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The linear water-wave problem of F. John is studied in the case of a freely floating body
in an unbounded cylindrical channel, and a localization estimate for an eigenfrequency is
obtained. This eigenfrequency is compared with an eigenfrequency of a reference problem
involving an integro-differential boundary condition on the wetted surface of the body.
The localization estimate is derived by reducing the John problem to a standard spectral
problem for a self-adjoint operator in a complicated Hilbert space, and by an application
of spectral measure theory. Sufficient conditions for the existence of trapped modes are
found for the reference problem and then, using the localization estimate, for the original
problem. Applications of these conditions to concrete cases are given.
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1. Introduction

The linearized equations describing the small amplitude motion of the system
"liquid/object" under gravity were derived in John 1950. The mathematical
model covers both the case of a freely floating body and a fixed obstacle. As an
illuminating physical example one may think about a ship in a pond or channel,
a submarine in the ocean, or an underwater ridge. During more than 50 years
of reaserch, most of the attention has been paid on the second case, and many
remarkable results have been obtained, see for example the review articles Ben
Dhia & Joly 1993, Linton & Mclver 2007, the monograph Kuznetsov et al. 2002,
and the citation lists therein. Starting from the classical works John 1950, Ursell
1951, Jones 1953, Garipov 1967, linear water-wave problems have been studied
as spectral boundary value problems, and typical results include detection of
eigenfrequences inside the discrete spectrum or embedded into the continuous
spectrum. The corresponding eigenfunctions are recognized as trapped modes or
guided waves (localized solutions) in mechanics. We again refer to the cited items
for an extensive list of examples of trapped surface waves.

Apart from calculation of explicit solutions and various computational
methods, a tool for finding trapped modes arises from so-called comparison
principles. A succesful application of this method is presented in the paper Ursell
1987, where the first comparison principle for surface waves over a submerged
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obstacle was discovered. Namely, Ursell 1951 contains a construction of guided
surface waves along submerged circular cylinders, while in Ursell 1987 it was
shown that enlarging the cross-section of the cylinder leads to diminishing
of an eigenvalue, which therefore remains inside the discrete spectrum of the
corresponding two-dimensional problem. This observation ensures the existence
of trapped modes for a cylinder of any cross-section with positive area. We also
mention the paper Motygin 2008, where the above principle was adopted to
surface-piercing obstacles. Based on the notion Nazarov 2008 of trace operators
and basic results for self-adjoint operators in Hilbert spaces, a new approach was
proposed in Nazarov 2009. This has produced elementary proofs of known and new
comparison principles, as well as simple sufficient conditions for the existence of
trapped modes in various situations, see Nazarov & Videman 2009, 2010, Nazarov
2011a and others.

All of the above mentioned results are only related to fixed, immovable objects,
like submerged or surface-piercing obstacles and straight or periodic coastlines.
However, the John problem for freely floating objects differs in two essential
respects from the fixed obstacle case. First, of minor importance is the fact that
in addition to the velocity potential ¢ in the liquid, a column vector a of height
6 is involved. This descibes the motions, three translations and three rotations,
of the body. The second difference brings in serious difficulties and makes many
traditional approaches and methods useless. This is the intrinsic convertion of the
boundary value problem into an abstract equation involving the quadratic pencil

RBW'—)A(CU):Ao-I—wAl +w2A2 (11)

with self-adjoint operators A,, a special case of a holomorphic spectral family.
Of course, also the problem with a fixed obstacle involves the square w? of the
frequency, but since it has no linear term of type wA;, redenoting A\ = g~ 'w? with
an appropriate factor ¢!, the pencil (1.1) turns into a standard linear spectral
family.

During the last decade the interest in the John problem has been recovered.
Numerical schemes were worked out and some particular instances, mainly related
to the two-dimensional case and the heaving motion of a float, were considered in
a series of publications Mclver & Mclver 2006, Evans & Porter 2007, Mclver &
Meclver 2007, Porter & Evans 2008, 2009. Furthermore, as observed in Kuznetsov
2010, the hydrodynamic forces acting on two identical surface-piercing obstacles of
specific shape (see §4.2.2.3 in Kuznetsov et al. 2002) have null principal vector and
torque, and thus the velocity potential ¢ for fixed obstacles becomes a solution
to the John problem, because the body stays motionless.

