
∑
n

cnw
+
n

)
=
∑
n,m

cncmQ(w+
n , w

+
m) = i

∑
n

|cn|2,

hence, cn = 0 for all n. �

We now change the above assumption on the eigenvalues and consider the case
µj(λ) = 0 in (2.13) for some j (there may be one or several such indices j), which
means that standing and resonance waves occur. We first remark that the Sommer-
feld principle fails in this case. Namely, instead of (2.15), an eigenvalue µj(λ) = 0
corresponds to the solutions

Wj(x
′) , x1Wj(x

′).

(Since Wj now satisfies (2.7) with ξ2 = 0, a function g(x1)Wj(x
′) satisfies (2.4), if

and only if g′′(x1) = 0.) However, since Q(Wj,Wj) = 0 = Q(x1Wj, x1Wj), none of
these solutions can be used as such to define outgoing or incoming waves. However,
a proper classification of incoming and outgoing waves can be made by using the
Q-form as follows.

Proposition 2.5. Defining the wave packages

w±n (x) := χ+(x1)
1√
2

(x1 ∓ i)Wj(x
′),(2.23)

we have Q(w+
n , w

+
n ) = i, Q(w−n , w

−
n ) = −i and Q(w+

n , w
−
n ) = 0,

Proof. The result follows from (2.14):

Q(w±n , w
±
n ) =

1

2

∑
±

∫
ω

(
(x1 ∓ i)− (x1 ∓ i)

)
|Wj(x

′)|2
∣∣∣
x1=±R

dx′ = ±i. �

Based on this and the remark after Lemma 2.3, we call w+
n as outgoing and w−n

as an incoming wave.
The general case of periodic channels and the connection with radiation conditions

will be considered in detail in Section 4. The above case corresponds, in the general
setting of periodic channels, to the threshold case with Jordan chains of length 2;
cf. also the example in Section 5.2.

Remark 2.6. When w±n are defined as the waves packages (2.23), the solution
(2.21) has linear growth as x1 → ±∞. On the other hand, the conventional physical
radiation conditions at the threshold (i.e. in the presence of waves (2.23)) involve
only staying waves χ±(x)Wj(x

′), which lead to bounded solutions (2.21). However,
the corresponding scattering cannot be determined properly, that is, with a unitary
and symmetric scattering matrix. The reason for this is that neither staying nor
resonance waves are able to drive energy along the channel, contrary to the packets
(2.23). Moreover, in Section 4.5 we will show that the skew-Hermitian form (2.18)
is proportional to the projection of the Umov-Poynting-vector onto x1-axis [26, 24].
In this way our radiation conditions, based on the q-form, become Mandelstam-type
conditions, which are related to the direction of energy transfer [16].



10 SERGEY A. NAZAROV AND JARI TASKINEN

3. Periodic channels.

In this section we consider a periodic channel without an obstacle. For the straight
channel it was possible to replace variable ξ by µ = −ξ2, reducing the model problem
to a standard spectral problem for a positive self-adjoint operator with spectral
parameter µ. However, in case of periodic channels it is necessary to use the FBG-
transform and introduce Floquet waves, which involve a new spectral parameter η.
The dependence of the problem operator on η is quadratic, a fact which crucially
complicates the structure of the waves and makes a straightforward application of
the Sommerfeld principle impossible in this setting, even in non-threshold cases.

3.1. Formulation of the problem. In the following, we use the same notation
as in Section 2, although Π denotes now a different type of domain, namely an
(unperturbed) periodic channel. The problem under consideration reads as

−∆xϕ(x) = f, x ∈ Π,(3.1)

∂νϕ(x) = 0, x ∈ Σ\,(3.2)

∂zϕ(x) = λϕ(x), x ∈ Γ\,(3.3)

with a given function f specified later. As before, Σ\ and Γ\ are the bottom and
surface of Π (x3 = 0 for x ∈ Γ\ and x3 < 0 for x ∈ Π and Σ\), whereas the Lipschitz
domain Π consists of the interior points of the set

Π =
⋃
j∈Z

$j(3.4)

where each $j is a translate of the form $j := {x : (x1 − j, x′) ∈ $}, and the
periodicity cell $ is a bounded Lipschitz-subdomain of {x : x1 ∈ (0, 1)}. The
boundary components determining the water surface, respectively, bottom and walls
of $ are defined by γ = Γ\ ∩$, respectively, by ς = Σ\ ∩$. By rescaling, we make
all the geometric parameters dimensionless, and especially the period is fixed to be
one.

3.2. FBG-transform. We recall the definition of the FBG-transform (see [3] and,
e.g. [12, 21, 13] for more details):

v(x) 7→ v̂(x; η) =
1√
2π

∑
j∈Z

e−iη(x1+j)v(x1 + j, x′),(3.5)

where x ∈ Π on the left, η ∈ [0, 2π), and x ∈ $ on the right. For the convenience of
the reader we recall the basic properties: if, for example v ∈ C∞0 (Π), then the sum
in (3.5) is finite, and it is easy to see the periodicity v̂(x1 + 1, x′) = v̂(x) and the

differentiation formula ∇̂xv = (∂x1 + iη,∇x′)v̂. The inverse operator is given by

v(x) =
1√
2π

2π∫
0

eix1ηv̂(x1 − [x1], x′)dη

where [a] denotes the integer part of the real number a.
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The FBG-transform is an isometric isomorphism from L2(Π) onto L2(0, 2π;L2($)),
as well as an isomorphism from H1(Π) onto L2(0, 2π;H1

per($)) (see e.g. [21, § 3.4]

and [19, Cor. 3.4.3] ). Here L2(0, 2π;L2($)) consists of L2($)–valued (complex) L2–
functions on [0, 2π], the space L2(0, 2π;H1

per($)) is defined analogously, and H1
per($)

is the space of C–valued Sobolev–functions 1–periodic with respect to x1. Using the
FBG-transform, the problem (3.1)–(3.3) turns into the following parameter depen-
dent spectral problem in the periodicity cell:

−
(
(∂1 + iη)2 + ∆x′

)
ϕ̂(x; η) = f̂(x; η), x ∈ $,(3.6)

(∂ν + iν1η)ϕ̂(x; η) = 0, x ∈ ς,(3.7)

∂zϕ̂(x; η) = λϕ̂(x; η), x ∈ γ.(3.8)

ϕ̂(0, x′; η) = ϕ̂(1, x′; η) and

∂1ϕ̂(0, x′; η) = ∂1ϕ̂(1, x′; η) for all x′, η(3.9)

where ν = (ν1, ν2, ν3) and (3.9) constitutes the periodicity conditions.

3.3. Variational and operator formulation, Floquet waves. The problem
(3.6)–(3.9) will be interpreted as a two-fold spectral problem.

