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Two-sided estimates for eigenfrequencies

in the John problem on freely floating body:.

S.A. Nazarov!, J. Taskinen

The two-dimensional problem on oblique incident waves and a freely floating cylinder is reduced
to the study of the spectrum of a suitable self-adjoint operator in Hilbert space. Using tools
from spectral measure theory we estimate the difference between eigenfrequencies of the original
problem and a problem on an inert body, which does not react to the buoyancy forces. We give
the localization of eigenfrequencies of the freely floating body, and in addition derive a sufficient

condition for the existence of the point spectrum in the corresponding boundary value problem.

Keywords: surface waves, trapped modes, freely floating body, comparison prin-
ciple.

1. Goals and methods of investigation. F. John [1] formulated in 1949 the
mathematical problem on the interaction of surface waves with a freely floating body
in a layer of ideal liquid. In addition to the velocity potential ¢ this problem involves
an unknown column a with components a1, ..., ag describing (small) rigid motions
of the body, namely three translations and three rotations. The model consists
of a boundary value problem for the function ¢ and a system of linear algebraic
equations for the column a; it includes the spectral parameter w? (the square of the
oscillation frequency), and it has “cross-terms” with the factor w. In this way the
spectral problem gives rise to a quadratic pencil

w — Ql(w) = Q[o + lel + CUQQ[Q, (11)

which makes its investigation rather difficult, both theoretically and numerically.
Maybe, this was the very reason why the general problem was forgotten for many
years, while publications mainly concerned fixed (non-floating, a = 0) bodies. Many
interesting and important results have been obtained for these (see the reviews [2, 3],
the monographs [4, 5] and other publications).

During the last decade the John problem has arisen renewed interest. How-
ever, still in the papers [6, 7, 8, 9, 10] and in many others, formal calculations are
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Figure 1.1: Surface-piercing freely floating body.

performed and/or a priori assumptions on the motion of the body are accepted:
mainly the heaving “up’nd-down” motion is allowed. On the other hand, in the
paper [11] the author observed that some of the examples [12], [4, §4.2.2.4] of sur-
face waves trapped by two identical surface-piercing bodies (cylinders, due to the
two-dimensional formulation), also fit to the freely floating body (fig. 1), because
the hydrodynamical forces over the wetted surfaces have null principal vector and
torque.

A new approach to the problem on freely floating bodies was worked out in
the paper [13] (see also Section 3 below). In particular the authors developed a
sufficient condition for the existence of trapped modes, or localized solutions, and
gave examples of concrete structures supporting at least four linear independent
trapped modes in a symmetric channel. In the paper [15] the approaches of [14] and
[13] were combined and examples with any given number of trapped modes were
constructed; these involve surface-piercing and submerged freely floating bodies in
symmetric channels. The method of [13] is based on the notion of trace operator
[14], and it consists of the reduction of the pencil (1.1) to the equation

AV =aY in H, (1.2)

for a self-adjoint bounded operator A in a specially constructed Hilbert space H. It
is applied in Section 3 of our paper as well, namely, we compare the spectra of the
problem on a freely floating body and the problems on fixed obstacles, as described
in Sections 2 and 4.

The structure of the spectra of operator pencils and self-adjoint operators may
differ crucially, and this causes difficulties for the study of the spectrum in case of
a freely floating body. Even if the operators 2, are self-adjoint, the pencil (1.1)
may have, first, complex eigenvalues with non-zero imaginary parts, and, second,
associated vectors, which together with eigenvectors form non-trivial Jordan chains.
One can find such a complication of spectral structures even if the matrices 2{, in
(1.1) are real and symmetric.

The eigenvalue w = 0 in the problem under consideration is certainly not alge-
braically simple, since it has Jordan chains of length two (see Remark 2). However,
the spectrum of the two-dimensional John problem is real and algebraically simple
outside the point w = 0. This is a concomitant result of the reduction procedure
[13], applied in Section 3. In a general situation the anomalies of the spectrum,
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which contradict the physical nature of the problem, have not been refuted yet. We
emphasize that the associated vectors corresponding to w = 0 do not lead to any
irretrievable consequences (see Remark 2 again).

Another nuisance caused by the appearance of the quadratic pencil is the absence
of a tool for comparing the spectra of pencils (in contrast, cf. [16, §10.2], for a
partial ordering of semi-bounded self-adjoint operators in Hibert space). This fact
prompted the authors to write the present paper, extending the paper [17] where an
icomplete comparison principle was obtained for the spectra of freely floating and
fixed bodies.

In the following, we deal with a freely floating cylinder in an infinite layer of
liquid. Since a comparison principle can exist only for discrete spectrum, we shall
investigate oblique waves, for which the two-dimensional problem gets an interval
free of continuous spectrum and therefore open for the discrete spectrum.

