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Abstract. We show that the linear water wave problem in a bounded liquid do-
main may have continuous spectrum, if the interface of a two-layer liquid touches
the basin walls at zero angle. The reason for this phenomenon is the appearance
of cuspidal geometries of the liquid phases. We calculate the exact position of
the continuous spectrum. We also discuss the physical background of wave prop-
agation processes, which are enabled by the continuous spectrum. Our approach
and methods include constructions of a parametrix for the problem operator and
singular Weyl sequences.

1. Introduction.

1.1. Formulation of the problem and the main result. In this paper we will
consider water waves over a two-layer liquid and at its interface. For example,
the setting could consist of warm/cold water or sweet/salted water in an infinitely
long cylindrical container (pond or river) with a two-dimensional, bounded cross-
section Ω as in Fig. 1.1. Studying waves which are constant in the direction of the
cylinder axis, we pose in Ω the linear water-wave equation (1.5)–(1.9) with a spectral
Steklov boundary condition. The geometric situation is such that the cross section
Ω and the interface of the two liquid components bound a cuspidal subdomain of
the water container. For comparison, in the case of a single layer liquid it is known
[34] that cuspidal geometries may cause the appearance of continuous spectrum and
wave processes even in bounded domains. In Theorem 1.1 we will show that under
certain assumptions this also happens in the present, more complicated problem. In
this case will also calculate the exact cut-off point of the continuous spectrum.

Let us describe the geometric setting, the equations and the main result in detail.
a) Geometry of the liquid domain. We assume that the cross-section Ω ⊂ R2

of an infinitely long cylinder is bounded by the line segment (free water surface)
S = {(y, z) ∈ R2 : z = 0, |y| < L} and a smooth arc (walls and bottom) B
connecting the points (±L, 0) inside the lower half-plane R

2
−. The domain Ω is

divided into two parts

Ω0 = {(y, z) ∈ Ω : z > −d} and Ω1 = {(y, z) ∈ Ω : z < −d}(1.1)

at the level z = −d ∈ (0,−b0), where −b0 is the smallest z-coordinate of the points
of B. By rescaling, we reduce the half-length L to 1 and thus make the Cartesian
coordinates (y, z) and all geometric parameters dimensionless. The subdomains
Ω0 and Ω1 are filled by two immiscible liquids, which have densities ̺0 and ̺1,
respectively, and we assume that ̺1 > ̺0 > 0 to obtain gravitational stability.
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Figure 1.1. Two-layer liquid with cuspidal geometries at the interface.

b)a)

Figure 1.2. Alternative geometries.

The liquid interface I = ∂Ω0 ∩ ∂Ω1 is assumed to be a segment {(y, z) : y ∈
[−l−, l+], z = −d} of length l = l+ + l− > 0, however, our main results remain valid
also in the situations of Fig. 1.2 a, b.

The cuspidal geometry is related to the interface I as follows: we assume that the
curve B is given in the vicinity of the points P± = (±l±,−d) ⊂ I by the equations

z = −d+ h±(y),(1.2)

where

h±(±l±) = ∂yh±(±l±) = 0 , b± := ∂2yh±(±l±) 6= 0.(1.3)

In other words, B is tangential with the segment I at its endpoints and therefore
one of the domains Ωj loses the Lipschitz property. However, no cuspidal geometry
is supposed to appear in the vicinity of the free water surface: the curve B is defined
to intersect the y-axis in the points (±L, 0) at the angles θ± ∈ (0, π), see Fig. 1.1 a
and b. Hence, the domains Ω0 in Fig. 1.1 a and Ω1 in Fig. 1.1 b are Lipschitz while,
respectively, Ω1 and Ω0 are not.

b) Water-wave equations. We deal with time harmonic liquid motion, more
precicely, waves which are independent on the direction of the axis of the infinite
cylinder. We assume that the liquid motion is irrotational and of small amplitude,
and introduce the velocity potentials

φj(y, z, t) = Re
(
e−iωtϕj(y, z)

)
, j = 0, 1,(1.4)

where ϕj satisfy the Laplace equation in their respective domains, that is,

−̺j∆ϕj(y, z) = 0 (y, z) ∈ Ωj , j = 0, 1.(1.5)

This equation is supplied with the traditional spectral boundary condition of Steklov
type at the free surface S,

̺0∂zϕ0(y, 0) = ̺0λϕ0(y, 0) , |y| < L,(1.6)
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and with the spectral transmission condition at the interface I,

̺0
(
∂zϕ0(y,−d)− λϕ0(y,−d)

)

= ̺1
(
∂z̺1(y,−d)− λϕ1(y,−d)

)
, y ∈ (−l−, l+).(1.7)

Here, λ = g−1ω2, and the frequency ω is as in (1.4) and g is the acceleration of
gravity. A physical interpretation of the conditions (1.6) and (1.7) can be found in
[13] and, e.g., [11, 37].

The wetted surfaces B0 = {(y, z) ∈ B : z ∈ (−d, 0)} and B1 = {(y, z) ∈ B : z <
−d} are supplied with the Neumann boundary condition (no normal flow)

∂nϕj(y, z) = 0 , (y, z) ∈ Bj , j = 0, 1,(1.8)

and the normal velocity is assumed continuous at the interface,

∂zϕ0(y,−d) = ∂zϕ1(y,−d) , y ∈ (−l−, l+).(1.9)

The outward normal derivative is denoted by ∂n, and ∂n = ∂z = ∂/∂z on the
horizontal surfaces S and I.

The main result of our paper reads as:

Theorem 1.1. Assume that the water domain has the cuspidal geometries at the
interface as described above. Then the water wave problem (1.5)–(1.9) for the two-
layer liquid has the continuous spectrum

σc = [λ†,+∞)(1.10)

with the cut-off value

λ† =
1

4
min{b+, b−}

1

̺j
(̺1 − ̺0),(1.11)

where j = 1 (respectively, j = 0) in the situation of Fig. 1.1 a (resp. b). The interval
[0, λ†) contains the discrete spectrum, and in particular λ = 0 is an eigenvalue of
multiplicity 2.

Theorem 1.1 will be proven in two steps. First, in Section 2 we introduce the
trace/interface operator T , which is a self-adjoint operator in Hilbert space. Using
this operator we can give an exact meaning for the spectral concepts and use the
machinery of operator theory in Sobolev spaces. In particular, we will use the
statement of Proposition 2.2., which contains accurate information on the embedding
constant of H1(ΩJ ) ⊂ L2(I), to verify that [0, λ†) belongs to the regularity field of
the problem. Furthermore, this result will be used at the end of Section 2.3 to prove
the statement about the discrete spectrum in Theorem 1.1.. In Section 3 we then
investigate wave phenomena in the cusps and construct singular Weyl sequences for
T in the case λ ≥ λ†, thus showing that σc = [λ†,+∞). These steps will complete
the proof of the main theorem.

1.2. Review of the main result. If the curve B touched the end points of the
segments S and I at non-zero angles, then both domains Ωj would be Lipschitz, and
the embedding of the Sobolev space into Lebesgue trace spaces would be compact.
In this case the spectrum of the problem (1.5)–(1.9) would be discrete and it would
form an unbounded monotone sequence of (normal) eigenvalues

0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λk ≤ . . .→ +∞(1.12)
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b)a)

Figure 1.3. Wedge domain and cuspidal domain.