Let us first fix η ∈ R and consider the λ-spectrum. A weak solution of (3.6)–(3.9)
means a function ϕ̂(·; η) ∈ H1

per($) satisfying

((∂1 + iη)ϕ̂, ∂1 + iη)ψ̂)$ + (∇x′ϕ̂,∇x′ψ̂)$ − λ(ϕ̂, ψ̂)γ = (f̂ , ψ̂)$(3.10)

for all ψ̂ ∈ H1
per($). This is obtained in the usual way from the boundary conditions

(3.7)–(3.9); for details, see [14]. In the case f = 0 the problem (3.10) reads as

((∂1 + iη)ϕ̂, (∂1 + iη)ψ̂)$ + (∇x′ϕ̂,∇x′ψ̂)$ = λ(ϕ̂, ψ̂)γ.(3.11)

Denoting

Bη(ϕ̂, ψ̂) := ((∂1 + iη)ϕ̂, ∂1 + iη)ψ̂)$ + (∇x′ϕ̂,∇x′ψ̂)$ + (ϕ̂, ψ̂)γ,

the equation

Bη(T (η)ϕ̂, ψ̂) = (ϕ̂, ψ̂)γ for all ψ̂ ∈ H1
per($)

defines a continuous, positive self-adjoint operator T (η) : H1
per($)→ H1

per($), which

is compact due to the compact embedding H1
per($) ↪→ L2(γ). The problem (3.11)

is equivalent to the spectral problem

T (η)ϕ̂ = Mϕ̂,(3.12)

and due to the connection M = 1/(1 + λ) and well known properties of the eigen-
values of (3.12), the problem (3.11) has for every fixed η the discrete λ-spectrum

0 ≤ Λ1(η) < Λ2(η) ≤ . . . ≤ Λn(η) ≤ · · · → +∞.(3.13)

We remark that by [9, Ch. 9], the functions η 7→ Λn(η) are continuous. Moreover,
they are 2π-periodic: any eigenpair (λ, U) with η gives rise to eigenpairs (λ, e±i2πx1U)
with η±2π. Furthermore, by [21, Th. 3.4.6] or [19, Th. 2.1], λ belongs to the essential
spectrum of the problem (3.1)–(3.3), if and only if it coincides with a Λn(η) for some
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η and n ∈ N. In this way the essential spectrum of (3.1)–(3.3) gets the band-gap
structure,

σess =
⋃
n∈N

Υn , Υn = {λ : λ = Λn(η), η ∈ [0, 2π]},

though it may happen that the intervals overlap, meaning that the essential spectrum
becomes just the ray [0,+∞). We remark that in any case the essential spectrum
of the problem (3.1)–(3.3) is contained in R+.

Second, we may fix any Λ ∈ R+ and reformulate the problem to find the η-
spectrum. We define the operator

A = A(η; Λ) : H1
per($)→ H1

per($)∗

by

〈Aφ, ψ〉 =
(
(∂1 + iη)φ, (∂1 + iη)ψ

)
$

+ (∇x′φ,∇x′ψ)$ − Λ(φ, ψ)γ(3.14)

and observe that

A(η; Λ) = A0(Λ) + ηA1 + η2A2 : H1
per($)→ H1

per($)∗

is a quadratic pencil in η ∈ C (therefore the complex conjugation in (3.14)).
By [4, Ch. 1], there are two possibilities for any fixed Λ:
I. There exists a point η0 ∈ C such that A(η0; Λ) is an isomorphism, and moreover

A(η; Λ) is an isomorphism for any η ∈ C except for a countable set of η-eigenvalues
with the only accumulation point at infinity.

II. The whole complex plane is covered by the η-spectrum: for any η ∈ C there
exists φ(η) ∈ H1

per($), φ(η) 6= 0, such that

A(η; Λ)φ(η) = 0.

Notice that if II holds for some Λ = Λ0 ∈ R+, then Λ0 = Λn(η) for some n ∈ N
and all η ∈ [0, 2π) so that Υn = {Λ0}. This is an issue of importance, because in this
case λ = Λ0 is an eigenvalue of the problem (3.1)–(3.3) having infinite multiplicity.
It is an open problem, if the case II occurs for some λ ∈ R+. If I holds for every Λ,
then the spectrum of the problem (3.1)–(3.3) is fully continuous (since the essential
spectrum consists of the continuous spectrum and eigenvalues of infinite multiplicity,
see the remarks below (3.13)).

Let {ηj}j∈N stand for the set of η-eigenvalues in the half-open strip {η ∈ C :
Re η ∈ [0, 2π)}. To any ηj there corresponds a system of Jordan chains

{φ`,pj : ` = 1, . . . , dj, p = 0, . . . ,ℵ`j − 1},

where dj is the geometric multiplicity of ηj and ℵ1
j , . . . ,ℵ

dj
j are partial algebraic mul-

tiplicities with the total multiplicity ℵj = ℵ1
j + . . .+ℵdjj . The functions φ1,0

j , . . . , φ
dj ,0
j

are eigenvectors, while φ`,pj with p ≥ 1 are the associated vectors satisfying the equa-
tions

A(ηj; Λ)φ`,pj = −
p∑

m=0

1

m!

dmA

dηm
(ηj; Λ)φ`,p−mj(3.15)
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where ` = 1, . . . , dj and p = 0, . . . ,ℵ`j − 1.
Finally, Floquet waves are defined by

U `,p
j (x) = eiηjx1

p∑
m=0

1

m!
(ix1)mφ`,p−mj (x) , x ∈ Π,(3.16)

where the functions φ`,pj are extended periodically for x1 ∈ R. Although the functions

U `,p
j do not even belong to L2(Ω), they will still be members of the spaces W 1

−β(Ω),
β > 0, with exponentially decaying weights, see below for definition. By a direct
computation one can verify that they satisfy the problem (3.1)–(3.3) with f = 0, or
the integral identity

(∇xU,∇xV )Π = λ(U, V )Γ\ for all V ∈ C∞0 (Π).

We will assume in the following that the number δ > 0 is fixed so small that all
eigenvalues η ∈ [0, 2π) × [−δ, δ] ⊂ C are real. Distinct eigenvalues are denoted by
η1, . . . , ηN ∈ [0, 2π), N = N(λ) being their number. In addition we denote the total
multiplicity of them by ℵtot = ℵtot(λ) := ℵ1 + . . . + ℵN . This number is even, see
(4.9) below.

Notice that there is no obvious way to decide on the direction of Floquet waves
(3.16), since the connection to the time dependent problem is not so straightforward
as in the case of the functions (2.15).

Finally, we remark that it will be shown in Section 5.1 (see the remark after
Proposition 5.1) that Jordan chains of length 2 appear for sure in the (threshold)
situation where ηj = 0 or ηj = π is a simple eigenvalue.

4. Operator theoretic approach

We proceed to study the general case of a periodic channel containing a sub-
merged fixed obstacle Θ; see Remark 2.1 for freely floating bodies. We will use at
some points the fact that the channel has two outlets to infinity, as a consequence of
the periodicity. Channels with only one outlet (having periodicity outside a bounded
subdomain) could also be treated by introducing suitable cut-off functions and con-
structing a parametrix of the problem operator, however, we leave these evident
modifications to the reader.

Following [17], [21, Ch. 3 & 5] we consider the problem in Sobolev spaces with
exponentially increasing or decreasing weights and employ a skew-Hermitian form q
(generalization of (2.18)) to distinguish between incoming and outgoing waves and
to formulate the radiation conditions.

4.1. The setting. In this section we consider the water-wave problem in a Lipschitz
domain Ω, which is a compact perturbation of the periodic channel Π of Section 3.1
by a fixed obstacle Θ, Ω := Π \ Θ. Although the domain is different from that
in Section 2, we use the same notation as far as possible. In particular the fixed
number R0 > 0 is large enough to satisfy Θ ⊂ {x : |x| ≤ R0}, and the bottom and
walls of Ω and the free water surface are still denoted by Σ and Γ, respectively, so
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that the problem reads as

−∆xϕ(x) = f(x), x ∈ Ω,(4.1)

∂νϕ(x) = 0, x ∈ Σ,(4.2)

∂zϕ(x) = λϕ(x), x ∈ Γ,(4.3)

where f is a given function in a suitable function space, see below. The weak
formulation of the problem is obtained from (4.1) for test functions ψ ∈ C∞0 (Ω)
using the boundary conditions (4.2)–(4.3):

(∇xϕ,∇xψ)Ω − λ(ϕ, ψ)Γ = (f, ψ)Ω,(4.4)

see [14]. The problem will be considered in the weighted Sobolev spaces W 1
β (Ω),

β ∈ R, which are endowed with norms

‖ϕ;W l
β(Ω)‖ :=

( 1∑
k=0

∫
Ω

e2β|x1||∇k
xϕ|2dx

)1/2

,

while the dual space W 1
β (Ω)∗ = W 1

−β(Ω) of W 1
β (Ω) is determined with respect to the

dual pairing

〈ϕ, ψ〉 :=

∫
Ω

ϕψdx+

∫
Ω

(∇k
xϕ)(∇k

xψ)dx.