In the case of a two-dimensional problem on submerged body, the traditional
comparison principle [18] establishes that increasing the body leads to diminishing
eigenvalues and, hence, they are kept inside the discrete spectrum. This principle
was adapted in [19] to surface-piercing bodies. The papers [14] and [20, 21] contain a
new method based on trace operators and elementary theory of self-adjoint operators
in Hilbert space. This gives simple proofs to all facts mentioned above and also
provides numerous sufficient conditions and comparison principles for miscellaneous
problems on water-waves, however, only in case of fixed bodies and obstacles. In
Section 4 we formulate Propositions 4 and 5 about the auxiliary problem (4.3)—(4.6)
derived by this method. However, to obtain information on the discrete spectrum
of the problem (2.3)—(2.7) we use a very different idea. Namely, the reduction [13]
of the pencil (1.1) to a self-adjoint operator A gives an opportunity to apply the
spectral measure theory (see, e.g., [16, Capters 5 and 6]). This is made in Section 5
where using a simple consideration (cf., relations (5.7)—(5.9)) and thus proving the
two-sided estimates for eigenvalues in the John problem. Additional calculations
and the final Theorem 6 are presented in Section 6 where Corrolary 7 is formulated
which gives a sufficient condition for trapping a surface wave.

Concerning freely floating bodies, the two-dimensional problem for oblique waves
hitting an infinite cylinder surely has the simplest formulation, and this case is thus
chosen to demonstrate our new approach for localizing the position of an eigenfre-
quency. However, a physical interpretation of the problem is restricted due to the
necessity to assume that the cylinder has zero bending resistance. Our method works
also for the John problem in other formulations but requires much more complicated
calculations.

It is surprising that the spectrum of the problem (4.3)—(4.5), (4.7) on the fixed
body does not become a “good approximation” for the spectrum of the problem
(2.3)-(2.7) on the moving body. In Section 4, an integro-differential boundary con-
dition (4.6) on the wetted surface appears in a natural way. This was introduced
heuristically in the paper [17], and it corresponds to a body possessing inertia but
unaffected by buoyancy forces. It is just the spectrum of the new problem (4.3)—(4.6)



on the obstacle figures in Theorem 6, the main result in the paper.

2. The mathematical formulation of the problem. Let I =R x (—d,0)
(y, 2) be a strip of width d > 0 and let © C R? be a domain with Lipschitz boundary
00 and compact closure © = O U 9O. We assume that the set ©_ defined by the
formula

O ={(y,2) €O : £z > 0}, (2.1)

is non-empty and © intersects the y-axis along the union 6 of a finite family of closed
segments (in fig.1 there are two). We consider the cylinder R x © with cross-section
© floating freely in the layer R? x (—d, 0) of incompressible and inviscid, i.e., ideal
liquid, water for example. Moreover, we neglect the surface tension and the bend
resistance of the cylinder.

The velocity potential, more precisely, the last multiplier in its representation

@(z,y,2,t) = Re (e o(y, 2)) (2.2)
satisfies the Helmholtz equation
—Ap(y,2) + Ky, 2) =0, (y,2) € Q:=T1\ O, (2:3)
and the boundary conditions: the linearized kinematic condition

—0.¢(y.0) = g7 'we(y,0), (y.2) €T, (2.4)

and the homogeneous Neumann condition, excluding the flow through the bottom
T,
Ay, —d) =0, (y,2) € T =R x {—d}. (2.5)

Here, A is the Laplace operator, w > 0 the frequency of oscillations, £ > 0 the
wave number in the z-direction, I' = {(y, 2): z2=0,y & 5} the free surface of the
liquid and g > 0 the acceleration due to gravity. The inequality £ > 0 forbids the
propagation of waves in the direction perpendicular to the cylinder axis.

Formula (2.2) means that we deal with time harmonic waves hitting the cylinder
at the angle v # 7/2. For small amplitude oscillations of the body, the boundary
condition on its wetted surface ¥ = {(y,2) € 00 : z < 0} takes the form

ey, z) = —iwv(y, 2) T D(y —y*, 2 — 2°)a, (y,2) € %, (2.6)

while the column a = (ay, as, a3)" of rigid motions of the body © satisfies the system
of three linear algebraic equations

gKa —iwSp = w*Ma. (2.7)

Let us explain the notation. First, v = (v1,15)" is the unit outward normal vector
and 0, = v'V is the directional derivative along v defined almost everywhere on



00, while T stands for transposition, V = (9,,0,)" is the gradient, and 9, = 9/dy,
0, = 0/0z. Second, D is a linear function matrix of size 2 x 3 determining rigid
motions,

D(y, z) = (é ! _yz) , (2.8)

and (y°®, 2*) is the mass centre,

(y*,2%) =m™ / (y,2)p(y, 2) dydz, m = / p(y, 2) dydz, (2.9)

e

p > 0 and m are the density and the total mass. The density of the liquid assumed to
be equal to one. Third, the column a is extracted from the following representation
of (small amplitude) oscillation motion of the cylinder R x ©:

D(y—y® 2z — 2%)a(z,t) =Re (e Dy —y* 2 — 2%)a(t)) . (2.10)

In agreement with formula (2.2), the appearance of the factor e =% on the right-
hand side of (2.10) means that points of the generator lines on the cylindrical surface
are shifted non-uniformly (the body coils like a snake). For the physical interpreta-
tion of the problem (2.3)—(2.7) it is necessary that elastic properties of the cylinder
do not impede bending deformations of the body. We emphasize that the problem
is posed in the unchanging domain R x {2 corresponding to the equilibrium position
of the body, since inessential changes of its shape can be ignored, thanks to the
assumed smallness of amplitude oscillations.