(see Section 2.2 for details). However, under the conditions (1.2) and (1.3), the
mentioned compactness of the Sobolev embedding is lost, and we will prove that
the spectrum of the problem (1.5)–(1.9) is no longer discrete and has the continuous
component σc = [λ†,+∞) with a positive cut-off λ† dependent on the problem data
̺0, ̺1 and b±. The appearance of the continuous spectrum (1.10) enables wave
processes in a finite water volume. Describing wave propagation near the point P±

and in particular imposing appropriate radiation conditions at these points becomes
a challenge, which is postponed to a planned forthcoming paper.

Investigation of the linear water-wave problems for beaches and shore areas were
initiated by Stokes [41], who observed that that the unbounded wedge, Fig. 1.3 a,
supports a trapped surface wave. Later this classical result was improved in [38],
where infinitely many trapped modes were detected in the same angular domain.
Other geometric shapes of the underwater shore topography were considered in the
paper [6], which also proves that in the cuspidal domain

{ (y, z) : |y| < L, 0 > z > −h(y)},

h(y) = |y ∓ L|κ
(
h± +O(|y ∓ L|)

)
for y → ±L∓ 0,(1.13)

the conditions h± > 0 and κ ∈ (1, 2) imply that the Steklov spectrum is fully
discrete. On the other hand, the papers [21, 22, 34] contain studies of the case
κ ≥ 2 and proofs for the existence of a nontrivial continuous component of the
spectrum in the case of a homogeneous liquid.

Other geometric shapes related to cuspidal boundary irregularities were examined
in [8, 30, 34, 35]. Submerged bodies approaching the water surface may create cus-
pidal irregularities at the limit, and related asymptotic phenomena were described
and studied rigorously in [9, 30]

In all of the above-mentioned geometric settings, cf. Fig. 1.1, 1.2, 1.3 b, there ap-
pear cuspidally thin water layers, and this contradicts in some sense with the stan-
dard assumptions, which are posed when deriving the linear water wave equations.
The same problem appears for ”black holes” for elastic and acoustic waves in solids
with cuspidally irregular surfaces, see [3, 10, 25] for engineering aspects of the prob-
lem and [2, 28] for rigorous mathematical results. However, the effects of continuous
spectrum to wave processes in bounded elastic cuspidal bodies have been justified
experimentally, see Fig. 1.4. (The photo is given to the authors by M.A.Mironov
and is published by his permission.) The authors thus expect that certain conse-
quences of wave processes studied in this papers may be observed experimentally
in finite water volumes, too. We mention that an underwater topography like in
Fig. 1.1 a, 1.2 a, 1.3 b, can occur for example in Siberian rivers and Lapland lakes in
summer, when the upper layer of the water is warmed up by the sunshine, but the
lower layer is kept cold by the permafrost.

The first results about trapped modes in two layer fluids in two-dimensional chan-
nels of finite or infinite depth were published without proofs in [11, 12], where formal
asymptotics of surface and interfacial waves was constructed in case ̺0/̺1 → 1− 0.
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Figure 1.4. Cuspidal solid metal body.

Later, in [18], the authors published computational results concerning trapped
modes, which are supported by circular horizontal cylinders submerged either in
the lower or upper layer. They made the very important observation that only in-
terfacial waves may lead to trapped modes with frequencies below the continuous
spectrum, i.e., frequencies belonging to the discrete spectrum. The uniqueness ques-
tion for solutions in the case of a two layer liquid was studied in [14], and examples of
two-dimensional obstacles supporting trapped modes were also given there. A sim-
ple sufficient condition, including a geometric integral, for the existence of trapped
modes was derived in [37]. Rigorous asymptotic analysis in the cases ̺0/̺1 → 1− 0
and ̺0/̺1 → +0 and corresponding error estimates are contained in [31, 36].

We also mention the papers [4, 17, 19, 40] which contain studies on wave scattering
by submerged obstacles in two-layer fluids, and also the paper [7], where even a
three-layer fluid was considered.

Acknowledgement. The authors are grateful to the anonymous referees for the
careful and critical reading of the manuscript and for their comments, which were
helpful for improving the paper.

2. Variational and operator formulation of the problem.

In this section we present the operator theoretic approach to the problem (1.5)–
(1.9), which we also use to give an exact meaning for the spectral concepts of Theo-
rem 1.1. At the end of the Section 2.3 we prove the result on the discrete spectrum
as a consequence of Proposition 2.3.

2.1. Variational formulation. We write the problem (1.5)-(1.9) in variational
form in the sense of [16, 20]. According to [37], this formulation reads in the present
setting as the equation

D(ϕ, ψ) = λT (ϕ, ψ) ∀ψ,(2.1)

where

D(ϕ, ψ) = ̺0(∇ϕ0,∇ψ0)Ω0
+ ̺1(∇ϕ1,∇ψ1)Ω1

T (ϕ, ψ) = ̺0(ϕ0, ψ0)S +
1

̺1 − ̺0
(̺1ϕ1 − ̺0ϕ0, ̺1ψ1 − ̺0ψ0)I .(2.2)

and the functions ψ = (ψ0, ψ1) are test functions with components ψj ∈ C∞
c (Ωj \P).

(This is the space of functions that are smooth in the closure Ωj but vanish in a
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neighborhood of the set P, and P is the set of the corner/cuspidal points marked with
• in Fig. 1.1.) The relation (2.1) is obtained by multiplying the Laplace-equations
(1.5) with a test function and using the Green formula, the boundary conditions
(1.6), (1.8) and the transmission conditions (1.7), (1.9), and by rewriting (1.7),
(1.9) as

∂zϕ0 = ∂zϕ1 =
λ

̺1 − ̺0
(̺1ϕ1 − ̺0ϕ0) on I.

To complete the formulation (2.1) we need to choose a Hilbert space H containing
the functions ϕ and ψ. Since the bilinear forms (2.2) are positive, H is defined as
the completion of C∞

c (Ω0 \ P)× C∞
c (Ω1 \ P) with respect to the intrinsic norm

‖ϕ;H‖ =
(
D(ϕ, ϕ) + T (ϕ, ϕ)

)1/2
.(2.3)

Lemma 2.1. The norm (2.3) is equivalent to the Sobolev norm

‖ϕ;H1(Ω0 × Ω1)‖ =
( ∑

j=0,1

‖∇ϕj;L
2(Ωj)‖

2 + ‖ϕj;L
2(Ωj)‖

2
)1/2

.

Proof. We need to prove that the pair of inequalities

‖ϕ;H‖ ≤ c‖ϕ;H1(Ω0 × Ω1)‖ ≤ C‖ϕ;H‖(2.4)

holds for some constants c, C > 0. In view of the trace inequality

‖ϕj;L
2(∂Ωj)‖ ≤ cj‖ϕj ;H

1(Ωj)‖,(2.5)

the left inequality in (2.4) is evident. Notice that if the domain Ωj is Lipschitz
(j = 0 in Fig. 1.1 a and j = 1 in Fig. 1.1 b), the inequality (2.5) is classical (see e.g.
[1]), but, for a domain with cuspidal boundaries (j = 1 in Fig. 1.1 a and j = 0 in
Fig. 1.1 b), this is proved in [24]. The proof is based on the assumption (1.3), which
means that B converges to the line {(y, z) : z = −d} at a rate of order |z+ d|2 (see
also [33] and Proposition 2.2 for details on the embedding constant).