The standard trace inequality ‖φ;L2(Γ)‖ ≤ C‖φ;H1(Ω)‖ holds in Ω, since the
periodic domain Ω has Lipschitz boundary. Applying this to the function eβ|x1|φ, and
taking into account that the norm ‖eβ|x1|φ;H1(Ω)‖ is comparable with ‖φ;W l

β(Ω)‖,
yields

‖φ;L2
β(Γ)‖ := ‖eβ|x1|φ;L2(Γ)‖ ≤ C‖φ;W l

β(Ω)‖,

hence, the left-hand side of the identity (4.4) is properly defined for all ϕ ∈ W 1
β (Ω).

Assuming that f ∈ L2
β(Ω) in (4.1)–(4.4) and using a completion argument, the test

functions in (4.4) can be taken as elements of W 1
−β(Ω). A solution to (4.1)–(4.3) is

then defined as a function ϕ ∈ W 1
β (Ω) which satisfies

(∇xϕ,∇xψ)Ω − λ(ϕ, ψ)Γ = F (ψ)(4.5)

for all ψ ∈ W 1
−β(Ω); here F ∈ W 1

−β(Ω)∗ is a continuous antilinear functional. The

left hand side of (4.5) determines a functional on W 1
−β(Ω) 3 ψ and hence also a

bounded linear operator

Aβ(λ) : W 1
β (Ω)→ W 1

−β(Ω)∗ , 〈Aβ(λ)ϕ, ψ〉 = (∇xϕ,∇xψ)Ω − λ(ϕ, ψ)Γ.(4.6)

The Fredholm properties of Aβ(λ) have been studied in case of straight, respec-
tively, periodic cylinders, in [10], resp. [17], [19], Th. 2.1, cf. [21], Th. 5.1.4. The
following is thus known:

Theorem 4.1. The operator Aβ(λ) : W 1
β (Ω)→ W 1

−β(Ω)∗ is Fredholm, if and only if
the line segment [0, 2π) + iβ in the complex plane does not contain an η-eigenvalue.
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4.2. Asymptotics of solutions. Let λ ∈ R+
0 be a point in the essential spectrum

of (4.1)–(4.3) (which is the same as the essential spectrum of (3.1)–(3.3), since these
two problems differ only by a compact perturbation of the domain; see a criterion
for the Fredholm property in [17] and [20, Ch. 3 §4, Ch. 5 §1]), and moreover, assume
that λ is not an eigenvalue of infinite multiplicity. Let the number δ > 0 be such
that all eigenvalues η ∈ [0, 2π)× [−δ, δ] ⊂ C of the problem (3.6)–(3.9) are real, see
Section 3.3. For the rest of the paper, we fix such a δ and consider values β with
0 < β < δ. In particular, by Theorem 4.1, both operators Aβ(λ) and A−β(λ) are
Fredholm and also adjoint to each other.

We define a skew-Hermitian form for solutions u, v of the equation (4.1) in H2
loc(Ω)

by

q(u, v) =
∑
±

±
∫

ω(±R)

(
v(x)

∂u

∂x1

(x)− u(x)
∂v

∂x1

(x)

)∣∣∣∣
x1=±R

dx′,(4.7)

where |R| > R0 is assumed. This is a generalization of (2.18), where the x1-
dependence of the cross-section ω(R) = {(x1, x

′) ∈ Ω : x1 = R} is taken into
account; more precisely, Q and q coincide in the case of a cylinder, when restricted
to functions with support in the set {x : x1 ≤ −R0} or {x : x1 ≥ R0}.

The following can be verified using the Green formula as in Lemma 2.2, denoting
again ΩS = {x ∈ Π : |x1| > S} for S ≥ R0:

Lemma 4.2. If both u and v are solutions to (4.1)–(4.3) with f = 0 in ΩR0, Σ∩ΩR0

and Γ∩ΩR0 instead of Ω, Σ and Γ, then the value of q(u, v) does not depend on the
value of R > R0.

Using Lemma 4.2 and integrating the formula (4.7) with respect to x1 over the
set [−R − 1,−R] ∪ [R,R + 1] with R ≥ R0 leads to yet another expression for q,
which is defined for solutions u, v ∈ H1

loc(Ω):

q(u, v) =
∑
±

±
∫

$±(R)

(
v(x)

∂u

∂x1

(x)− u(x)
∂v

∂x1

(x)
)
dx,(4.8)

where $±(R) = {x = (x1, x
′) ∈ Ω : R ≤ ±x1 ≤ R + 1}. The symmetric position

of the integration domain on both outlets to infinity will be used for example in the
proof of Proposition 4.4.

We remark that the proof of Proposition 2.4 shows that the q-form vanishes in the
space of solutions in W 1

β (Ω) and it would thus be well defined in the quotient space

of solutions in W 1
−β(Ω), which is written as W−β(λ)/W 1

β (Ω) by using the notation
to be introduced in (4.15). In this way, waves could be defined as equivalence classes
which do not depend on the choice of the cut-off function χ±. However, we do not
expose this aspect in the following.

Let us recall the notation of Section 3.3, especially the eigenvalues η1, . . . , ηN(λ),
the total multiplicity of the eigenvalues ℵtot(λ), and the sequence of eigenfunctions
and their associated functions φq,pj ∈ L2($), see (3.16). Moreover, let χ+ be the
same cut-off function as in Section 2.2, i.e. χ+(x1) = 0, if x1 ≤ R0 and χ+(x1) = 1,
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if x1 ≥ R0 + 1, and let χ−(x1) = χ+(−x1). There are ℵtot(λ) linearly independent
functions of the form

χ±(x1)U q,p
j (x) ,(4.9)

where the indices j, q and p are as in (3.16); in particular, ℵtot(λ) is an even number.
The next theorem is known and elementary (see e.g. [15, Ch. XIV §7,Th. 4, Cor.

1]), but we outline the proof for the convenience of the reader. The proof uses
Sylvester’s law of inertia: given a Hermitian n × n-matrix A and any invertible

n× n-matrix S such that S−1AS = Ã is diagonal, the number of positive, zero and

negative entries (on the diagonal) of Ã does not depend on the choice of S.

Theorem 4.3. In the ℵtot(λ)-dimensional subspace W (λ) of W 1
−β(Ω) spanned by

the functions (4.9), one can find a basis consisting of functions

u+
n , n = 1, . . . , J+(λ), and

u−n , n = 1, . . . , J−(λ) = ℵtot(λ)− J+(λ),(4.10)

such that the following holds for all n and m:

q(u±n , u
±
m) = ±iδnm , q(u±n , u

∓
m) = 0.(4.11)

The numbers J±(λ) do not depend on the choice of the basis with properties (4.11).

We call the functions u+
n outgoing and u−n incoming, and we denote W±(λ) :=

sp{u±n : n = 1, . . . , J±(λ)} ⊂ W 1
−β(Ω). This classification could be extended to

outgoing and incoming waves defined as equivalence classes, as was explained after
Lemma 4.2. In Section 5 we calculate the functions u±n explicitly for Jordan chains
of length 1 and 2.