The system (2.7) is obtained by inserting the expression a(z,¢) = Re (e~ “!tzq(t))
from (2.10) into the system of ordinary differential equations

Modla= —Sop — gKa (2.11)

which comes from the conservation law for the linear and angular momenta. Let us
describe the matrices in (2.7). The inertia matrix

M = /D(y —y* 2 —2") Dy —y*. 2 — 2°)p(y, 2) dyd=z (2.12)

is a Gram matrix, symmetric and positive definite. The integral operator S with
values in the space of columns of height three is given by the formula

S — / Dy —y* 2 — =) vly, 2)ply, =) ds, (2.13)

where ds is the arc length element. According to the paper [1] (see, e.g., the book



Figure 2.2: Submerged freely floating body.

[22]) the (3 x 3)-matrix K in the systems (2.7) and (2.11) is of the form
K=K'+K° K= /d(y —y*) 'dly —y*) dy.

(2.14)
K® = diag{0,0,1°}, 1I° = /(z — 2%) dydz,

z
6
while d(y) is the lower row in the rigid motion matrix (2.8). The matrix K is related
to the buoyancy of the body and its structure

000
K=[0ee (2.15)
(0..)

with nulls in the first column and row shows that a horizontal motion a; of the body
does not influence the buoyancy forces. We emphasize that while going over to the
two-dimensional formulation we take into account the same effect for translations
along the z-axis. Rotations around the z- and y-axes are forbidden by the problem
formulation for waves hitting the cylinder obliquely. As a result, the column a =
(ai,...,ag)" of rigid motions in the three-dimensional problem has been reduced to
the column a = (a1, as,a3)’ in the two-dimensional problem.

A freely floating object must be in the state of a stable equilibrium. According
to the Archimedean law we have

m =wv, where v= /dydz (2.16)
6
(the total mass m of the body © equals the volume v of the displaced liquid; we
recall that the liquid density is one). The integration in the last integral in (2.14)
and in the integral (2.16) is performed along the submerged part ©_ of the body
(see definition (2.1)). The classical Euler conditions [23] of the stability of a floating
object (see also [1], [22] and others) require first of all that the buoyancy centre

(y°,2°) =v? /(y,z) dydz, (2.17)

6-
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stays on the same vertical line as the mass centre (y°, 2°*) and strictly above it in
case of the submerged body 6 = @. The latter means that the matrix K is positive
but its rank x equals one. If the body is surface-piercing and 6 # &, then the Euler
stability condition becomes much more complicated; the matrix K must still be
positive but of rank two (see, e.g., the paper [1] and the book [22]). We write these
restrictions as

K >0, k =rank K = 1 (assuming z* < 2°) in case § = @,
(2.18)
K >0, k=rank K = 2 for 0§ # @.

In what follows we just need the information (2.18) on the matrix K. A more
detailed description of the second line of (2.18) can be found in [1, 22] and others.

3. Reduction of the problem on freely floating body to self-adjoint
operator. We multiply the equation (2.3) with a smooth, compactly supported
test function v and integrate by parts in the domain ) taking into account the
boundary conditions (2.4)—(2.6). We add to the result the system (2.7), multiplied
scalarly by a test column b € C?, using the evident relation

/¢(y, vy, 2) Dy —y°, 2 — 2%)ads = (a, SvY)c, (3.1)

where (, )¢ is the scalar product in the complex space C* and S is the operator
(2.13), we derive the integral identity, which is the variational formulation [13] of
the problem (2.3)—(2.7):

(V, Vo)a + k% (¢, ¥)a + g(Ka, b)c +iw ((a, S¢)c — (Sp,b)e) = -
3.2
=w? ((¢,¥)r + (Ma,b)c), (¥,b) € H(Q) x C°,

Here, (, )q and (, ) are the natural scalar products in L?(Q) and L?(T'), respec-
tively.
We endow the Sobolev space H'(§2) with the scalar product

and introduce the trace operator 1" by the formula
(Te, ) = (@, ¥)r, @0 € H'(Q); (3.4)

obviously 7' is positive, continuous and symmetric, therefore, self-adjoint. As known
(see, e.g., [21]), the continuous spectrum of the trace operator covers the half-open
interval (0, 3;] where

1— 6—2kd

= (3:5)

Br=X" M=k
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The point 8 = 0 is an eigenvalue of infinite multiplicity, and the eigenspace consists
of functions ¢ € H*(§2) which vanish on the free liquid surface I'. Thus, the segment
[0, B4] is the essential spectrum of the operator 7'

By virtue of (3.3) and (3.4), the integral identity (3.2) converts into the abstract
equation (system)

o © 0 S* e\  ofg'T 0 %
(09K)<a>+w(—i5 O)(a)_w 0 M a (3.6)
in the Hilbert space
H=H"(Q) x C>. (3.7)
Here, T is the identity operator in H'(2), S* stands for the adjoint of the operator

S: HY(Q) — C (3.8)

defined by the equation (2.13). Moreover, both S and S* are compact because ¥ is
a union of finite arcs and therefore the embedding H*(2) C Ly(X) is compact.