To verify the right inequality in (2.4) we employ a theorem on equivalent norms,
namely

‖ϕj;H
1(Ωj)‖ ≤ Cj

(
‖∇ϕj ;L

2(Ωj)‖+ Fj(ϕj)
)
,(2.6)

where Fj can be any continuous functional such that

Fj(tv) = |t|Fj(v) ≥ 0 and Fj(1) > 0 for t ∈ R, v ∈ H1(Ωj),(2.7)

since the seminorm ‖∇ϕj;L
2(Ωj)‖ vanishes only on constant functions. (The in-

equality (2.6) is well-known for domains with, say, cone property, cf. [23], Section
1.1.16, but it holds also true in the present case, due to the continuous embedding
H1(Ωj) ⊂ L2(∂Ωj), cf. [33], Section 2.)

We set F0(ϕ0) = ‖ϕ0;L
2(S)‖, and obtain from (2.2), (2.3)

‖ϕ0;H
1(Ω0)‖ ≤ C‖ϕ;H‖(2.8)

Next we observe that the triangle inequality implies

‖ϕ1;L
2(I)‖ ≤

1

̺1
‖̺1ϕ1 − ̺0ϕ0;L

2(I)‖+
1

̺1
‖̺0ϕ0;L

2(I)‖

≤ C
(
T (ϕ, ϕ)1/2 + ‖ϕ0;L

2(I)‖
)

≤ C ′
(
T (ϕ, ϕ)1/2 + ‖ϕ0;H

1(Ω0)‖
)
≤ C ′′‖ϕ;H‖,(2.9)
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where also (2.5) with j = 0 and (2.8) were used. Now (2.6), with F1(ϕ1) =
‖ϕ1;L

2(I)‖, and (2.9) yield

‖ϕ1;H
1(Ω1)‖ ≤ ‖∇ϕ1;L

2(Ω1)‖+ ‖ϕ1;L
2(I)‖ ≤ C‖ϕ;H‖,

hence, this and (2.8) complete the proof. ⊠

2.2. Trace/interface operator. The Hilbert space H can be endowed with the
scalar product

〈ϕ, ψ〉 = D(ϕ, ψ) + T (ϕ, ψ).(2.10)

We define the operator T in H by the formula

〈T ϕ, ψ〉 = T (ϕ, ψ) ∀ϕ, ψ ∈ H.(2.11)

It is continuous, positive and symmetric, hence, self-adjoint. Moreover, its norm is
equal to 1 and µ = 0 is an eigenvalue of infinite multiplicity, having the eigenspace

{ϕ ∈ H : ϕ = 0 on S, ̺1ϕ1 = ̺0ϕ0 on I}.(2.12)

By (2.10) and (2.11), the integral identity (2.1) can be written as the abstract
equation

T ϕ = µϕ in H(2.13)

with a spectral parameter

µ = (1 + λ)−1.(2.14)

The operator T is called the trace/interface operator, cf. [29, 37]. If both Ω0 and Ω1

were Lipschitz (which is not the case in our paper), T would be compact due to the
compact embedding H1(Ωj) ⊂ L2(∂Ωj), and hence Theorems 10.1.5 and 10.2.2 of [5]
would ensure that its spectrum Σ would consist of the essential spectrum Σe = {0}
(see (2.12)) and the discrete spectrum Σd , which is the convergent sequence

µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ µk ≥ . . .→ +0.(2.15)

The sequence (2.15) corresponds via the relation (2.14) to the eigenvalue sequence
(1.12) for the problem (1.5)–(1.9), or for (2.1). However, µ = 0 corresponds to the
infinity point and does not influence the purely discrete spectrum σ. Note that the
lowest eigenvalue λ1 is null so that µ1 = 1 and, hence, the norm of T is indeed equal
to 1.

In the case of a cuspidal boundary the operator T is no more compact, and by
Theorem 10.1.5 of [5], its essential spectrum cannot consist of the point µ = 0 only.
Description of the sets Σe and σe becomes our main objective.

2.3. Regularity field of T . Since T is self-adjoint and positive, it has a continuous
resolvent (T − µ)−1 for any µ ∈ C \ [0,+∞). In this section we will verify that the
resolvent is also Fredholm for

µ ∈ (µ†,+∞),(2.16)

and we also compute the threshold µ† ∈ (0, 1). In this way we prove that Σe ⊂ [0, µ†]
and, by (2.14), that σe ⊂ [λ†,+∞), where

λ† = µ−1
† − 1 > 0.(2.17)

In Section 3.3 we show that Σe coincides with [0, µ†] by constructing a singular Weyl
sequence for T for any µ ∈ (0, µ†]. This last step completes the proof of the formulas
(1.10), (1.11) and Theorem 1.1.
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We need the following assertion, which was proven in [33].

Proposition 2.2. Let Ωj be as above, in particular assume that (1.3) holds in a
neighbourhood of the points P±. For all uj ∈ Hj(Ωj), j = 0, 1, and for all ε > 0 we
have the inequality

( b
4
− ε

)
‖uj;L

2(∂Ωj)‖
2 ≤ ‖∇uj;L

2(Ωj)‖
2 + Cj(ε)‖uj;L

2(Ωj)‖
2,(2.18)

where b = min{|b−|, |b+|} and 0 < Cj(ε) → +∞ as ε→ +0.

We modify the variational problem (2.1) as

D(ϕ, ψ) + κ(ϕ, ψ)Ω − λT (ϕ, ψ) = f(ψ) ∀ψ ∈ H,(2.19)

where λ ∈ [0, λ†), κ is a large positive constant to be fixed later, and f belongs to
the dual space H∗, i.e., f is a continuous linear functional on H. We consider the
situation of Fig. 1.1 b and apply (2.18) with j = 0 as well as the inequalities

‖ϕ0;L
2(S)‖2 ≤ δ0‖∇ϕ0;L

2(Ω0)‖
2 + c0(δ0)‖ϕ0;L

2(Ω0)‖
2,(2.20)

‖ϕ1;L
2(I)‖2 ≤ δ1‖∇ϕ1;L

2(Ω1)‖
2 + c1(δ1)‖ϕ1;L

2(Ω1)‖
2,(2.21)

where δj > 0 is arbitrary and cj(δj) → +∞ as δj → +0. These inequalities imply
the compactness of the embeddings H1(Ω0) ⊂ L2(S) and H1(Ω1) ⊂ L2(I), as is well
known e.g. by [1, 16]. We emphasize that the boundary of Ω0 in Fig. 1.1 b is not
Lipschitz, but (2.20) is still true, because ∂Ω0 is Lipschitz in a neighbourhood of the
free surface S, due to the assumptions below (1.3).