Proof. Given any basis of W (λ), i.e. a set of linearly independent elements
wn, n = 1, . . . ,ℵtot(λ) =: K, the condition q(wn, wm) = Mnm defines a matrix

M = (Mnm)Kn,m=1 which, by the property q(f, g) = −q(g, f), is skew-Hermitian, or
antihermitian; equivalently, the matrix A := iM is Hermitian. We remark that if

another basis of W (λ) consisting of vectors w̃n were chosen and a matrix Ã were

defined accordingly, we would have A = SÃS−1 for some invertible K ×K-matrix
S. Then, according to the law of inertia, the numbers of positive and negative
eigenvalues of A = iM are independent of the choice of the above mentioned basis;
they are denoted by J+(λ) and J−(λ), respectively. Null eigenvalues do not exist,
since in [18] and [21, § 3,3, §5.1] it has been proven that for any u ∈ W (λ) one can
find v ∈ W (λ) such that q(u, v) = 1. (In other words, q is a non-degenerate form on
W (λ).) Let us denote the eigenvalues of A by αn, n = 1, . . . , K, and agree on the
indexing that αn > 0 for n = 1, . . . , J+(λ).

The matrix A and thus also A are Hermitian, and they have the same eigenvalues.
The basis we are looking for is obtained from the eigenvectors of A in a straightfor-
ward way. Let vn =

∑K
j=1 bnjej be an orthonormal set of eigenvectors in CK for the
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matrix A corresponding to the eigenvalues αn ∈ R. We set

u+
n = α−1/2

n

K∑
j=1

bnjwj for n = 1, . . . , J+(λ),

u−n = (−αn)−1/2

K∑
j=1

bnjwj+J+(λ) for n = 1, . . . , J−(λ).

By standard matrix calculus, denoting transposition by >,

q(u+
n , u

+
m) = α−1/2

n α−1/2
m

K∑
j,k=1

bnjbmkq(wj, wk) = α−1/2
n α−1/2

m

K∑
j,k=1

bnjbmkMjk

= iα−1/2
n α−1/2

m vnA(vm)> = iα−1/2
n α−1/2

m vnA(vm)>

= iα−1/2
n α−1/2

m vnαm(vm)> = iα−1/2
n α1/2

m vn(vm)> = iδnm,

The other cases in (4.11) are treated in the same way. �

Proposition 4.4. There holds the identity J+(λ) = J−(λ) = ℵtot(λ)/2 =: J(λ),
so that the dimensions of both spaces W±(λ) are equal to J(λ).

Proof. All elements in the space W (λ) of Theorem 4.3 are linear combinations of
the vectors (4.9), which also form a basis of W (λ). Thus, the linear mapping T which
maps the functions χ+(x1)Up,q

j (x) to χ−(x1)Up,q
j (x) and functions χ−(x1)Up,q

j (x) to
χ+(x1)Up,q

j (x), is a linear bijection of W (λ) onto itself. Moreover, by the definition
of the q-form (consider the integration domains there),

q
(
T (χ±U

p,q
j ), T (χ±U

p,q
j )
)

= −q(χ±Up,q
j , χ±U

p,q
j ),(4.12)

for every j, p, q, and thus it follows that

q
(
Tu±n , Tu

±
m

)
= −q(u±n , u±m) = ∓iδnm

q
(
Tu±n , Tu

∓
m

)
= −q(u±n , u∓m) = 0

for every n, m. Hence, the set consisting of all functions Tu±n is a basis of W (λ)
which has J−(λ) outgoing and J+(λ) incoming functions in the above terminology.
Since these numbers do not depend on the choice of basis, by Theorem 4.3, we have
J+(λ) = J−(λ). �

We will need the following result.

Theorem 4.5. Assume that F ∈ W 1
−β(Ω)∗ ⊂ W 1

β (Ω)∗, and let ϕ be a solution to

the problem (4.5) in the space W 1
−β(Ω). It can be written in the form

ϕ(x) =

J(λ)∑
n=1

(
c+
nu

+
n (x) + c−nu

−
n (x)

)
+ ϕ̃(x),(4.13)
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where the coefficients c±j and the remainder ϕ̃ ∈ W 1
β (Ω) satisfy the estimate

‖ϕ̃;W 1
β (Ω)‖+

J(λ)∑
n=1

|c+
n |+

J(λ)∑
n=1

|c−n | ≤ cβ
(
‖F ;W 1

−β(Ω)∗‖+ ‖ϕ;W 1
−β(Ω)‖(4.14)

with a constant cβ independent of F and ϕ.

This theorem is proven in [17]. It also follows from Theorem 5.1.4 of [21] (recall
the choice of the parameters δ and β in the beginning of this section), where any
solution ϕ of (4.5) is written as

ϕ = ϕ̃+
∑
j,q,p

cq,pj χ±U
q,p
j

with some coefficients cq,pj , ϕ̃(x) ∈ W 1
β (Ω) and indices as in (3.16). Clearly, (4.13)

follows by using the basis property of the functions u±n . We remark that Theorem
4.5 does not imply surjectivity of Aβ(λ) or A−β(λ).

Theorem 4.5 shows that the pre-image

W−β(λ) := A−β(λ)−1W 1
−β(Ω)∗ ⊂ W 1

−β(Ω)(4.15)

is the direct sum

W−β(λ) = W 1
β (Ω) +̇W+(λ) +̇W−(λ).

Taking into account the estimate (4.14) we endow the space W−β(λ) with the norm

‖ϕ‖ := ‖ϕ̃;W 1
β (Ω)‖+

J(λ)∑
n=1

|c+
n |+

J(λ)∑
n=1

|c−n |(4.16)

where c±n and ϕ̃ are as in (4.13). This makes W−β(λ) into a Banach space; actually
the norm (4.16) is equivalent to a Hilbertian norm, but we will not need this fact
later.

We still define the operator

A−β(λ) : W−β(λ)→ W 1
−β(Ω)∗(4.17)

as the restriction of the operator A−β(λ) to W−β(λ). The Fredholm index of an
operator T is denoted by IndT = dim kerT − dim cokerT . If T is a Fredholm oper-
ator from a Banach space X into a dual Y ∗ of a Banach space Y , then by definition
cokerT is the quotient space Y ∗/T (X). We will use the following elementary fact.

Lemma 4.6. For a Fredholm operator T : X → Y ∗, the dimension of cokerT
coincides with the dimension of the space

{y ∈ Y : 〈Tx, y〉Y = 0 for all x ∈ X},(4.18)

where 〈·, ·〉Y denotes the dual pairing of Y and Y ∗.

Indeed, vectors of Y ∗ which do not belong to T (X) can be made into one-to-one-
correspondence with vectors (4.18) of Y by using the Hahn-Banach theorem.

Theorem 4.7. The operator A−β(λ) is Fredholm, and

IndA−β(λ) = IndA−β(λ) = J(λ).(4.19)
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Proof. We recall that both operators Aβ(λ) and A−β(λ) are Fredholm, due to
Theorem 4.1 and the choice of δ and β in the beginning of Section 4.2. Then, also
A−β(λ) is Fredholm, by its definition. As for the indices, we claim that

IndA−β(λ) = IndAβ(λ) + ℵtot(λ) = IndAβ(λ) + 2J(λ).(4.20)

To see this, both operators Aβ(λ) and A−β(λ) have the same image space. The claim
then follows from elementary linear algebra: ”diminishing” the domain of a Fredholm
operator by a subspace of dimension d ∈ N increases the index by d. (In detail: Let
k ∈ N, 0 ≤ k ≤ ℵtot(λ), be the dimension of (W+(λ)+W−(λ))∩kerA−β(λ). Then, by
the definitions of A−β(λ) and W−β(λ), we have dim kerA−β(λ) = dim kerAβ(λ)+k
and also dim cokerA−β(λ) = dim cokerAβ(λ)− (ℵtot(λ)− k).)