We omit in the system (3.6) the terms including the operators S and S* so that
the system turns into the combination of two equations

¢ = AT'p,
(3.9)
Ka=XMa
with the new spectral parameter
A =g 1w (3.10)

Since the first equation (3.9) takes the form T'v = Sy after the change A — 5 = 1/,
the continuous A-spectrum coincides with [+, +00), where the cut-off Ay > 0 is given
in (3.5). The second equation (3.9) is an algebraic system and, hence, its A-spectrum
is fully discrete. Thus, according to the relationship (3.10) of the spectral parameters
A and w the problem (3.9) has the following continuous spectrum:

(—OO, _WT] U [wTa +OO> (3'11)
where
e L— e 3.12

The system (3.6) differs from the combination (3.9) only by a compact “pertur-
bation” and therefore the continuous w-spectrum (3.11) remains the same for the
operator form (3.6) of the problem (3.2).



Remark 1. The first equation (3.9) corresponds to the problem of interaction of
surface waves with fixed obstacle ©, and it is composed from the equation (2.3) and
the boundary conditions (2.4), (2.5) together with

Ohely,z) =0, (y,2) € 3. (3.13)

The cut-off A, (3.5), of the continuous spectrum in (2.3)-(2.5), (3.13) was computed
for the first time in the paper [24] (see also [4] and others). Furthermore, singular
Weyl sequences detecting the essential spectrum (see, e.g., [16, §9.1]) are constructed
in the paper [21] using the eigenfunction

1 (z) = € 4 eTHETD (3.14)
of the following model problem
—020(2) + K°¢(2) = 0, 2 € (=d,0), 9.6(0) = Ap(0), —8.6(=d) =0  (3.15)
on the interval(—d, 0), i.e. the cross-section of the strip II. X

The system (3.6) may be interpreted as the quadratic pencil (1.1). The point
w = 0 belongs to its spectrum and, due to the structure (2.14) of the matrix K, its
eigenspace has dimension 3 — k = 3 — rank K, and it is spanned by the columns

e ¢ in case = @ and rank K = 1,
(3.16)
e in case 0 # @ and rank K = 2

(Cf. (218), here, B(j) = (517]’, 52,]', 53,]'>T S R3)

Remark 2. As mentioned in Section 1, the eigenvectors indicated in formula
(3.16) have associated vectors, so that the eigenvalue w = 0 of the pencil (3.6) is not
algebraically simple. For the submerged body, the eigenvectors X70 = (0,el)) € H,
j = 1,2, thus get the associated vectors X7' = (p0),0) € H which satisfy the

equation

. d2l .
Jl 7,0
QI(O)X =7 (O)X

and therefore involve solutions of the Neumann problem
—Dp(y, 2) + K p(y,2) =0, (y,2) €Q, —0up(y,2) =0, (y,2) €TUT,

Oup(y, 2) = iw(y, 2) Dy —y*, 2 — 2*)e, (y,z) € 5.

In the case of the surface-piercing body the only retained Jordan chain is composed
of the eigenvector (0,e™) and the associated vector (oM, 0). One can verify that in
both cases there is no Jordan chain with length longer than two. This information
is not used in the sequel. X



Let T%/2 be the positive square root of the positive self-adjoint operator T (see,
e.g., [16, §10.3]) and N is the inverse matrix for the matrix M, real symmetric and
positive definite. We introduce the function and the column

n=wg T p, f=wMa

and rewrite the quadratic pencil (3.6) as the linear pencil

I0 0 0 © 0 g V2T —i8* 0 ©
0L 0 0 n| g~ V*T? 0 0 0 n
00gk 0 | |a| =Y is 0 0 1]]|a (3.17)
00 0 N f 0 0 I 0 f

Matric operators on the left- and right-hand sides of (3.17) appear to be self-adjoint
in the Hilbert space
H? = HY(Q)? x (C?)? (3.18)

(cf. formula (3.7)). The information given above on the eigenvalue w = 0 of the
problem (3.6) holds true for the problem (3.17) as well; one needs to make simple
changes in the definition of the eigen- and associated vectors. In addition, the
appearance of the eigenvalue w = 0 itself is caused by the degeneracy of the matrix
K. We restrict the problem (3.17) to the subspace H! = H'(2)? x (C*)? of the
space (3.18). To this end, we set

[ a Ao = (al,ag)T, ay = ag in case of Kk =rank K =1,
“= (au) ’ {ao =ay, ay = (as,a3)" in case of K=2 (3.19)
(cf. formulas (3.16) and (2.18)) and split the matrix N as follows:
Noo N,
N=|{ °h) : 3.20
(Nuo Niy (3:20)

Here, No, and Ny are blocks of size (3 — k) X (3 — k) and k X &, respectively, while
one of them is a scalar.