By the definition of T we obtain, for arbitrary positive τ and ε, δj,

T (ϕ, ϕ) ≤ ̺0‖ϕ0;L
2(S)‖2

+
1

̺1 − ̺0

(
(1 + τ)̺20‖ϕ0;L

2(I)‖2 +
(
1 +

4

τ

)
̺21‖ϕ1;L

2(I)‖2
)

≤ ̺0

(
δ0‖∇ϕ0;L

2(Ω0)‖
2 + c0(δ0)‖ϕ0;L

2(Ω0)‖
2
)

+
̺20

̺1 − ̺0
(1 + τ)

(1
4
b− ε

)−1(
‖∇ϕ0;L

2(Ω0)‖
2 + C0(ε)‖ϕ0;L

2(Ω0)‖
2
)

+
̺21

̺1 − ̺0

(
1 +

4

τ

)(
δ1‖∇ϕ1;L

2(Ω1)‖
2 + c1(δ1)‖ϕ1;L

2(Ω1)‖
2
)

≤ K1
0‖∇ϕ0;L

2(Ω0)‖
2 +K0

0‖ϕ0;L
2(Ω0)‖

2

+K1
1‖∇ϕ1;L

2(Ω1)‖
2 +K0

1‖ϕ1;L
2(Ω1)‖

2,(2.22)

where

K1
0 =

̺20
̺1 − ̺0

(1 + τ)
(1
4
b− ε

)−1

+ ̺0δ0,

K0
0 =

̺20
̺1 − ̺0

(1 + τ)C0(ε)
(1
4
b− ε

)−1

+ ̺0c0(δ0),(2.23)

K1
1 =

̺21δ1
̺1 − ̺0

(
1 +

4

τ

)
, K0

1 =
̺1

̺1 − ̺0

(
1 +

4

τ

)
c1(δ1).

Since λ < λ† and

K1
0 =

4̺20
b(̺1 − ̺0)

= ̺0λ
−1
† for ε = τ = δ0 = 0,
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we can select ε, τ and δ0 so small that

λK1
0 = ̺0(1− a)(2.24)

for some small positive a. After fixing τ we choose δ1 such that

λK1
1 ≤ ̺1(1− a).(2.25)

Finally, we find a big number κ satisfying

κ ≥ λmax{K0
0 , K

0
1}+max{̺0, ̺1} ≥ λmax{K0

0 , K
0
1}+ a.(2.26)

From (2.22) and (2.24)–(2.26) we derive the inequality

D(ϕ, ϕ) + κ(ϕ, ϕ)Ω − λT (ϕ, ϕ)

≥ a
∑

j=0,1

̺j
(
‖∇ϕj ;L

2(Ωj)‖
2 + ‖ϕj ;L

2(Ωj)‖
2
)
.(2.27)

Hence, all assumptions of the Lax-Milgram lemma are met, and thus, for all f ∈ H∗,
there exists a unique solution ϕ ∈ H of the problem (2.19) satisfying

‖ϕ;H‖ ≤ c(λ)‖f ;H∗‖.(2.28)

The factor c(λ) is of course independent of f , although it depends on the spectral
parameter λ ∈ (0, λ†), and it may happen that

c(λ) → +∞ as λ→ λ† − 0.(2.29)

We will see that (2.29) indeed holds true.
The above consideration concerns the situation of Fig. 1.1 b, but it is valid also in

the case of Fig. 1.1 a after obvious modifications. We formulate this as the following
result, where the number κ is chosen in (2.23)–(2.26).

Proposition 2.3. Assume that the geometry of the water domain is as described
in Section 1.1, let λ† be as in (1.11) and λ ∈ [0, λ†). There exists κ > 0 such that
the variational problem (2.19) is uniquely solvable for any f ∈ H∗ and the solution
satisfies the estimate (2.28).

We finally show how the statement on the discrete spectrum in Theorem 1.1
follows from this proposition. Analogously to (2.10) and (2.11), we introduce a new
scalar product

〈ϕ, ψ〉κ = 〈ϕ, ψ〉+ κ(ϕ, ψ)Ω(2.30)

in the Hilbert space H, and the new continuous, positive and self-adjoint operator
Tκ,

〈Tκϕ, ψ〉κ = T (ϕ, ψ) ∀ϕ, ψ ∈ H.(2.31)

Proposition 2.3 means that for any µ ∈ (µ†, 1] with µ† ∈ (0, 1) and λ† > 0 as in (2.17)
and (1.11), the operator Tκ − µ is an isomorphism in H. Since the scalar products
(2.17) and (1.11) differ from each other by the L2-scalar product only, the difference
T − Tκ is a compact operator. (Note that the embedding H ⊂ L2(Ω) is compact,
since H is just the Sobolev space, by Lemma 2.1.) Thus, T is Fredholm and the
half-open interval (µ†, 1] belongs to the regularity field of T . By the relation (2.14)
of the spectral parameters, the interval [0, λ†) is free of the continuous spectrum of
the problem (1.5)–(1.9) but includes its discrete spectrum. For example, λ = 0 is
always an eigenvalue of multiplicity 2 and its eigenspace is spanned by piecewise
constant functions ϕ = {c0, c1} in Ω0 ∪ Ω1.
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3. Wave phenomena near the cuspidal irregularities.

We start this section by constructing formal asymptotics of solutions of the spec-
tral problem. This asymptotic analysis is justified and the proof of Theorem 1.1 is
completed in Section 3.3, while Section 3.2 contains a discussion of wave processes
in the cuspidal domain.

3.1. Formal asymptotic analysis. We first consider the point P− in the situation
of Fig. 1.1 b. Other cases can be treated in the same way, and we will outline them
at the end of this section. Placing the coordinate origin so that −l− = 0, the curve
B0 is defined near P− by the equation

z − d = h(y);(3.1)

here and later in this section we omit the index ”−” from h, thus, owing to (1.3) we
have

h(0) = ∂yh(0) = 0 , h(y) = by2 +O(|y|3) , b > 0.(3.2)

The cuspidal part of the domain Ω0 is rapidly thinning when y → +0, and hence
we set for the solution ϕ = {ϕ0, ϕ1} the asymptotic ansätze

ϕ0(y, z) = φ0
0(y) + h(y)2φ2

0(y, ζ) + . . . ,(3.3)

ϕ1(y, z) = H(y, z)φ1
1(y, z) + . . . .(3.4)

These are suitable ansätze for solutions of elliptic transmission problems in domains
with thin coatings, cf. [26, 27]. The functions φp

q are to be determined, dots stand
for higher order terms inessential for our formal analysis, H(y, z) is an extension of
h(y) to the cusp such that ∂zH(y,−d) = 0, and

ζ = h(y)−1(z + d)(3.5)

is a stretched coordinate (a rapid variable in the cusp of Ω0).
We insert (3.3) and (3.4) into the problem (1.5)–(1.9) and collect the coefficients of

the derivatives of h having equal powers. The procedure will be justified rigorously
later.