We next show that

IndA−β(λ) = IndA−β(λ).(4.21)

We first observe that the kernels of A−β(λ) and A−β(λ) are the same, by Theorem
4.5. We need to prove the equality of the dimensions of the cokernels of these op-
erators, denoted here by dim cokerA−β(λ) = k and dim cokerA−β(λ) = k. By defi-
nition of cokerA−β(λ), there exist k linearly independent elements G ∈ W 1

−β(Ω)∗ =

W 1
β (Ω) such that the equation A−β(λ)ϕ = G does not have a solution in W−β(λ)

(cf. (4.17)). But Theorem 4.5 shows that this equation then does not have a solution
in W 1

−β(Ω) either, which implies that k ≥ k.
There remains to verify that k ≤ k. Applying Lemma 4.6 to the operator A−β(λ),

there exists k linearly independent functions g ∈ W 1
β (Ω) such that (see (4.6))

〈A−β(λ)ϕ, g〉 = (∇ϕ,∇g)Ω − λ(ϕ, g)Γ = 0 for all ϕ ∈ W 1
−β(Ω).(4.22)

In particular (4.22) holds for all ϕ ∈W−β(λ), i.e.,

〈A−β(λ)ϕ, g〉 = 0.(4.23)

Since the k linearly independent functions g in (4.23) belong to W 1
β (Ω) ⊂ W 1

−β(Ω),

a second application of Lemma 4.6 to the operator A−β(λ) : W−β(λ) → W 1
−β(Ω)∗

shows that cokerA−β(λ) is at least of dimension k. Consequently, k = k and (4.21)
holds.

As it was remarked in the beginning of Section 4.2, A−β(λ) equals the adjoint
Aβ(λ)∗. Hence, IndAβ(λ) = −IndA−β(λ); this, (4.21) and (4.20) imply IndA−β(λ) =
J(λ). �

4.3. Radiation conditions. We denote by

A+
−β(λ) : W+

−β(λ)→ W 1
−β(Ω)∗

the restriction of A−β(λ) : W 1
−β(Ω) → W 1

β (Ω)∗ (or that of A−β(λ) : W−β(λ) →
W 1
−β(Ω)∗, see (4.15)–(4.17)), where

W+
−β(λ) = W 1

β (Ω)+̇W+(λ) ⊂W−β(λ),
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consists of functions

ϕ =

J(λ)∑
n=1

c+
nu

+
n + ϕ̃ , ϕ̃ ∈ W 1

β (Ω).

Now, solving the equation

A+
−β(λ)ϕ = F , F ∈ W 1

−β(Ω)∗(4.24)

with a given F is equivalent to solving the original water-wave problem (4.1)–(4.3)
in the space consisting of exponentially decaying and outgoing waves. Moreover,
Theorem 4.8 shows that the problem (4.24) is well-posed. These definitions and
results constitute our radiation conditions (for a physical interpretation using the
Mandelstam (energy) principle, see Section 4.5). As incoming waves are excluded,
this is analogous with the Sommerfeld radiation principle, but the physical and
mathematical reasons are quite different.

Theorem 4.8. The operator

A+
−β(λ) : W+

−β(λ)→ W 1
−β(Ω)∗

is Fredholm of index zero. The problem (4.24) has a solution u ∈ W+
−β(λ), if and

only if the right hand side F ∈ W 1
−β(Ω)∗ satisfies the compatibility conditions

〈F, v〉 = 0 ∀ v ∈ kerAβ(λ).

This solution is defined up to an addentum in kerAβ(λ), a trapped mode. If the
orthogonality conditions

〈u, v〉 = 0 ∀ v ∈ kerAβ(λ)

are satisfied, then the solution u is unique and has the bound

‖u;W+
−β(λ)‖ ≤ c‖F ;W 1

−β(Ω)∗‖.

Proof. That the index of A+
−β(λ) is null, can be seen by a comparison with

the operator A−β(λ) in the same way as in the beginning of the proof of Theorem
4.7: the domain of A+

−β(λ) differs from the domain of A−β(λ) by a J(λ)-dimensional
subspace, and the index of A−β(λ) is J(λ), by (4.19). The other statements are con-
sequences of the Fredholm alternative, since we can replace kerAβ(λ) by kerA+

−β(λ)
by using the next lemma. �

Lemma 4.9. We have kerA+
−β(λ) = kerAβ(λ).

Proof. By the definitions of the operators, kerAβ(λ) ⊂ kerA+
−β(λ). A function

v ∈ kerA+
−β(λ)\kerAβ(λ) is of the form v =

∑
j cju

+
j +ϕ̃ with ϕ̃ ∈ W 1

β (Ω). However,

v is harmonic as an element in kerA+
−β(λ) , and thus, q(v, v) = 0, by the definition

of q and the Green formula. The proof of Proposition 2.4 shows that all coefficients
cj must be 0, i.e. v ∈ kerAβ(λ). �
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4.4. Scattering matrix. We next consider scattering of incoming waves in problem
(4.1)–(4.3).

Theorem 4.10. The dimension of the space L(λ) := kerA−β(λ)	kerAβ(λ) equals
J(λ), and it has a basis ζ1, . . . , ζJ(λ) such that

ζj = u−j +

J(λ)∑
k=1

sjku
+
j + ϕ̃j ,(4.25)

where ϕ̃j ∈ W 1
β (Ω) and the coefficients sjk form a unitary J(λ)×J(λ)-matrix s, the

scattering matrix.

Proof. We have dim kerA−β(λ) = dim kerA+
−β(λ)+J(λ), since the image spaces of

these two operators are the same and the domains differ by a subspace of dimension
J(λ). Moreover, the kernels of A−β(λ) and A−β(λ) are the same, by Theorem 4.1.
Hence, the claim about the dimension of L(λ) follows from Lemma 4.9.

Given any orthonormal basis (ej)
J(λ)
j=1 of L(λ), there exist numbers b−jk, b

+
jk such

that it can be written as

ej =

J(λ)∑
k=1

b−jku
−
k +

J(λ)∑
k=1

b+
jku

+
k + ϕ̃′j.(4.26)

for some constants b±jk and some ϕ̃′j ∈ W 1
β (Ω). We remark that the J(λ) elements∑J(λ)

k=1 b
−
jku
−
k must form a linearly independent set. Indeed, if these were linearly de-

pendent, it would be possible to construct a nonzero element y ∈ L(λ) ⊂ kerA−β(λ)

as a linear combination y =
∑J(λ)

k=1 aku
+
j + ỹ with ỹ ∈ W 1

β (Ω). However, this would
lead to a contradiction by the proof of Proposition 2.4 or Lemma 4.9. Applying

the Gram-Schmidt method to the coefficient matrix (b−jk) makes the basis (ej)
J(λ)
j=1 ,

(4.26), into the basis (4.25) of L(λ).
It suffices to prove the unitarity of s, i.e., the equality s∗ = s−1. Similarly to (2.22)

we obtain

q(ζj, ζk) = q
(
u−j +

J(λ)∑
n=1

sjnu
+
n + ϕ̃j, u

−
k +

J(λ)∑
m=1

skmu
+
m + ϕ̃k

)
= q
(
u−j +

J(λ)∑
n=1

sjnu
+
n , u

−
k +

J(λ)∑
m=1

skmu
+
m

)
= q(u−j , u

−
k ) +

J(λ)∑
n,m=1

sjnskmq(u
+
n , u

+
m)

= −iδj,k + i

J(λ)∑
n,m=1

sjnskmδn,m = i
( J(λ)∑
n=1

sjnskn − δj,k
)
.(4.27)

Again, the functions ζj are harmonic, as solutions of the homogeneous problem (4.1).
Thus q(ζj, ζk) = 0 and the unitarity of s follows from (4.27). �
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The scattering matrix s of Theorem 4.10 of course depends on the choice of the
bases {u±1 , . . . , u±J(λ)} in W±(λ), but we want to show that s always defines an

isometry W−(λ) ∼= W+(λ), once the spaces W±(λ) = sp{u±n : n = 1, . . . , J(λ)}
are fixed (formula (4.31) below). To this end it is convenient to use vector/matrix
notation and denote the rows of solutions and waves by

ζ = (ζ1, . . . , ζJ(λ)) , u± = (u±1 , . . . , u
±
J(λ)).(4.28)

Then, decompositions (4.25) can be written briefly as

ζ = u− + u+s+ ζ̃ .(4.29)

Let t± be unitary J(λ)× J(λ)-matrices. We set

u± = (u±1 , . . . ,u
±
J(λ)) = u±t±(4.30)

and obtain

ζ = ζt− = u− + u+(t+)∗st− + ζ̃.