If w##0and (p,n,a, f) is the corresponding eigenvector of the system (3.17),
then its third line provides the equality

iSop+ fo =0 (3.21)

where Sy, and further also Syp are the fragments of the column (2.13), defined as
in (3.19). By the splitting (3.20), the fourth line in the system reads componentwise

as follows:
Noofo + Nohfh = WAao,
(3.22)
Neofo + Ny fy = way.
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Now using the first equality (3.22) yields
—iwSTa, = —iwS; (Noo fo + Nopfy) = —iwSI NooSop — iwS; Noy fi.
Hence, the first line of (3.17) converts into
@+ S5 NooSop + iwSs Noyfy = w (g_l/le/zn — ngfh) .
Taking (3.21) and (2.14) into account, we shorten the third line as follows:
9Ky = iwSip + wfy.

Finally the fourth line, thanks to relations (3.21) and (3.22), can be replaced by the
single equation
—iNhOSOQO + Nhhfh = Wway.

Summing up above calculations, we have turned the system (3.17) into

I+ S NywSs 0 0 iSINy\ [ ¢

0 1.0 0 n |
0 0 gKhh 0 Qy N
—iNgSs 0 0 Ny e

(3.23)

0 g T2 —iSr 0 ©

w g—1/2T1/2 0 0 0 n

iSu 0 0 I Qy

0 0 I 0 /s

The short form of the problem (3.23)

BX = wDX (3.24)

involves the vector

X = (907777ah7fh)—|— € Hh

and two continuous operators B and D in the Hilbert space
H = H'()” x (C)?

(cf. definitions (3.18) and (3.19)). It is straightforward to verify the self-adjointness
of both the operators. Furthermore, B is positive definite because

(BX, X)qe = (@, @) + (S NooSop, @) 4 (ST Noy [, ) + (n,m)+

+9(Kopay, ag)e — i(NiwSotp, fi)e + (N fior fi)e =
» » (3.25)
= (o) + (nm) + g(Kyay, ag)c + (N ( ZSOS") , ( 250%0) ) >
fr [ o

> C ([les HH QI + llns HH QI + llag; CII* + 15 CII*) . Cs > 0.
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We have used here the positive definiteness of the matrices Ky and N = M ~!. Thus,
introducing the notation

A=B12pB Y2 y=pBx, a= l, (3.26)

w

transforms the equation (3.24) into the equation (1.2) with a bounded self-adjoint
operator A.
The above reasoning is exactly the content of the reduction procedure [13].

4. The problem on inert body. Following the paper [17], we set formally
K = 0 in the algebraic system (2.7) and insert the obtained formula

a=—iw M 1Sp (4.1)
into the boundary condition (2.6), reducing it to the form
Ovp(y, z) = —wr(y,z) Dy —y*, 2 — 2*)M ™Sy, (y,2) € X. (4.2)

The main Theorem 6 is formulated just for the boundary condition (4.2), which
corresponds to the inert body © unaffected by the buoyancy forces (see Remark
3). However, we also consider the following auxiliary problem with an arbitrary
symmetric and positive matrix P:

—AD(y,2) + K*®(y,2) =0, (y,2) € Q, (4.3)
—0,9(y,0) = AP(y,0), (y,z) €T, (4.4)
0,®(y,—d) =0, (y,2) €T, (4.5)

0,®(y,2) = —v(y,2) Dy —y*, 2z — 2*) PSP, (y,z) € X, (4.6)

The boundary condition (4.6) emerged as a result of the change M~ — P on the
right-hand side of (4.2). The equation (4.3) and the conditions (4.4), (4.5) came
from the formulas (2.3) and (2.4), (2.5), and finally, S was defined by (2.13) and
(3.8).