First, since ∂z = h(y)∂ζ , we observe that

∂zϕ0(y − d) = h(y)∂ζφ
2
0(y, 0) + . . .(3.6)

and hence the transmission conditions (1.9) and (1.7) are converted into

∂ζφ
2
0(y, 0) = ∂zφ

1
1(y, 0)(3.7)

̺0
(
h(y)∂ζφ

2
0(y, 0)− λφ0

0(y)
)
= ̺1h(y)

(
∂zφ

1
1(y,−d)− λφ1

1(y,−d)
)
.(3.8)

Assuming that φ1
1(y,−d) is small in comparison with the derivative ∂zφ

1
1(y,−d)

(see (3.26) for explanation), we obtain from (3.7) and (3.8) by omitting the term
λφ1

1(y,−d)

−∂ζφ
2
0(y, 0) = G0(y) := ̺0(̺1 − ̺0)

−1h(y)−1λφ0
0(y, 0).(3.9)

On the curve (3.1) the normal derivative equals

∂n =
(
1 + |∂yh(y)|

2
)−1/2(

∂z − ∂yh(y)∂y
)
= h(y)−1∂ζ − ∂yh(y)∂y + . . . ,(3.10)

hence, the Neumann boundary condition (1.8) on B0 turns into

∂ζφ
2
0(y, 1) = G1(y) := h(y)−1∂yh(y)∂yφ

0
0(y).(3.11)
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Finally, the derivative ∂2z = h(y)−2∂2ζ prevails over ∂2y near the cusp tip, and hence,

the equation (1.5), j = 0, means that the function φ2
0 must satisfy the following

ordinary differential equation in the rapid variable ζ ∈ (0, 1):

−∂2ζφ
2
0(y, ζ) = F (y) := ∂2yφ

0
0(y).(3.12)

The compatibility condition in the Neumann problem (3.12), (3.11), (3.9) reads as

0 =

1∫

0

F (y, ζ)dζ +G1(y) +G0(y).(3.13)

A simple calculation reduces (3.13) to an ordinary differential equation in the vari-
able y,

−h(y)∂2yφ
0
0(y)− ∂yh(y)∂yφ

0
0(y) = ̺0(̺1 − ̺0)

−1λφ0
0(y).

Replacing here h(y) by its leading term by2 as in (3.2) yields the Euler-type differ-
ential equation

−∂y
(
y2∂yφ

0
0(y)

)
=

λ̺0
b(̺1 − ̺0)

φ0
0(y) , y ∈ R+.(3.14)

Setting

λ† =
1

4
b
(̺1
̺0

− 1
)
,(3.15)

cf. (1.11), we can write the general solution of (3.14):

φ0
0(y) = C+y

−1/2+κ + C−y
−1/2−κ for λ < λ†,(3.16)

φ0
0(y) = C+y

−1/2+iκ + C−y
−1/2−iκ for λ > λ†,(3.17)

φ0
0(y) = y−1/2(C0 + C1 ln y) for λ = λ†,(3.18)

where

κ =
∣∣∣1
4
−

λ̺0
b(̺1 − ̺0)

∣∣∣
1/2

.(3.19)

We are now in the position to construct the main asymptotic term in (3.4),

φ0
1(y, z) = H(y, z)φ1

1(y, z).(3.20)

Since the boundary of Ω1 is flattening near the point P−, we search for the function
as a solution of the Laplace equation (cf. (1.5)) in the lower half-plane R2

−(−d) =
{(y, z) : z < −d},

−∆φ0
1(y, z) = 0 , (y, z) ∈ R

2
−(−d).(3.21)

The Neumann boundary conditions on ∂R2
−(−d)

∂zφ
0
1(y,−d) = 0 , y < 0,

∂zφ
0
1(y,−d) = by2∂ζφ

0
2(y, 0) =

̺0λ

̺1 − ̺0
φ0
0(y) , y > 0,(3.22)

follow from (1.6), (3.10) and (3.7), (3.9), respectively. It is known by [32, Ch. 2] and
can be verified directly, that in the case above the threshold λ > λ† with φ0

0 as in
(3.17), there exists a unique solution of (3.21), (3.22) of the form

φ0
1(y, z) = C+r

1/2+iκΨ+(ϑ) + C−r
1/2−iκΨ−(ϑ),(3.23)
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where (r, ϑ) ∈ R+ × (−π, 0) are the polar coordinates with center at P− and Ψ±

are some smooth functions in the angular variable ϑ ∈ [−π, 0]. If λ = λ† and (3.18)
holds, we readily infer that

φ0
1(y, z)

=
2̺0λ

̺1 − ̺0
r1/2

(
C1

(
ln r sin

ϑ

2
+ (ϑ+ π) cos

ϑ

2

)
+ (C0 − 2C1) sin

ϑ

2

)
.(3.24)

In the case below threshold λ ∈ [0, λ†) a solution of the problem (3.21), (3.22) can
be found in the form

φ0
1(y, z) = C+r

1/2+κΨ+(ϑ) + C−r
1/2−κΨ−(ϑ);(3.25)

however, if 1/2 + κ is an integer, the function Ψ±(ϑ) must be replaced by Ψ0
±(ϑ) +

ln rΨ1
±(ϑ), where Ψ0

± and Ψ1
± are some smooth functions in the variable ϑ.

If λ > λ†, then (3.20), (3.2), and (3.23) yield

|∂zφ
1
1(y,−d)| = O(r−5/2) and |φ1

1(y,−d)| = O(r−3/2),(3.26)

which confirms that our previous conclusion on the last two terms in (3.8) was
correct. One can easily verify the same for λ ≤ λ†, too.

Above, we used simplified notation concerning the point P− in Fig. 1.1 b, and in
principle two changes,

y 7→ y + l− and b 7→ b−(3.27)

would be needed. To treat the point P+ in Fig. 1.1 b we should apply instead of
(3.27) the changes

y 7→ −y + l+ and b 7→ b+.

In addition, for the points P± in Fig. 1.1 a, the roles of the functions ϕ0 and ϕ1 must
be changed, while (3.15) and (3.19) have to be replaced by

λ† =
1

4
b
(
1−

̺0
̺1

)
and κ =

∣∣∣1
4
−

λ̺1
b(̺1 − ̺0)

∣∣∣
1/2

.

3.2. Cuspidal ”black hole” for interfacial waves. The cases below and above
threshold are crucially different, and this will be explained here for the point P−

in Fig. 1.1 b (we assume that b− ≤ b+). The function φ0
0+(y) := y−

1

2
+κ from (3.16),

with κ > 0 of (3.19), possesses finite energy in the cusp. This follows from the
calculation

δ∫

0

h(y)∫

0

∣∣∣
∂φ0

0+

∂y
(y)

∣∣∣
2

dzdy ∼ b
(
κ −

1

2

)2
δ∫

0

y2y2(κ−3/2)dy < +∞.

On the contrary, the energy of φ0
0−(y) := y−

1

2
−κ in the cusp is not finite, because

the integral

Cb
(
κ +

1

2

)2
δ∫

0

y2y−2(κ+3/2)dy

always diverges. This is why the choice of the Fredholm operator T − λ is exactly
prescribed: one has to include the asymptotic expression C+φ

0
0+(y) into the compo-

nent ϕ0 of the solution ϕ ∈ H, but certainly exclude C−φ
0
0−(y). Notice that both

asymptotic expressions for the component ϕ1 in (3.24) live in the Sobolev class H1.
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Above the threshold the functions φ0
0±(y) = y−

1

2
±iκ, see (3.17), possess infinite

energy, since the integral

δ∫

0

h(y)∫

0

∣∣∣
∂φ0

0±

∂y
(y)

∣∣∣
2

dzdy ∼ b
(1
4
+ κ

2
) δ∫

0

y2y−3dy

diverges at a ”logarithmic” rate. Accordingly, the operator T −λ with λ > λ† cannot
be Fredholm, because on one hand the piston mode (positive in the cross-section)
cannot be excluded from the asymptotic form of the solution ϕ ∈ H, but on the
other hand none of the functions C±φ

0
0±(y) is good either since they do not belong

to H.
The above observation hints to imposing proper radiation conditions at the cusp-

idal points P± in order to supply the problem (1.5)–(1.9) with a Fredholm operator.
A mathematically rigorous formulation of such conditions could be found follow-
ing the scheme [35], which involves weighted spaces with detached asymptotics,
that is, oscillating waves (3.17) of Section 3.1. However, we do not reproduce this
scheme here, since the goal of our paper is just the description of the spectrum of
the problem (1.5)–(1.9), while radiation conditions will be the subject of a planned
forthcoming paper on three dimensional water domains with cuspidal edges on the
boundary. Instead, we discuss a physical reasoning for radiation conditions and
wave phenomenon in a finite water volume.