Thus, the new scattering matrix s in the new basis (4.30) equals

s = (t+)∗st−,(4.31)

which is in accordance with the transformations u+ 7→ u+t+ in W+(λ) and u− 7→
u−t− in W−(λ).

Finally we remark that, although the choice of the combined basis {u+, u−} in
the entire space W (λ) of waves is not unique, the next lemma importantly shows
that the scattering matrix is symmetric,

s = s>,(4.32)

provided the relation

u− = u+(4.33)

holds; here > stands for the transposition, (s>)kj = sjk. (Note that s is in general
not Hermitian.)

Lemma 4.11. If the rows of waves u±, (4.28), satisfy (4.11) and (4.33), then the
unitary scattering matrix becomes symmetric, see (4.32).

Proof. By (4.29) and (4.33) we write

ζ(s)−1 =
(
u− + u+s

)
(s)−1 + ζ̃(s)−1 = u+(s)−1 + u− + ζ̃(s)−1.

Thus, there are no outgoing waves in the decomposition

ζ − ζ(s)−1 = u+
(
s− (s)−1

)
+ ζ̃ − ζ̃(s)−1,

the difference ζ− ζ(s)−1 decays exponentially and hence falls into kerAβ(λ). There-
fore, s = (s)−1 = (s)∗ = s>. �
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4.5. Umov-Poynting vector. In this section we will discover a relation between
the q-form (4.7) and the Umov-Poynting vector. The latter was introduced in [26]
for problems in acoustics and elasticity and in [24] for electro-magnetism.

Let G be a bounded subdomain of Ω with the surfaces

ΣG = Σ ∩ ∂G , ΓG = Γ ∩ ∂G and Υ = ∂G \
(
ΣG ∪ ΓG

)
.

The total energy, i.e. the sum of kinetic and potential energy, contained in G equals
(see [11])

E(φ; t) =

∫
G

|∇xReφ(x, t)|2dx+ g

∫
ΓG

Reφ(x, t) ∂2
t Reφ(x, t)ds

where

φ(x, t) = e−iωtϕ(x).

The Umov-Poynting vector J(φ;x, t) describes the flux density of energy out of the
domain G: ∫

Υ

ν(x)>J(φ;x, t)ds(x) = −∂tE(φ; t).

The right-hand side becomes (since ∂t(Re(e−iωtϕ)) = Re(−iωe−iωtϕ) = ωIm(e−iωtϕ)
etc.)

∂

∂t

(
−
∫
G

|∇xReφ(x, t)|2dx+ gω2

∫
ΓG

|Reφ(x, t)|2ds(x)
)

= 2ω
(
−
∫
G

(
∇xReφ(x, t)

)>∇xImφ(x, t) dx+ λ

∫
ΓG

Reφ(x, t)Imφ(x, t) ds(x)
)

= −2ω

∫
Υ

Imφ(x, t)∂νReφ(x, t) ds(x),

where an integration by parts was performed and the homogeneous equations (4.1)–
(4.3) were used. Consequently, we find the Umov-Poynting vector to be

J(φ;x, t) = −2ωImφ(x, t)∇xReφ(x, t).(4.34)

According to the Mandelstam radiation principle [16] the direction of a propagat-
ing wave φ is determined by the sign of the integral∫

Υ

ν(x)>Ĵ(φ;x) ds(x),(4.35)

where Ĵ(φ;x) is the mean value of J(φ;x, t) over the time interval (0, 2π/ω) 3 t.
Thus, Theorems 4.3, 4.8 and the following result show that our radiation condition
is of Mandelstam type.
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Theorem 4.12. The Umov-Poynting vector J(φ;x, t) and the q-form are related
by

q(ϕ, ϕ) = i
2

ω

∫
Υ

ν(x)>Ĵ(φ;x) ds(x),

Proof. By (4.34), we obtain that (4.35) coincides with

ω

2π

2π/ω∫
0

∫
Υ

ν(x)>J(φ;x, t) ds(x)dt

= −ω
2

π

2π/ω∫
0

∫
Υ

Imφ(x, t)∂νReφ(x, t) ds(x)dt

= − ω2

4πi

2π/ω∫
0

∫
Υ

(
e−iωtϕ− eiωtϕ

)(
e−iωt∂νϕ+ eiωt∂νϕ

)
dsdt

= − ω
2i

∫
Υ

(
ϕ∂νϕ− ϕ∂νϕ

)
ds = −iω

2

∫
Υ

(
ϕ∂νϕ− ϕ∂νϕ

)
ds.(4.36)

Taking G = {x = (x1, x
′) ∈ Ω : |x1| < R}, and accordingly Υ = {x ∈ Ω : |x1| =

R}, we find that (4.36) coincides with − iω
2
q(ϕ, ϕ). �

We see that the classification of waves introduced in Theorem 4.3 by using the
skew-Hermitian form q coincides with the classification by the Mandelstam energy
principle, based on the Umov-Poynting vector for water-waves.

5. Appendix: Structure of Jordan chains.

In this section we calculate explicitly the incoming and outgoing waves u±n , (4.10),
as suitable linear combinations of the truncated Floquet waves, cf. (3.16), (4.9). We
only consider the special case where the length of the Jordan chains is either 1 or
2. This restriction is for technical simplicity only; longer chains could be treated by
similar, although more cumbersome, calculations. The notation is as around (3.15)–
(3.16) of Section 3.3, although we do not display the dependence of any expressions
on the spectral parameter Λ or λ (which is assumed to be fixed and of the case I in
Section 3.3),

We take advantage of Lemma 4.2 and formula (4.8) with R > R0 large enough so
that in the calculation of the q-form for functions (4.9), the cut-off function can be
put equal to 1. In view of (3.16) we thus get the relation

q(U `,p
j , U `′,p′

j′ ) = 0

for j 6= j′ and ` 6= `′, but q(U `,p
j , U `,p′

j ) can still be nonzero for p 6= p′ due to the
monomials of x1 in (3.16). This observation leads to look for the functions u±n as
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linear combinations of functions corresponding to the same Jordan chain, i.e, for
any n and sign ±, there should exist fixed j and ` and coefficients b`,pj ∈ C such that

u±n = χ

ℵ`j−1∑
p=0

b`,pj U
`,p
j ,(5.1)

where χ = χ+ or χ− (sign not related to the sign-index of u±n ). We next calculate

the numbers b`,pj .

