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ABSTRACT. We consider the linear water-wave problem in a bounded water-basin
with shallow beaches. In spite of the boundedness of the domain, the spectrum
of the problem may have a continuous component, if the beach of the basin has a
cuspidal form. Following the approach and methods of [11] we improve the results
of the citation by proving the existence of a continuous spectrum under much
weaker geometric assumptions. In particular we solve a borderline case left open
in the citation.
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1. INTRODUCTION AND MAIN RESULT.

The linear model for water-waves is realistic in many situations, especially in case
the wave amplitude is relatively small. Within this theory, water-waves are described
by a mixed boundary value problem for the Laplace equation with Steklov spectral
boundary condition on the horizontal water surface (see (1.2)—(1.4) below, and [14],
[3], [4] for the physical background). It is well known that the wave propagation
phenomenon occurs when the Steklov spectral parameter A belongs to the continuous
spectrum o, of the problem. It is not surprising that this is the case for unbounded
domains, but in [11] it was shown that the continuous spectrum may be nonempty
even in a bounded three-dimensional pond. This may happen in case the pond has
shallow beaches, where the water volume has geometric forms like rotational cusps
or peak shaped edges.

The aim of the present work is to generalize the results of [11], especially its
Theorem 2.1, concerning the discreteness of the spectrum of the linear water-wave
problem. As in the citation, the bounded domain is assumed to have a shallow
beach which can be geometrically described as a cuspidal edge. The structure of
the spectrum depends on the geometry as follows. In the reference it was proven
that if a geometric parameter m, which describes the sharpness of the cuspidal
edge, is larger than 2, then continuous spectrum appears and contains the point
0. In case m < 2 the spectrum was shown to be discrete, and the borderline
case m = 2 remained unsolved. In this paper we solve the open case by proving
that set [1/4,00) is contained in the essential spectrum, if m = 2; the method of
proof is a refinement of the arguments in [11]. Moreover, the assumptions of [11]
are weakened by allowing them to be of more local nature. In addition to [11],
our methods are based on the previous works [10], [13] on Steklov and Neumann
problems in cuspidal domains. The construction of the Weyl sequence originally
emerges from the asymptotic ansitze for thin rods and plates, see for example [6],

[7], [8]. 1
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Let us describe the domain (bounded water-basin) Q C R? in detail; see Figure
1. A point in R? is usually denoted by = = (y,2) , where y = (y1,72) € R The
boundary 02 of Q contains the free water surface (denoted by A C {x = (y,2) :
z = 0} =: II) and the bottom {x = (y,2) : 2 = —h(y;,y2)} , where the smooth
function h > 0 is the depth of the pond. In addition 02 may contain walls, which
are smooth surfaces parallel to z-axis connecting the free surface A and the bottom;
bottom and walls together form the set ¥, see Figure 1. The edges of A and X
coincide on a piecewise C?-smooth, closed simple contour v C II, hence 9 equals
A UX U~ and the domain 2 consists of the points (y, z) with

(1.1) “h(y) <z < 0.

It is assumed that the origin O = (0,0, 0) is contained in the contour v and that ~
is C?-smooth at O .
We consider the linearized water-wave problem, [14], [3], [4], which reads as

(1.2) —A,P(x) =0, xz€Q,
(1.3) Oh®(x) =0, ze3,
(1.4) On®(z) = AP(z) , = €A

where A, is the Laplacian, 0, is the derivative along the outward normal n, and
® denotes the velocity potential and A the spectral parameter proportional to the
square of the frequency of harmonic oscillations.

To give exact meaning for the spectral concepts, we shall formulate the problem
(1.2)—(1.4) as a standard spectral problem for a bounded operator Kq in a Hilbert
space. Being self-adjoint and positive, its spectrum is contained in the positive real
axis. The problem whether or not it is discrete, is answered by our main result:

Theorem 1.1. Assume that the depth function h(y) of the pond Q2 equals y? asymp-
totically at O = (0,0,0) (more precisely, (i)—(iii) hold, see just below). Then the
ray [1/4,+00) belongs to the essential spectrum of the problem (1.2)—(1.4).