Remark 3. 1) If P is the null matrix, the condition (4.6) turns into
0,P(y,2) =0, (y,2) € %, (4.7)

which corresponds to a fixed obstacle (cf. Remark 1) and means that the normal
component v, = n'v of the velocity vector v = V¢ vanishes on the wetted part
Y of the surface of the body © (compare with the no-flow condition (4.5) through
the bottom T). The equality (4.7) can be obtained formally by passing to the limit
M — oo, which however contradicts the Archimedean law (2.16). Thus the problem
(4.3)—(4.5), (4.7) indeed describes a body fixed externally.
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2) The right-hand side of (4.2) includes the principal vector and torque S®
of hydrodynamic forces, while the vector M~'S® corresponds to the linear and
angular accelerations generated by these forces. Finally the value wv(y,2) " D(y —
y®, z — 2*°)M 1Sy is proportional to the normal velocity of points on the surface
> due to motion under action of the liquid flow. The given interpretation of the
boundary condition (4.2) impels to call (2.3)—(2.5), (4.2) the problem on an inert
body unaffected by the buoyancy forces. In the case of the submerged body the
latter is possible in the case of the coincidence of the mass (y°, 2°*) and buoyancy
(y©, 2°) centra, since in the relation (2.14) both components K? and K® of the
matrix K become null. In the case of the surface-piercing body the equality K = 0
is not possible because K¢ > 0 and rank K =2 but rank K® = 1. K

We have introduced the general matrix P > 0 in order to include both above
variants of boundary conditions into our consideration.

According to the equality (3.1) the variational formulation of the problem (4.3)-
(4.6) looks as follows:

(VO,VU)g + k*(®, V) + (PSP, SU)c = A(®, ¥)r, U e HY(Q). (4.8)

We take the sesquilinear form (®, ¥)p on the left-hand side of (4.8) as a scalar
product in the Sobolev space H'(£2) and, in analogy with (3.4), introduce the trace
operator

(Tp®, V) p = (®,¥)r, &,V e H(Q). (4.9)

As a result the variational problem (4.8) transforms into the abstract equation
Tp® = B® in H'YQ) (4.10)
with the new spectral parameter
B=A"

Since the scalar products (®, ¥) and (®, V) p differ only by the term (PS®,SV)c
including the finite-dimensional projection (3.8), the modified trace operator (4.9)
has the same essential spectrum [0, ;] as the operator T" in the formula (3.4).

As in [20, 21], the reduction of the variational problem (4.8) (or (4.3)—(4.6) in the
differential form) to the standard spectral problem (4.10) for a self-adjoint bounded
operator Tp in the Hilbert space H'(Q) allows by means of a simple calculation to
derive sufficient conditions for the existence of the discrete spectrum (read: trapped
modes) and to verify appropriate comparison principles. We formulate a couple of
simple assertions. Proofs of them can be found in the paper [17], and with slightly
modified considerations also in the paper [21].

Proposition 4. Let the inequality

[ 190 dydz = 51 [ 19610 dy+ (P56, 56)c,

© 0
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be valid, where g3 and A+ are the eigenfunction and eigenvalue (3.14) and (3.5) of
the model problem (3.15). Then the operator Tp has an eigenvalue By > [y in its
discrete spectrum while the variational problem (4.8) (or the boundary value problem
(4.3)(4.6)) has the eigenvalue Ay = B;' < A\;. This gives rise to a trapped mode
@, € HY(Q), which possesses finite total (kinetic plus potential) energy and therefore
decays exponentially as y — +oo.

Apart from the eigenpairs {A;, ®;} of the problem (4.8), the next assertion in-
volves eigenpairs of the same problem but with another symmetric and positive
3 x 3-matrix P. This is assumed to satisfy

P =P, (4.11)

which implies that all eigenvalues of the matrix P — P are non-negative. (Objects
related to the modified problem will be denoted by bold letters in the following.)

Proposition 5. Let the problem (4.8) (or the problem (4.3)—(4.6)) have the eigen-
values
0<A1§A2§...SAJ<)\T, (412)

composing its discrete spectrum, and let P be as above. If (4.11) holds, then the
problem (4.8) with the matriz P replacing P has at least J eigenvalues A; subject
to the inequalities

AjSAj, jzl,,J

If P is the null matrix, then Proposition 5 concerns the fixed obstacle. Hence,
non-emptyness of the discrete spectrum of the problem (4.3)-(4.6) guarantees non-
emptyness of the discrete spectrum of the problem (4.3)—(4.5), (4.7) while the total
multiplicity of the latter is not less than the number J in (4.12).

5. Spectral measure and localization of eigenfrequencies in case of
freely floating body. In Section 3 we have constructed a bounded self-adjoint
operator A in the Hilbert space 7. Since the operators B and D on the left- and
right-hand sides of (3.23) differ from the operators

I0 0 O 0 g '2TY200
g_ 0L 0 0 7 0 _ g VPT/? 0 00 7

00 gKy 0 0 0 01

00 0 Ny 0 0 10

only by compact perturbations, the essential spectrum of the operator A = B~/2DB~1/2
coincides with the segment

[—wirtwr'] = [=(gA) 7% (gA) 7] (5.1)

14



This follows from the relation of w and «, see (3.11) and (3.26), and from the infor-
mation on the trace operator 7' presented in Section 3. The bound wy is computed
from (3.12). The set
—1 -1
(~o0, ~w; 1) U (w5, +00)

may contain discrete spectrum. This happens if and only if the norm ||.A]| of the
operator meets the inequality

1
> —. (5.2)
Wi

(Aya y)'Hh

| All = sup D)

VeH!