5.1. Case with eigenvectors only. Assume that j ∈ {1, . . . , N} and ηj ∈ [0, 2π)
is a simple eigenvalue (hence dj = 1 = `) and also ℵ`j = 1. Thus, ηj has the

eigenvector φ`,0j , ` ∈ {1, . . . , dj}, but corresponding associated vectors φ`,1j do not
exist. The equation (3.15) with p = 1 can be written as the formally self-adjoint
boundary value problem

−
(
(∂1 + iηj)

2 + ∆x′
)
φ`,1j (x) = 2i(∂1 + iηj)φ

`,0
j (x), x ∈ $,(5.2)

∂zφ
`,1
j (x) = Λφ`,1j (x), x ∈ γ,(5.3)

(∂ν + iηjν1)φ`,1j (x) = −iν1φ
`,0
j (x), x ∈ ς,(5.4)

φ`,1j (0, x′) = φ`,1j (1, x′) and ∂1φ
`,1
j (0, x′) = ∂1φ

`,1
j (1, x′) for all x′,(5.5)

where φ`,1j is understood as unknown and φ`,0j as given. By assumption, this problem
does not have a solution. Moreover, the equation (3.15), with p = 0 and solution

φ`,0j (x), is the homogeneous adjoint problem corresponding to (3.15) with p = 1, or
(5.2)–(5.5). Hence, in view of the Fredholm alternative, the mentioned non-existence
of solution means that

0 6= a0 = a0(j, `) := 2i
(
(∂1 + iηj)φ

`,0
j , φ

`,0
j

)
$
− i(ν1φ

`,0
j , φ

`,0
j

)
ς
.(5.6)

Applying the divergence formula to the vector field (|φ`,0j |2, 0, 0) in $ yields the
identity

(∂1φ
`,0
j , φ

`,0
j )$ =

∫
$

∂1

(
|φ`,0j |2

)
dx− (φ`,0j , ∂1φ

`,0
j )$ = (ν1φ

`,0
j , φ

`,0
j

)
ς
− (φ`,0j , ∂1φ

`,0
j )$,

where also periodicity conditions of the type (5.5) were used for φ`,0j . Hence, (5.6)
turns into

−2ηj‖φ`,0j ;L2($)‖2 + i
(
(∂1φ

`,0
j , φ

`,0
j )$ − (φ`,0j , ∂1φ

`,0
j )$

)
= −2ηj‖φ`,0j ;L2($)‖2 − 2Im

(
(∂1φ

`,0
j , φ

`,0
j )$

)
,(5.7)

thus, a0 is a nonzero real number. On the other hand, for the Floquet wave U `,0
j =

eiηjx1φ`,0j (x) we calculate using (4.8) and replacing there $R by $ due to periodicity,

q(U `,0
j , U `,0

j ) =

∫
$

(
φ`,0j (x)(∂1 + iηj)φ

`,0
j − φ

`,0
j (∂1 + iηj)φ

`,0
j

)
dx

= i2ηj‖φ`,0j ;L2($)‖2 + (∂1φ
`,0
j , φ

`,0
j )$ − (φ`,0j , ∂1φ

`,0
j )$ = −ia0.(5.8)
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Hence, the incoming and outgoing waves can be characterized as follows.

Proposition 5.1. Let the number a0 = a0(j, `) ∈ R be determined by (5.6) and the
function χ be as in (5.1). The waves

1√
|a0(j, `)|

χ(x1)U `,0
j (x) =: u−n

with a0(j, `) > 0 are outgoing, and the waves

1√
|a0(j, `)|

χ(x1)U `,0
j (x) =: u+

n

with a0(j, `) < 0 are incoming.

We remark that if the simple eigenvalue ηj equals 0, then the corresponding
eigenvector is real and the length of the associated Jordan chain is necessarily at
least two: if it were one, the identity (5.8) would imply a0 = −ηj‖φ`,0j ;L2($)‖2 = 0, a
contradiction with (5.6). Thus, the forthcoming consideration of Section 5.2 becomes
quite important.

Moreover, if the simple eigenvalue ηj is π, then ψ(x) = eiπx1φ(x) is a real function
(it is harmonic and satisfies the anti-periodicity conditions ψ(0, x′) = −ψ(1, x′),
∂x1ψ(0, x′) = −∂x1ψ(1, x′)). We get

−ia0 = i2π‖e−iπx1ψ;L2($)‖2 +
(
∂1e
−iπx2ψ, e−iπx1ψ

)
$

−
(
e−iπx2ψ, ∂1e

−iπx1ψ
)
$

= (∂1ψ, ψ)$ − (ψ, ∂1ψ)$ = 0,(5.9)

which leads to the same conclusion as the above case ηj = 0.

5.2. Case with Jordan chains of length two. Next we consider the case of
j ∈ {1, . . . , N} such that dj = 1 = ` and ℵ`j = 2, i.e., we have the Jordan chain

{φ`,0j , φ
`,1
j }. Accordingly, the equation

A(ηj)φ
`,2
j = −dA

dη
(φ`,1j )− 1

2

d2A

d2η
(φ`,0j )

does not have a solution. The corresponding differential problem reads as

−
(
(∂1 + iηj)

2 + ∆x′
)
φ`,2j (x) = 2i(∂1 + iηj)φ

`,1
j (x)− φ`,0j (x), x ∈ $,

∂2φ
`,2
j (x) = Λφ`,2j , x ∈ γ,

(∂ν + iηjν1)φ`,2j (x) = −iν1φ
`,1
j (x), x ∈ ς,

supplemented with periodicity conditions similar to (5.5). By the nonexistence of a
solution and the Fredholm alternative we again obtain that the number

a1 = a1(j, `) := −‖φ`,0j ;L2($)‖2

+ 2i
(
(∂1 + iηj)φ

`,1
j , φ

`,0
j

)
$
− i(ν1φ

`,1
j , φ

`,0
j )ς(5.10)

is nonzero. On the other hand (5.2)–(5.5) has a solution φ`,1j , which means, cf. (5.7),
that

2
(
(∂1 + iηj)φ

`,0
j , φ

`,0
j

)
$
− (ν1φ

`,0
j , φ

`,0
j

)
ς

= 0.(5.11)
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(Below, we will need the fact that the associated vector φ`,1j is defined only up to a
summand,

φ`,1j = φ̃`,1j + cφ`,0j ,(5.12)

where φ̃`,1j is a particular solution of (5.2)–(5.5) and c ∈ R is an arbitrary constant.

The value of a1 does not depend on c because of (5.11).) Again, the number a1 is
real, since (5.10) and (5.2) imply

a1 = −‖φ`,0j ;L2($)‖2 + 2i
(
(∂1 + iηj)φ

`,1
j , φ

`,0
j

)
$
− i(ν1φ

`,1
j , φ

`,0
j

)
ς

= −‖φ`,0j ;L2($)‖2 − 2i
(
φ`,1j , (∂1 + iηj)φ

`,0
j

)
$

+ i(φ`,1j , ν1φ
`,0
j

)
ς

= −‖φ`,0j ;L2($)‖2 +
(
φ`,1j ,−((∂1 + iηj)

2 + ∆x′)φ
`,1
j

)
$

+ (φ`,1j , (∂ν + iηjν1)φ`,1j
)
ς

= −‖φ`,0j ;L2($)‖2 −
∫
$

∂1

(
φ`,1j (∂1 + iηj)φ

`,1
j

)
dx+

∫
$

(∂1φ
`,1
j )(∂1 + iηj)φ

`,1
j dx

+

∫
$

φ`,1j iηj(∂1 + iηj)φ
`,1
j dx−

(
φ`,1j ,∆x′φ

`,1
j

)
$

+
(
φ`,1j , (∂ν + iηjν1)φ`,1j

)
ς

= −‖φ`,0j ;L2($)‖2 + ‖(∂1 + iη)φ`,1j ;L2($)‖2 + ‖∇x′φ
`,1
j ;L2($)‖2.

Here, the last line was reached by (5.5) and an application of the divergence formula

to the vector field (φ`,1j (∂1 + iηj)φ
`,1
j , 0, 0),

−
∫
$

∂1

(
φ`,1j (∂1 + iηj)φ

`,1
j

)
dx+ (φ`,1j , (ν1∂1 + iηjν1)φ`,1j

)
ς

= 0,

and the Green formula(
φ`,1j ,∆x′φ

`,1
j

)
$

+ ‖∇x′φ
`,1
j ;L2($)‖2 =

(
φ`,1j , (ν2∂2 + ν3∂3)φ`,1j

)
ς
.