In the above theorem we are assuming that in a neighbourhood U« C II of O the

following hold:

() ~ is tangential to the y, axis,

(73) A is contained in the right half-plane {(y,0) : y; > 0} of II and contains the
parabola {y : y; > y2},

(iii) there exist constants 0 < ¢ < ' such that c¢y? < h(y) < Cy? and |V, h(y)| <
Cy, for all y e U NA.

The last condition corresponds to the choice m = 2 in the geometric assumption
made in [11] that the depth function behaves like v™, where v is the distance of a
point on the water surface A to the boundary =, or beach. However, the present
assumption is weaker, since the contour + does not need to coincide with the ys-axis,
hence, the depth function needs to vanish only at one point, the origin. (Notice the
different notation: the present domain ) corresponds to = of the reference.)

The assumption on the parabola in (i7) is superfluous, since the other assumptions
would imply that a smaller parabola would anyway be contained in A. That would
be sufficient for the next construction, though at the cost of adding some extra
parameters. Finally, it would be enough to assume (zi¢) only on that parabola.

So, the next task is to introduce the operator theoretic interpretation of the prob-
lem under investigation; as for the literature, see [5] and [2]. Due to the boundary
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irregularities, it is useful to consider the weak formulation of (1.2)—(1.4) in the
Hilbert space H(Q2,A) = H'(Q) N L*(A), which is defined as the completion of the

space (2 \ ) with respect to the norm (®, @)é/ ? where
(1.5) (O, V) = (V. D,V V) + (D, V)4,

and (f,9)a = [, fg dz as well as (f,g)a = [, fgdy. The weak formulation is then
obtained by multiplying the equation (1.2) by a function ¥ € H(2, A), integrating
over ) and using the first Green formula together with the boundary conditions
(1.3)—(1.4):

(1.6) (Vo @,V W) = AP, W)y, UeH(QA).
We define the operator Kq : H(2, A) — H (£, A) using the formula
(17) <KQ(I), \IJ>Q = ((I), \I/>A , DU e ’H(Q,A)

This operator has unit norm, and it is symmetric, therefore self-adjoint, and positive.
The problem (1.6) is transformed into the following standard spectral problem for
K O

(1.8) Ko® = pud , ®eH(QA).

The spectral parameter u is related to A by the identity g = (1 + A)~!. Because of
the above mentioned properties, the p-spectrum of Kq is contained in the interval
[0, 1], and actually 1 is an eigenvalue with constant eigenfunction.

Concerning the notation of this paper, C, C’, ¢ and so on denote positive constants
which may vary from place to place. The norm of an element f in a Banach function
space X is denoted by || f; X||. As for the literature on the present topic, we refer
to citations mentioned in [12].

2. PROOF OF THE MAIN RESULT.

The rest of the paper is occupied by the proof of Theorem 1.1, which is a refine-
ment of the argument given in [11], Section 4. Given a number A € [1/4,400), the
aim is to construct a Weyl sequence (¥;)32, C H(€2, A) for the operator Kq corre-
sponding to the number (1 — X)~'. By definition, such a sequence (¥;)52, should
have the following properties:

(i) for some positive constants ¢ and C, ¢ < ||U;; H(2, A)|| < C for all 7,
(1) the sequence converges to 0 weakly in H (2, A),
(iii) [|[KoW; — (14 X)W, H(Q,A)|| — 0 as j — oo.

Having this done, p:= (14 X;)~! is shown to belong to the essential spectrum of
Kq, which is equivalent to the statement of Theorem 1.1, by the explanation at the
end of the previous section.

To construct the required Weyl sequence we shall use a collection of rectangular
subdomains of A and 2. The elements of the Weyl sequence will be supported
on these subdomains. This leads to a simplification of the calculations, since the
exact form of the boundary curve v does not enter the ordinary differential equation
defining the Weyl sequence; it will be enough to apply a separation of Cartesian
coordinates to a model elliptic PDE (2.5).