Since the time-dependent velocity potential is sought in the form (1.4), we obtain
from (3.17) the following expressions:

W±
0 (y, z, t) = Re

(
e−iωty−1/2∓iκ

)
= y−1/2Re

(
e−i(ωt±κ ln y)

)
.(3.28)

Owing to the Sommerfeld radiation principle, the last factor in (3.28) shows that
the wave W+

0 moves to the direction of the cusp top P−, because at two instances
t2 > t1 there holds

e−i(ωt1+κ ln y1) = e−i(ωt2+κ ln y2) , if e−
ω
κ
t1 =: y1 > y2 := e−

ω
κ
t2 .

On the contrary, the W−
0 propagates from the point P− to the water massive, since

e−i(ωt1−κ ln y1) = e−i(ωt2−κ ln y2) , if e−
ω
κ
t1 =: y1 < y2 := e−

ω
κ
t2 .

The first factor y−1/2 in (3.28) leads to the following observation: the energy stored
in the peak subdomain

{(y, z) : −K − 1 < ln y < −K, 0 < z + d < h(y)}(3.29)

can be computed using (2.2) by

e−K∫

e−K−1

(
̺0

h(y)∫

0

∣∣∇W±
0 (y, z, t)

∣∣2dz + ̺20λ

̺1 − ̺0

∣∣W±
0 (y,−d, t)

∣∣2
)
dy

∼

e−K∫

e−K−1

(
̺0

(1
4
+ κ

2
)
by2y−3 +

̺20λ

̺1 − ̺0
y−1

)
dy

=
[ 2̺20λ

̺1 − ̺0
ln y

]y=e−K

y=e−K−1
=

2̺20λ

̺1 − ̺0
;(3.30)
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here we have used the identity κ2 = −1/4 + (λ̺0)/(̺1 − ̺0) following from (3.19)
and λ > λ†. In other words, the energy preserved in the K-dependent subdomain
(3.29) does actually not depend on K. This indicates, by physical reasoning, the
existence of a wave process, cf. a similar argument for a cylindrical wavequide in
[15]. We will demonstrate in the next section that the waves (3.28) give rise to a
singular Weyl sequence of the operator T − µ with µ as in (2.14). This leads to
the inclusion λ ∈ σc and also indicates mathematically the appearance of the wave
propagation phenomenon.

Similarity of wave processes in cuspidal and cylindrical waveguides follows much
more evidently from the Euler transform

y 7→ η = ln y , φ0
0 7→ Ψ0

0(η) = eη/2φ0
0(e

η),

which converts the differential equation (3.14) into

−
d2

dη2
Ψ0

0(η) =
(
−

1

4
+

λ̺0
b(̺1 − ̺0)

)
Ψ0

0(η) , η ∈ R.

3.3. Singular Weyl sequence and proof of Theorem 1.1. Before proceeding
with the construction of the Weyl sequence we prove an estimate for Sobolev func-
tions in the peak Π = {(y, z) : y ∈ (0, y0), z + d ∈ (0, h(y))}. For all ψ0 ∈ H1(Π)
we define the mean function ψ by

ψ(y) =
1

h(y)

−d+h(y)∫

−d

ψ0(y, z)dz.(3.31)

Lemma 3.1. Denoting s1 = z, s2 = −d and s3 = −d + h(y), there holds for all
ψ0 ∈ H1(Π) the estimate

y0∫

0

h(y)−2

−d+h(y)∫

−d

( 3∑

k=1

|ψ0(y, sk)− ψ(y)|2
)
dzdy ≤ C‖∂zψ0;L

2(Π)‖2.(3.32)

Proof. For s1 = z we use the Poincaré inequality

( −d+h(y)∫

−d

|ψ0(y, z)− ψ(y)|2dz
)1/2

≤
h(y)

π

( −d+h(y)∫

−d

|∂zψ0(y, z)|
2dz

)1/2

,

which implies

y0∫

0

h(y)−2

−d+h(y)∫

−d

|ψ0(y, z)− ψ(y)|2dzdy ≤
1

π2

y0∫

0

−d+h(y)∫

−d

|∂zψ0(y, z)|
2dzdy

=
1

π2
‖∂zψ0;L

2(Π)‖2.(3.33)

So we are left with the terms k = 2 and k = 3 in (3.32), which we denote by Ik.
Recalling the definition (3.31) yields (here ζ ≤ sk is assumed; the case ζ > sk goes
in the same way)

Ik =

y0∫

0

h(y)−4

−d+h(y)∫

−d

dz
∣∣∣

−d+h(y)∫

−d

(
ψ0(y, sk)− ψ0(y, ζ)

)
dζ

∣∣∣
2

dy
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=

y0∫

0

h(y)−3
∣∣∣

−d+h(y)∫

−d

( sk∫

ζ

∂ξψ0(y, ξ)dξ
)
dζ

∣∣∣
2

dy.(3.34)

Here, the inclusion [ζ, sk] ⊂ [−d,−d+h(y)] holds for the integration intervals. Thus,
it follows from (3.34) that

Ik ≤

y0∫

0

h(y)−3
( −d+h(y)∫

−d

dζ

−d+h(y)∫

−d

|∂ξψ0(y, ξ)|dξ
)2

dy

=

y0∫

0

h(y)−1
( −d+h(y)∫

−d

|∂ξψ0(y, ξ)|dξ
)2

dy(3.35)

and since

( −d+h(y)∫

−d

|∂ξψ0(y, ξ)|dξ
)2

≤

−d+h(y)∫

−d

dξ

−d+h(y)∫

−d

|∂ξψ0(y, ξ)|
2dξ

= h(y)

−d+h(y)∫

−d

|∂ξψ0(y, ξ)|
2dξ

by the Cauchy–Bunyakovski–Schwartz (CBS-)inequality, we see from (3.35) that

Ik ≤

y0∫

0

−d+h(y)∫

−d

|∂ξψ0(y, ξ)|
2dξdy = ‖∂zψ0;L

2(Π)‖2.

We obtain (3.32) from this and (3.33). ⊠

Proof of Theorem 1.1. Since the statement of Theorem 1.1 about the discrete
spectrum was already proved in Section 2.3, it is enough to show that the interval
[λ†,∞) is contained to the continuous spectrum of the water wave problem. To this
end we assume for the rest of the section that λ ≥ λ† and that µ is given by (2.14),
and we show that the operator T − µ has a singular Weyl sequence in the sense of
[5, §9.1]. i.e. a sequence {ϕ(N)}∞N=1 ⊂ H with properties (3.40), (3.41) and (3.42)
below. The reference [5, §9.1] then yields the claim about the continuous spectrum.