In addition to U `,0
j = eiηjx1φ`,0j (cf. above) we now consider the Floquet wave

U `,1
j = eiηjx1

(
ix1φ

`,0
j + φ`,1j

)
. We remark that this solves the homogeneous problem

(3.1), since

∆x

(
eiηjx1(ix1φ

`,0
j + φ`,1j )

)
= eiηjx1

(
(∂1 + iηj)

2 + ∆x′
)
(ix1φ

`,0
j + φ`,1j )

= eiηjx1
(
ix1

(
(∂1 + iηj)

2 + ∆x′
)
φ`,0j
)

+
(
(∂1 + iηj)

2 + ∆x′
)
φ`,1j + 2i(∂1 + iηj)φ

`,0
j

)
,

which is null due to (5.2) and the fact that φ`,0j satisfies the homogeneous equation
(3.6). Moreover,

∂νe
iηjx1(ix1φ

`,0
j + φ`,1j ) = eiηjx1(∂ν + iηjν1)(ix1φ

`,0
j + φ`,1j )

= eiηjx1
(
ix1(∂ν + iηjν1)φ`,0j

+ iν1φ
`,0
j + (∂ν + iηjν1)φ`,1j ,

which also vanishes in view of (3.7) and (5.4).
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Proposition 5.2. Let a1 = a1(j, `) be defined by (5.10) and χ as in (5.1). If the
indices j and ` are such that a1(j, `) > 0, then the wave packet

χ(x1)√
2|a1(j, `)|

(U `,0
j − U

`,1
j ) =: u+

n (respectively,
χ(x1)√

2|a|1(j, `)
(U `,0

j + U `,1
j ) =: u−n )

is incoming (resp. outgoing). If a1(j, `) < 0 holds, then the wave packet

χ(x1)√
2|a|1(j, `)

(U `,0
j + U `,1

j ) =: u+
n (respectively,

χ(x1)√
2|a|1(j, `)

(U `,0
j − U

`,1
j ) =: u−n )

is incoming (resp. outgoing).

Proof. We calculate the q-form of some Floquet waves. As remarked above, in the
present case the problem (5.2)–(5.5) has a solution, which means that the expression
a0(j, `) vanishes, see (5.7). From (5.8) we readily obtain

q(U `,0
j , U `,0

j ) = 0.

Concerning U `,1
j , we write

q(U `,1
j , U `,1

j ) =

∫
ω(R)

(
(ix1φ

`,0
j + φ1

j)(∂1 + iηj)(ix1φ
`,0
j + φ`,1j )

− (ix1φ
`,0
j + φ`,1j )(∂1 + iηj)(ix1φ

`,0
j + φ`,1j )

)
dx′

= R2

∫
ω(R)

(
iφ`,0j (∂1 + iηj)(iφ

`,0
j − iφ

`,0
j (∂1 + iηj)iφ

`,0
j

)
dx′

+ R

∫
ω(R)

(
iφ`,0j

(
(∂1 + iηj)φ

`,1
j + iφ`,0j

)
+ φ`,1j (∂1 + iηj)iφ

`,0
j

− iφ`,0j
(
(∂1 + iηj)φ

`,1
j + iφ`,0j

)
− φ`,1j (∂1 + iηj)iφ

`,0
j

)
dx′

+

∫
ω(R)

(
φ`,1j
(
(∂1 + iηj)φ

`,1
j + iφ`,0j

)
− φ`,1j

(
(∂1 + iηj)φ

`,1
j + iφ`,0j

))
dx′.

The terms with factors R2 and R must vanish since q(U `,1
j , U `,1

j ) is independent of
R. An integration over (N,N + 1) 3 R yields

q(U `,1
j , U `,1

j ) =

∫
$

(
φ`,1j
(
(∂1 + iηj)φ

`,1
j + iφ`,0j

)
− φ`,1j

(
(∂1 + iηj)φ

`,1
j + iφ`,0j

))
dx(5.13)

Let us write φ`,1j = φ̃`,1j + cφ`,0j as in (5.12). We now want to fix c so as to make
(5.13) null. Indeed,

q(U `,1
j , U `,1

j ) =
(
(∂1 + iη)φ`,1j , φ

`,1
j

)
$
−
(
φ`,1j , (∂1 + iη)φ`,1j

)
$
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+ i(φ`,0j , φ
`,1
j

)
$

+ i(φ`,1j , φ
`,0
j

)
$

= |c|2
((

(∂1 + iη)φ`,0j , φ
`,0
j

)
$
−
(
φ`,0j , (∂1 + iη)φ`,0j

)
$

)
+ c
((

(∂1 + iη)φ`,0j , φ̃
`,1
j

)
$
−
(
φ`,0j , (∂1 + iη)φ̃`,1j

)
$

+ i(φ`,0j , φ
`,0
j )$

)
+ c
((

(∂1 + iη)φ̃`,1j , φ
`,0
j

)
$
−
(
φ̃`,1j , (∂1 + iη)φ`,0j

)
$

+ i(φ`,0j , φ
`,0
j )$

)
+
(
(∂1 + iη)φ̃`,1j , φ̃

`,1
j

)
$
−
(
φ̃`,1j , (∂1 + iη)φ̃`,1j

)
$
.(5.14)

Here, in the coefficient of |c|2, we again apply the divergence formula (as after (5.6))
to the second term. From (5.11) we deduce that this coefficient is null. By a similar
calculation and (5.10), the coefficient of c equals −ia1, which in particular is purely
imaginary, since a1 is real. This implies that the coefficient of c also equals −ia1,
since (

(∂1 + iη)φ̃`,1j , φ
`,0
j

)
$
−
(
φ̃`,1j , (∂1 + iη)φ`,0j

)
$

= −
(
(∂1 + iη)φ̃`,1j , φ

`,0
j

)
$

+
(
φ̃`,1j , (∂1 + iη)φ`,0j

)
$

= −
(
φ`,0j , (∂1 + iη)φ̃`,1j

)
$

+ (∂1 + iη)φ`,0j , φ̃
`,1
j

)
$

where the fact that the first line is purely imaginary was used. Also the last line
of (5.14) is purely imaginary, denote it by iT with T ∈ R. Thus, q(U `,1

j , U `,1
j ) =

c(−ia1) + c(−ia1) + iT , and choosing c = T/(2a1) yields

q(U `,1
j , U `,1

j ) = 0.

Finally,

q(U `,0
j , U `,1

j ) =

∫
$

(
(ix1φ

`,0
j + φ`,1j )(∂1 + iηj)φ

`,0
j − φ

`,0
j (∂1 + iηj)(ix1φ

`,0
j + φ`,1j )

)
dx

=

∫
$

(
φ`,1j (∂1 + iηj)φ

`,0
j − φ

`,0
j (∂1 + iηj)φ

`,1
j ) + φ`,0j iφ

`,0
j

)
dx

+

∫
$

(−ix1)
(
φ`,0j (∂1 + iηj)φ

`,0
j − φ

`,0
j (∂1 + iηj)φ

`,0
j )
)
dx.

The integral on the last line vanishes, since on all cross-sections

0 = q(U `,0
j , U `,0

j ) =

∫
ω(R)

(
U `,0
j ∂1U

`,0
j − U

`,0
j ∂1U

`,0
j

)
dx′.

We get

q(U `,0
j , U `,1

j ) =
(
(∂1 + iηj)φ

`,0
j , φ

`,1
j

)
$

−
(
φ`,0j , (∂1 + iηj)φ

`,1
j

)
$

+ i‖φ`,0j , L2($)‖2 = −ia,

and also q(U `,1
j , U `,0

j ) = −q(U `,0
j , U `,1

j ) = −ia. �
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