Let us denote

(2.1) ri=e? j=123,...,
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hence, the relation 7,1, = 7"72- holds. Moreover,

(2.2) Aj={yeR? : rj <y <rj, —r; <ya <1},
(2.3) Bi={yeR*: 2rj <y <r;/2, —1; <ys <1;},
(2.4) Ci={yeR’ : rjp <y <r;, —r;/1 <yo <1;/2},

For large enough j, say j > Jo, the sets A;, B; and C}; are contained in A (due to
7“32. = 1,41 and the assumption (i¢) in Section 1). The corresponding boldface letters
A;, B;, and C; denote the respective subsets of €, for example A; = {z = (y, 2) :
yeA;j, 0>2z> —h(y)} and similarly for the other sets.

Another ingredient for the construction of the Weyl sequence is gotten from so-
lutions of the following model problem:

(2.5) ~V, - iV, U(y) = AU(y) , y €A

Similar model equations have been used in [8], [10], [11], [13], and they have been
derived from the asymptotic theory of elliptic problems in thin domains. To find
the solutions we use separation of variables and write U(y) := F(y1)u(y2) with

(2.6) u'=Lu , L<0,
and
(2.7) yiF" 4 2y F' + (Ly; + A\ F = 0.

This is an ODE with polynomial coefficients, and y; = 0 is a regular singular point.
Using the Frobenius method, see [1], the indicial equation becomes

(2.8) +r+A=0.

Thus we find that if A > 1/4, then the one or two solutions of (2.8) are r = —1/2+i7
with 7 € R, and (2.7) has the Frobenius solutions

—1/2 jf
(2.9) Fly) =9 caypt =y V2emEn N " ey,
n=0 n=0
where the coefficients ¢, are complex valued. Putting (2.9) into (2.7) we obtain the
recursion formula for the coefficients ¢,, n > 2,

Le, Le, 0.1.2

2(n+2)+(n+2)(n+3) m+2)@r+n+1) T
The radius of the convergence of this power series is obviously co. Moreover, the
coefficient of ¢y vanishes, since it equals 7> +r + X. We can thus choose ¢y = 1.
The coefficient of ¢; becomes 72 + 3r + 2 + A, which may be nonzero, hence, we set
¢; = 0. With these choices, (2.9) satisfies (2.7).

A solution of (2.6) is u = eV~ Since the aim is only to construct a Weyl
sequence, its elements do not need to satisfy boundary conditions. In particular,
there does not appear a condition for the parameter L , which we thus set equal —1.

With these definitions the solution U(y) = F(y1)u(y2) of the model problem (2.5)
has the properties

(210) U@ < Cy ", 10, UW)| < Cy*? , 18,,U(y)] < Cyy 2

for some constant C' > 0, for all y € ANU. By possibly diminishing the set U we
can even asstume

(2.11) U(y)] > C'yy >

Cn+2
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for some constant C’ > 0, for y € A NU, since the power series Y - c,y} does not
have zeros in a neighbourhood of y; = 0 due to ¢y = 1; c¢f. (2.9).
The Weyl sequence consists of functions

(2.12) Ui (z) = a;X;(y1)Yi(y2)U (y),
where j > Jy and a; > 0 is a normalization factor to be defined later. Each ¥, is
supported in A;, since X; € C*°(R) is a cut—off function such that 0 < X,(t) <1
for all ¢, X;(t) = 1 for 2r7+1<t<r/2andX()—0f01t<r7+1andt>r,
Also Y; € C*®(R) is a cut—off function such that 0 < Y;(¢) < 1 for all ¢, Y;(¢) =1
for —7{7/2 <t <r;/2and Y;(t) = 0 for |t| > r;. Moreover, X; and Y; are chosen to
satisfy, for k =1, 2,