We introduce the functions ϕ(N) = {ϕ
(N)
0 , ϕ

(N)
1 }, N ∈ N = {1, 2, 3, . . .}, by

ϕ
(N)
1 (y, z) = 0 , (y, z) ∈ Ω1,(3.36)

ϕ
(N)
0 (y, z) = aNXN(− ln y)Y (y) , (y, z) ∈ Ω0,

where

aN = ‖X̂NY ;H‖−1,(3.37)

Y (y) = y−1/2+iκ (cf. (3.17), (3.18)), and X̂N (y) = XN(− ln y); moreover, XN is the
plateau function

XN (τ) = χ(τ − 2N+1)χ(−τ + 2N) ,
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Figure 3.1. Graph of the plateau function.

where

χ ∈ C∞(R), 0 ≤ χ ≤ 1, χ(τ) = 0 for τ ≥ 0 , χ(τ) = 1 for τ ≤ −1.(3.38)

The graph of XN is depicted in Fig. 1.4. Obviously,

|∂kyϕ
(N)
0 (y)| ≤ CaNy

−(1+2k)/2, for k = 0, 1, 2.(3.39)

Notice that in (3.36) the traces of ϕ
(N)
0 and ϕ

(N)
1 do not need to coincide on I in

order to make ϕ(N) belong to H. This is why we could omit in (3.36) the higher
order terms h2φ2

0 and hφ1
1 from the previous ansätze (3.3) and (3.4).

Owing to (3.37) we have

‖ϕ(N);H‖ = 1.(3.40)

Moreover, by the definition (3.38), suppϕ(N)∩ suppϕ(M) = ∅ for N 6= M , hence,
(3.40) implies that

ϕ(Nk) ⇁ 0 weakly in H(3.41)

for a subsequence (Nk)k∈N, as k → +∞. Two properties (3.40) and (3.41) of a
singular Weyl sequence are thus at hand (see [5, §9.1]). The third one, namely

‖T ϕ(N) − µϕ(N);H‖ → 0 as N → ∞(3.42)

requires much longer calculations. First of all, to estimate the coefficient (3.37) from

below, we replace the integration domain {(y, z) : e−2N+1

< y < e−2N , 0 < z < h(y)}

by subdomain where X̂N = 1 and thus get

‖X̂NY ;H‖2 ≥

e−2
N

−1∫

e−2N+1+1

((1
4
+ κ

2
)
h(y)y−3 + y−1

)
dy

=
((1

4
+ κ

2
)
b+ 1

)([
ln y

]y=e−2
N

−1

y=e−2N+1+1
+O(e−2N )

)

=
((1

4
+ κ

2
)
b+ 1

)(
2N+1 − 1− 2N − 1 +O(e−2N )

)
.

For N ≥ N0 the peak is included in the support of XN , and we infer for these N
from above that

aN ≤ c2−N/2(3.43)
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for some constant c > 0. Taking into account the formulas (2.1), (2.2), (2.14) and
(3.36) yields

‖T ϕ(N) − µϕ(N);H‖ = sup
∣∣〈T ϕ(N), ψ〉 − µ〈ϕ(N), ψ〉

∣∣

= sup
∣∣∣̺0(ϕ(N)

0 , ψ0)S +
1

̺1 − ̺0
(̺1ϕ

(N)
1 − ̺0ϕ

(N)
0 , ̺1ψ1 − ̺0ψ0)I

−
1

λ+ 1

( ∑

j=0,1

̺j
(
∇ϕ

(N)
j ,∇ψj)Ωj

+ ̺0(ϕ
(N)
0 , ψ0)S

+
1

̺1 − ̺0
(̺1ϕ

(N)
1 − ̺0ϕ

(N)
0 , ̺1ψ1 − ̺0ψ0)I

)∣∣∣

=
1

λ+ 1
sup

∣∣∣̺0
(
∇ϕ

(N)
0 ,∇ψ0)Ω0

+ λ̺0(ϕ
(N)
0 , ψ0)S

+
λ̺0

̺1 − ̺0
(ϕ

(N)
0 , ̺1ψ1 − ̺0ψ0)I

∣∣∣,(3.44)

where the supremum is computed over all ψ = {ψ0, ψ1} ∈ H such that ‖ψ;H‖ = 1.
Lemma 2.1 and (3.44) yield

‖ψ0;H
1(Ω0)‖+ ‖ψ1;H

1(Ω1)‖ ≤ C.(3.45)

Moreover, the trace inequality (2.18) and the normalization (3.37) also imply

‖ϕ
(N)
0 ;L2(I)‖ ≤ C.(3.46)

We observe using (3.38) that

suppϕ
(N)
0 ⊂ {(y, z) : y ∈ ΥN , 0 ≤ z ≤ h(y)},

ΥN = {y : e−2N+1

≤ y ≤ e−2N} , mes1ΥN = O(e−2N ).(3.47)

The relation (3.44) can be written as

(1 + λ)‖T ϕ(N) − µϕ(N);H‖

= sup
∣∣∣
∫

ΥN

(
̺0

−d+h(y)∫

−d

∂ϕ
(N)
0

∂y
(y)

∂ψ0

∂y
(y, z)dz −

̺20λ

̺1 − ̺0
ϕ
(N)
0 (y)ψ0(y,−d)

)
dy

+
̺21λ

̺1 − ̺0

∫

ΥN

ϕ
(N)
0 (y)ψ1(y,−d)dy

∣∣∣.(3.48)

The last term satisfies the estimate

̺1λ

̺1 − ̺0

∣∣∣
∫

ΥN

ϕ
(N)
0 (y)ψ1(y,−d)dy

∣∣∣ ≤ C‖ψ1;L
2(ΥN)‖.(3.49)

A scaling argument shows that the standard trace inequality in the stretched vari-
ables turns into

‖ψ1;L
2(ΥN)‖

2 ≤ ce−2N
(
‖∇ψ1;L

2(Ω1)‖
2 + e2

N

‖ψ1;L
2(ΛN)‖

2
)
,

where ΛN := {(y, z) : 2−N ≤ | ln y|2 + |z|2 ≤ 2−N+1, z > 0}. The estimate

‖ρ−1(1 + | ln ρ|)−1ψ1;L
2(Ω1)‖ ≤ C‖ψ1;H

1(Ω1)‖,(3.50)
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where ρ is the distance to the peak top, is a direct consequence of the one-dimensional
Hardy inequality

1∫

0

ρ−1| ln ρ|−2|g(ρ)|2dρ ≤ 4

1∫

0

ρ
∣∣∣dg
dρ

(ρ)
∣∣∣
2

dρ ∀g ∈ C1
c ([0, 1)).