Namely, the relation [[Al| < w; ! is impossible, and if equality holds in (5.2), then

the whole spectrum of A belongs to the segment (5.1) and therefore its discrete
component is empty. In the case (5.2) the point ||.A||, which certainly belongs to the
spectrum, must fall into the discrete spectrum.

The above reasoning was used in the papers [20, 21] and then also in [13, 17] to
obtain sufficient conditions for trapping waves: a concrete test function was inserted
into the formula (5.2) and a condition was derived to ensure the strict inequality.
In what follows we use a completely different idea to compare the spectra of the
problems (2.1)—(2.7) and (4.3)—(4.6).

According to the spectral theorem (cf. [16, Theorem 6.1.1]) the bounded self-
adjoint operator A4 generates the spectral measure? /4 which in its turn associates
to any element U € H* the scalar measure pizy = (EAU,U)p: on the line R. We
shall only need a couple of simple formulas, which can be found for example in the
proof of Theorem 6.1.3 of [16]:

et 1 = Ul = [ i) tor e 53)
R
and
AU — old; H¥||* = /(t — a)duyu(t) for UeH, acC. (5.4)
R

Let us choose some

YeH, aeC (5.5)

and let us assume that the segment
v(d) = [ — 9, a + 0] (5.6)

is free of the spectrum of the operator A that is E4(v(d)) = 0. Then, by the formulas

2For reader’s convenience we keep the notation used in the book [16].
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(5.4) and (5.3), we obtain

AV = ¥ 1 = [(t= aPduyy® = [ (= dusy(®) >

R R\v(5)
(5.7)
>0 [ duyy(t) =8 [ duyy(t) =V 1
R\v(6) R
However, if
6> 0(c, ¥) = | Vs HY| M IAY — o 1| (5.8)

the relation (5.7) is absurd and therefore our assumption on the absence of the
spectrum in the segment (5.6) is wrong. Assuming

da,Y) < a— wT_l, (5.9)

the segment (5.6) with half-length & € (6(, ¥), a —w; ") must contain a point of
the discrete spectrum. We have thus detected an eigenvalue «; of the operator A
which satisfies

la —ay| < d(a, Y). (5.10)

Since the number a and the vector ) in the formula (5.5) are regarded as known
and fixed, the relation (5.10) is to be considered as the localization of the position of
an eigenvalue of the operator A. It is also worth to make the value 6(c, ) as small
as possible. This amounts to diminishing the norm [|.AY — a; H%|| while requiring
|V;H%| = 1, i.e., we are forced to treat a and ) as approximate eigenvalue and
eigenvector of the operator A

6. Calculations and final theorem. Let the auxiliary problem problem (4.8)
with some matrix P > 0 have the eigenvalue and the corresponding eigenfunction

Ae(0,\), ®eHY(Q). (6.1)

In accordance with formulas (3.10), (3.26) and (4.1), (6.1) we set

w=+/gA\,

o=, n=wg VT, a=—iw M Sy, (6.2)
f=wMa= —iSp, (6.3)
and .
a = —, y:Bl/Q‘X? X = (%njahafh)T-
w
We have

||y?Hh”2 = (y7y)?'lh = (B‘X'vX)Hha
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due to relations (3.25) and (3.3), (3.4), hence
1V HE1P = (o, ) + 9w (T, 0) + (M1 S, Sp)e + g(Ka, a)c =

= (V®,VP)q + k*(®,P)q + A(D, D) + (M 15D, SP)c + A H KM 1SD, M~15P)c.

(6.4)
By the representation (2.15) of the matrix K, the equality (Kb,b)c = (Kypby, by)c is
valid, and this was used at the end of the calculation (6.4). Moreover,

JAY —a;HY| = sup  [(AY — aY W)p| =
WeHb:
Wz =1

—

= — sup  |[(wDX — BY, Z)] -
ZeHb:
1B1/2 2;38)|=1

Let us compute the components of the vector
(F,Y,A,G)T = BY — wDX.

First of all, owing to the structure of matrices B and D in the system (3.17) and
also to formulas (6.2) and (6.3) for 1, a and f, we notice that

Y =n— wg—l/le/ch _ wg_1/2T1/2g0 . wg_1/2T1/2g0 — 0,

G = —iNpSop + Ny fy — way = —iNpoSopp — iN Syp + i(M ™' Sep)y = 0,
A= gKypay — iwSyp + wfy = gKyay = —iw™ g Ky (M~ Sp),.
Finally,
F =@+ SiNooSoip + iS5 Nog fy — wg T n + iwSfay =

(6.5)
= — g Wy + SH(NSp). + S;(NSp), = ® + S*M~1S® — AT®.

Using the definitions (3.4) and (4.9) of the trace operators T and Tp one finds that
(6.5) is equal to
S*(M~' — P)Sd.