C -
(2.13) 193, X5 ()| < i 10, Y5 ()] < Cr*

We calculate some estimates for the functions (2.12), using (2.10), (2.11):

|mﬂﬂMWs@/Nwm%@cﬁ//@ﬁm@2

ANA; =75 Ti1
y1=r; ‘ . .
= 26’&? [logyl] T C”a?rj(QJH —2) = C'a?rﬂ],
Y1="j+1
LRI
ANB;NC;
/2 T/2
(2.14) > aJQ- / / yy tdyidyy > ca?erj , ¢>0.
—7:3'/2 241

Moreover, using h(y) < Cy? on QN A; (see (iii) of Section 1) and (1.1), we get
IV Py: L ()]

a?/(@ﬂmW@Pﬂ@%mwmﬁwwwwﬂ@“

QNA;

<C / / / by g ) dydz

h(y) =rj 7j+1

IA

i Tit
(2.15) < C”a? / / y; tdyady, < C"a?rﬂj.
Hence, putting

(2.16) a; =279/

we have

(2.17) 0<c<|UiHEQA|LC
Moreover,

(2.18) U, — 0 weakly in H(Q2,A) as j — +oo,
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due to the choice of the supports of the functions ¥;.
Let us consider the expression (where W € H (2, A))
Ko@) — (1+X3) 705 H(Q,A)]
= sup  [(Ko¥;— (1+ )70, T

W5+ (2,A)[|=1
= s (W W) = (LX) (Va0 VaW)a + (85, 0),),
W5 H(2,A)||=1
(219) =1 +N"" sup (Va0 VoW)g — AU, ),
(s H(2,A)||=1

Here we use the notation of (1.5) and (1.7).

Lemma 2.1. The sequence (V) has the property
(2.20) [KaW; — (1+ )"0 H(Q,A)|| — 0 as j — +oo.

Taking into account the bounds (2.17) and (2.18) and the remarks in the beginning
of this section, Lemma 2.1 completes the proof of Theorem 1.1.
Let ¥ € H(,A). For the proof of Lemma 2.1 it is necessary to consider the
functions
0

22) W) =)+ Vi), T =h) " [ (2
“h(y)

Recall the notation U C II from Section 1. In the following we also denote W = AN
and V ={(y,2) € Q| yeW} CQ.

Lemma 2.2. Let U € H(Q, A). The following inequalities hold true:

(2.22) lyih™2(V, ¥ =V, 0); L2OV)|| < 093 L2 V)],

(2.23) 02T — (-, 0); LX) < efla.; L2 (V)]

where W € H(Q, A) and ¥(y,0) is the trace of ¥ on the surface A.
Proof. Integrating over ¢ € (—h(y),0) the identity

¢
V(y.0) = Uy ~hy) = [ 2.0y, 2)d:
—h(y)
we get
0 ¢ 0
@(y)—‘lf(y,—h(y))zﬁ/ /azllf(y,z)ddeZ@ / 20,V (y, z)dz.
—h(y) —h(y) —h(y)
Thus,

[ 100 [¥0) ~ (5. ~1e)) Py

< V[ h(o) | [ 0.2 dy
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S/h() /dz /‘h ‘dz)d

w —h(y) —h(y)
0

(2.24) g/ / 10,9 (y, 2)|*dydz.
W —h(y)

An evident modification of the calculation yields the inequality (2.23).
Using (2.21), we continue by writing

VP (y) — V,¥(y) = —h(y)"'V,h(y)(T(y) — T(y, h(y))).
Notice that |h(y)~'V,h(y)| < Cy;*, by (iii) of Section 1. Applying (2.24), we now
obtain (2.22):

/ 7ly) 19, T(0) - T, 0Py
<c / V[T (y) — Wy, —h(y)Pdy < Clo.w: 2OV)P. O

Proof of Lemma 2.1. Let ¥ € H(, A) with || U; H (2, A)|| < 1. Since the function
(2.12) does not depend on z, we have