From (3.50) we conclude that

‖ψ1;L
2(ΥN)‖ ≤ ce−2N /2

(
‖∇ψ1;L

2(Ω1)‖+ (1 + | ln e−2N |)‖ψ1;L
2(Ω1)‖

≤ Ce−2N−1

(1 +N)‖ψ1;H
1(Ω1)‖,

therefore, the bound (3.49) is infinitesimal.
It suffices to consider the integral

∫

ΥN

( −d+h(y)∫

−d

∂ϕ
(N)
0

∂y
(y)

∂ψ0

∂y
(y, z)dz −

̺0λ

̺1 − ̺0
ϕ
(N)
0 (y)ψ0(y,−d)

)
dy

= −

∫

ΥN

( −d+h(y)∫

−d

∂2ϕ
(N)
0

∂y2
(y)ψ0(y, z)dz

+
∂yh(y)

(1 + |∂yh(y)|2)1/2
∂ϕ

(N)
0

∂y
(y)ψ0(y,−d+ h(y))

+
̺0λ

̺1 − ̺0
ϕ
(N)
0 (y)ψ0(y,−d)

)
dy.(3.51)

We denote by JN the right hand side of (3.51), and decompose it as

JN = JN
◦ + JN

•,(3.52)

where

JN
◦ := −

∫

ΥN

( −d+h(y)∫

−d

∂2yϕ
(N)
0 (y)

(
ψ0(y, z)− ψ(y)

)
dz

+
∂yh(y)

(1 + |∂yh(y)|2)1/2
∂yϕ

(N)
0 (y)

(
ψ0(y,−d+ h(y))− ψ(y)

)

+
̺0λ

̺1 − ̺0
ϕ
(N)
0 (y)

(
ψ0(y,−d)− ψ(y)

))
dy(3.53)

and

JN
• := −

∫

ΥN

( −d+h(y)∫

−d

∂2yϕ
(N)
0 (y)ψ(y)dz +

∂yh(y)

(1 + |∂yh(y)|2)1/2
∂yϕ

(N)
0 (y)ψ(y)

+
̺0λ

̺1 − ̺0
ϕ
(N)
0 (y)ψ(y)

)
dy(3.54)

Our purpose is to show that JN → 0, as N → ∞.
We first consider the term JN

◦. By (3.39) and (3.43) we have

|∂kyϕ
(N)
0 (y)| ≤ C2−N/2y−(1+2k)/2, for k = 0, 1, 2.(3.55)
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With the notation of Lemma 3.1, we have

|JN
◦| ≤ C2−N/2

∫

ΥN

−d+h(y)∫

−d

y−5/2
( 3∑

k=1

|ψ0(y, sk)− ψ(y)|
)
dzdy,(3.56)

since

h(y) ∼ y2,
∂yh(y)

(1 + |∂yh(y)|2)1/2
≤ Cy,

̺0λ

̺1 − ̺0
≤ C.(3.57)

Using again the relation h(y) ∼ y2, CBS-inequality, and Lemma 3.1, we get

|JN
◦| ≤ C2−N/2

( ∫

ΥN

−d+h(y)∫

−d

y−1dydz
)1/2

‖∂zψ0;L
2(Π)‖

≤ C ′2−N/2
( ∫

ΥN

ydy
)1/2

≤ C ′′2−N/2 exp(−2N),(3.58)

since ‖∂zψ0;L
2(Π)‖ ≤ ‖ψ;H‖ = 1. Thus JN

◦ → 0, as j → ∞.
For the estimate of the term JN

• we need the observation that for all ψ ∈ H1(Π),

‖ψ;L2(0, y0)‖
2 ≤

y0∫

0

1

h(y)2

∣∣∣
−d+h(y)∫

−d

ψ0(y, z)dz
∣∣∣
2

dy ≤

y0∫

0

1

h(y)

−d+h(y)∫

−d

|ψ0(y, z)|
2dzdy

≤ C

∫

Π

y−2|ψ0(y, z)|
2dydz ≤ C‖ψ0;H

1(Π)‖2;(3.59)

the last inequality is proven in [33], Proposition of Section 2.
We decompose JN

• into two parts;

JN
• = JN

′ + JN
′′,(3.60)

where (see (3.2))

JN
′ := −

∫

ΥN

((
h(y)− by2

)
∂2yϕ

(N)
0 (y)

+
( ∂yh(y)

(1 + |∂yh(y)|2)1/2
− 2by

)
∂yϕ

(N)
0 (y)

)
ψ(y)dy(3.61)

and

JN
′′ := −

∫

ΥN

(
by2∂2yϕ

(N)
0 (y) + 2by∂yϕ

(N)
0 (y) +

̺0λ

̺1 − ̺0
ϕ
(N)
0

)
ψ(y)dy.(3.62)

By (3.2) and the Taylor expansion (1 + y)−1/2 = 1 − y/2 + O(y2) for |y| < 1, we
have

h(y)− by2 = O(y3) and
∂yh(y)

(1 + |∂yh(y)|2)1/2
− 2by = O(y2).(3.63)
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Using the estimates (3.63), (3.55), and (3.59) and the CBS-inequality we see that,
for large enough N

|JN
′| ≤ C2−N/2

∫

ΥN

y1/2|ψ(y)|dy

≤ C2−N/2
( ∫

ΥN

ydy
)1/2

‖ψ;L2(0, y0)‖ ≤ C ′2−N/2 exp(−2N),(3.64)

since ‖ψ0;H
1(Π)‖ ≤ C‖ψ;H‖ = C. Thus JN

′ → 0, as N → ∞.
Finally, since Y in (3.36) is a solution of the equation (3.14), we have

−∂y
(
by2∂yϕ

(N)
0

)
−

̺0λ

̺1 − ̺0
ϕ
(N)
0 = aN

(
by2Y ∂2yX̂N + 2by2∂yX̂N∂yY

+2byY ∂yX̂N

)
,(3.65)

where X̂N(y) = XN(− ln y). Now

|∂kyY (y)| ≤ Cy−(1+2k)/2, k = 0, 1, 2(3.66)

and

|∂kyXN(− ln y)| ≤ Cy−k, k = 0, 1, 2(3.67)

for all N ≥ N0. Hence, the inequality

| − ∂y
(
by2∂yϕ

(N)
0 (y)

)
−

̺0λ

̺1 − ̺0
ϕ
(N)
0 | ≤ Cy−1/2(3.68)

holds for the integrand of JN
′′, and it is supported in the set

ΘN := ΥN \ (e−2N+1+1, e−2N−1),(3.69)

since ∂yXN(− ln y) = 0 in the complement of ΘN . We also notice that

∫

ΘN

y−1dy =
( exp(−2N+1+1)∫

exp(−2N+1)

y−1dy +

exp(−2N )∫

exp(−2N−1)

y−1dy
)

= −2N+1 + 1 + 2N+1 − 2N + 2N + 1 = 2.(3.70)

Hence, by applying the CBS-inequality, we see that

|JN
′′| ≤ CaN

∫

ΘN

y−1/2|ψ(y)|dy

≤ C ′2−N/2
( ∫

ΘN

y−1dy
)1/2

‖ψ;L2(ΘN)‖ ≤ C ′′2−N/2.(3.71)

Here we used the equality ‖ψ;H‖ = 1 and the inequalities

‖ψ;L2(ΘN)‖ ≤ ‖ψ0;H
1(Π)‖ ≤ C‖ψ;H‖,(3.72)

which are valid for large enough values of N , since then ΘN ⊂ (0, y0) and the
inequality (3.59) can be applied. Thus JN

′′ → 0, as N → ∞.
The Weyl sequence is thus found, and this completes the proof of the main result

Theorem 1.1. ⊠
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