Thus,
JAY — oY HY|| = w ™ sup [(M™ = P)S®, S)c — igw ™ (Kyy(M~1S®)y, by )c|

(6.6)
where the supremum is computed over all vectors Z = (1, &, by, g,) " € H* such that

1= (B2, 2 = (0.9 + (6.9 + Kb e+ (1 (750 ) (750) )
(6.7)
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Let us outline some further issues. First, due to the structure of the matrix (2.15),
the last term in the equality (6.6) can be replaced by (KM ~1S®, b)c. Second, the
expression (6.6) does not involve the function £ and, therefore, the positivity of each
term on the right of (6.7) permits us to put & = 0. Finally, since the components
1 and b are independent and the multiplication of b with any unimodular complex
number does not effect the value (6.7), we conclude that

JAY — aY; Ho|| = w sup (|(M ™! = P)S®, Si)c| + gw (KM 'SP, b)c|) .
(6.8)
The supremum now is computed over all vectors (1,b,g,)" € HY(2) x C3 x C7
normalized as follows:

(1, ) + g(Kb,b)c + (N (_i5°¢> , (_i5°¢) )«: = 1. (6.9)

9y 9y

The value (6.4) can be calculated easily with the help of the integral identity
(4.8) and the test function ¥ = &:

|V 17|12 = 2A(D, ®)p + (ML — P)SP, SP)c + AL (KM LSP, ML)
(6.10)
On the other hand, computing the supremum (6.8) becomes a complicated task. The
only simple case is P = M~'. Indeed, the first term in the supremum disappears
while
g2 KM 5®);; €| = o (92K (S @), 2K ) |

1/2

Hgl/QK by (CH<1

and, moreover, ||gl/2[(hlh/2bh;((:||2 = g(Kyby, by)c < 1 due to the restriction (6.9).
Hence,

JAY — oY H|| = w2 g2 Ky/* (M718),; C|| =

— w2g 2Ky (M~15D),, (M~15®),)e = w A~ V2(KM~15®, M~1S®)?,
(6.11)

so that we have

(KM=1S®, M—15®)¢
O(A, @) :=d(a, V) = \/_\/QA(I)(I)F—|—A WKM-1S®, M-15P)c’

by (6.10), (6.11) and the condition P = M.
We have thus proven the following assertion.

Theorem 6. Assume the problem (4.8) (or (4.3)—(4.6)) on the inert body, with
P = M=, has an eigenvalue A € (0,\;) and the corresponding eigenfunction ® €
HY(Q) meets the inequality

(6.12)

(A, P) < (6.13)

3
o Q]|
=
§‘H
=2



where 8(A, D) is the value (6.12). Then the problem (3.2)(or (2.3)—(2.7)) on the
freely floating body has an eigenfrequency wy which satisfies the estimate
1 1

— — —— [ < 5N, D).
o T;A‘( )

The eigenfunction ® of the problem (4.8) can of course be normalized by the
condition ||®; Lo(T)||*> = 1 (cf. the relation (3.10)). If the value

AN KM™PSD, M1 S®)e (6.14)

is sufficiently small, then the expression (6.12) becomes small as well, and hence
the condition (6.13) is satisfied. In other words, Theorem 6 indeed establishes the
existence of an eigenfrequency w € (0,w;) of the John problem in the case of a small
buoyancy matrix K. The matrix K appears by no means in the auxiliary problem
(4.3)-(4.6); therefore, changing it while preserving the inertia matrix (2.12) does not
influence the eigenpair {A, ®}. If the body is submerged, then redistributing the
density p(y, z) within © may preserve the inertia matrix M but shift the mass centre
(2.9) close to the buoyancy centre (2.17). This can make I° as well as the matrix
K = K® arbitrarily small. Of course, it is necessary to preserve the Archimedean
law (2.16) and the stability condition z* < 2®. Changing the density of the body,
we also may use Proposition 5 which guarantees that the discrete spectrum of the
problem (4.3)—(4.6) is preserved and which also gives a one-sided estimate of its
eigenvalue, if the matrix P varies in the integro-differential boundary condition
(4.6).

If the body is surface-piercing, we additionally have to assume the smallness of
the cross-section 6 of the body © with the plane {z = 0}. This assures the smallness
of the second term K? in the representation (2.14) of the buoyancy matrix K.

Let us formulate a sufficient condition for trapping a wave by a freely floating
body as an inequality for the value (6.14).

Corollary 7. Assume that the problem (4.8) on the inert body with P = M~ has
an eigenvalue A € (0, \+) and the inequality

—1 2
A HKMS®, M~1S®)e < 2¢/AN (2 — %) (1 — AA)
T T

18 satisfied, where ® is the corresponding eigenfunction normalized by the condition
|®; Lo(2)|| = 1. Then the problem (3.2) on the freely floating body has an eigenfre-
quency wy € (0, w;).

We mention that a simple sufficient condition for the existence of a trapped mode
in the problem (4.3)—(4.6) is given by Proposition 4. Finally, if w is an eigenfrequency
in the John problem, then, by an evident argument, —w is also an eigenfrequency.
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