(V¥ Vo W)g —/\(‘I’ ‘1’( 0))/\ (hV,U;, V, W)y — AT, U(-,0))w
_ (hv U5, V, ) )
(hV v, V,0 -V \I/)W /\( U(-,0) — Ty

Estimating the addenda in (2.25), we start with 3. The relation h(y) > cy?,
(2.23) and the Cauchy—Schwartz inequality yields

1] < cay [ 1(0.0) - Ty)ldy
A;

1/2 _
< cay( [ y) "o (@ - w05 2200)]
A;
< dag| APV (W = W (-, 0)); L2V
(2.26) < cQ‘j/zr;l/erHVx\I!; LV < 02_3'/27"]1./2 = 27712 exp(—2771).
Using again (2.23) and (i#4), Section 1, we get

2] < cay [ n)or ™19, 8(w) - TT0)ldy

Aj
< cay [ yihiy) 219, 8(y) - T)ldy
Aj
< oy A,V luha(y) AV, Tly) — V) L200)]
< 2792 exp(—271),
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It suffices to examine the term [;. It transforms into
1 = (Y, 95, 7, B) = A, Dy )
— [ B9, ,) - V,Tdy - (0, Ty
Aj
(2.27) =— /(vy-hvyxlfj + AU;) Udy
A;
Since U solves (2.5), differentiation yields

V, -hV, ¥, + \T;
= hU(Y}'Aij + XjAij) + Qh(YijXj + XijY}) : va
(2.28) + U(Y;Vyh -V, X+ X;V,h -V, Y)) + WU (V, X;) -V, Y5,

where the last term vanishes since 0,,X; = 9,,Y; = 0.
We consider separately the terms

hUY;A,X; +2Y;hV, X; - V,U +UY;V,h -V, X;
(2.29) = hUY;0; X; + 2Y;h(9,,X;)0,,U + UY;(0,,h)d,, X

with derivatives of X; only, and

hUX;A,Y; + 2X,hV,Y; - V,U + UX;V,h-V,Y,
(2.30) = hUX;2Y; + 2X;0(0,,Y;)8,,U + UX,(8,,h)8,,Y;

with derivatives of Y} only.
Because of (iii) in Section 1, (2.10), and (2.13), the terms (2.29) are bounded by

|hUYja§1Xj| + |2Y}h<ay1Xj)ay1U| + |UYj<ay1h)ay1Xj|
(231) < Cagdy; Py + Cagyiyr 'y ™ + Cagyy Pyyrt < Clagy
and similarly, for the terms of (2.30),
|hUXjaZ2Y}| + |2th<8y2Yj)5'y2U| + |UXj<ay2h)ay2Yj|
(2.32) < Cajyfyl_mrj_z + Cajyfr;lyl_gm + Cajyl_l/zylrj_l < C’ajy}/zr',-_l,

since r; > y; on A;. Using the fact that the support of the derivatives of X is
contained in A; \ B; we estimate

i<y [ By + oyt [ o 00y

Aj\B; 4
e <a(( [ oan) e ([ ) )i zom).
A\B; 4

According to (2.23) and the definition (1.5) of the inner product in H(€2, A), we see
that the last norm in (2.33) does not exceed

cl[ (-, 0); LX) + cl|0.T; LX (V)| < e[ T HY(Q)] < e
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Moreover,
Tj Tj 2rj41
» 1 1
yi dy < ( —dy + —dyl)dyQ
(25 N
Aj\B; =T T3/2 Tit1
= / (logr; —log(r;/2) + log(2rj41) —logrjt1)dys < | Crijdy, < Cry,
and
. 1/2 . i 1/2
T (/yldy) =T (/ / yldyldy2> <Cry
Aj —TjTj+1

hence, we find that [; < Cajr]l./ 2 < ("2 which is of the infinitesimal magnitude
as j — +oo. This completes the proof of Lemma 2.1 and thus Theorem 1.1.
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