General tools to compare spectra of quadratic pencils like (1.1) are missing (see
Gohberg & Krein 1969 and cf. the partial ordering of semi-bounded self-adjoint
operators in Chapter 10 of Birman & Solomyak 1987), and this makes it difficult
to derive a comparison principle and to find sufficient conditions for the existence
of surface waves trapped by freely floating objects. To overcome this difficulty,
in Nazarov & Videman (submitted) the authors developed a reduction scheme to
replace the quadratic pencil (1.1) with a continuous self-adjoint operator A in a
special Hilbert space H. As a result, several sufficient conditions for trapping
surface waves were derived, and in the environment of symmetric channels,
concrete couples of identical floating bodies meeting these conditions were found.



3

In Section 3 we repeat the reduction scheme, but in order to avoid its buffing
complexity we only deal with a unique symmetric body. Using the idea of Evans
et al. 1994, we impose an artificial Dirichlet condition on the mirror symmetry
plane. This requires three a priori restrictions on the rigid motion column a (see
(2.22)), and it results into a positive lower bound wy for the positive part of the
continuous spectrum. Under these assumptions we are able to derive in Theorem
2 a new sufficient condition for the existence of trapped modes.

However, the main goal of the paper is to employ a new idea of a so-called
localization estimate. We consider a reference problem with nonempty discrete
spectrum and show that a neighbourhood of its eigenfrequency certainly contains a
spectral point of the original John problem. If it happens that this neighbourhood
does not touch the continuous spectrum, then an eigenfrequency is found, and
making the neighbourhood as short as possible becomes a natural task. This
"localization estimate" somehow substitutes the comparison principle, which does
not hold true for freely floating objects. We shall use the theory of spectral
measures in this approach. Let us still mention that Nazarov 2011b contains
an incomplete comparison principle for freely floating objects in a symmetric
channel. This principle requires additional restrictions on the eigenfrequency of
the reference problem, and our present localization estimate explains why those
restrictions are needed.

The choice of the proper reference problem becomes a major challenge. As
discussed in Nazarov 2011b, the problem with a fixed obstacle cannot give a
good approximation of spectrum for the freely floating case. The coincidence of
the eigenfrequences observed in Kuznetsov 2010 is accidental; we continue this
discussion in Section 6. In Section 4 we impose integro-differential boundary
conditions on the immersed part of the body surface. Taking into account the
artificial Dirichlet conditions due to symmetry (2.20), we investigate the discrete
spectrum of the corresponding problem in variational formulation. In the same
way as in Nazarov 2008 and 2009 we derive two different sufficient conditions for
trapping surface waves. The integro-differential boundary condition, introduced
heuristically in Nazarov 2011b, is derived by solving the algebraic part of the
John problem while assuming formally that the buoyancy matrix, see (2.7)
and (3.5), vanishes completely. The latter may happen only for a submerged
body whose mass centre coincides with the buoyancy centre. This coincidence
of course destroys the requirement of John 1950 on the floating body to have a
stable equilibrium. Hence, a physical meaning of the reference problem becomes
doubtful, but being a mathematical tool, one should not expect it to have a fair
physical interpretation. The important point is that the smaller the buoyancy
matrix is, the better is our localization estimate. In Section 6 we continue the
argument for the choice of the reference problem.

The paper is organized as follows. In Section 2 we state the John problem in
a channel and introduce our symmetry assumptions. In Section 3 we reduce the
pencil (1.1) to a self-adjoint operator and examine its spectrum. The reference
problem is formulated and studied in Section 4 so that in Section 5 it will become
possible to make the comparison and obtain the localization estimate. Concluding
remarks are collected in Section 6.



2. Equations of motion.

Let II=R x w be a cylindrical channel such that its cross-section w is bounded
by the line segment v = {(y, 2) : |y| <,z =0} and a Lipschitz curve o connecting
the points (£/,0) in the lower half-plane R? = {(y, z) : 2 <0}. We rescale [ to 1
so that all coordinates and geometrical parameters become dimensionless. A body
© with two dimensional Lipschitz boundary 00 and compact closure © = © U 00
floats freely in the channel, and its non-empty submerged part and wetted surface
are denoted, respectively, by

E={x=(2,y,2) €0 :2<0}, {E={x€00 : 2<0}. (2.1)

We assume that the liquid (water) is homogeneous, incompressible, and
inviscid, while its motion is irrotational and of small amplitude. Under these
conditions, the velocity potential ¢(x, t) satisfies the Laplace equation in the water
filled, connected domain Q =11\ ©, and also the linearized kinematic boundary
condition

81‘2 ¢=—g0,¢
on the free water surface T =T\ 6, as well as the Neumann boundary condition

on the bottom and walls X =R x 0. Here, =R xy=0II\ X and § = {x€ O :
z=0} is the cross-section of © by I', ¢ >0 is the acceleration due to gravity,
0y = 0/0t denotes the time derivative and 9, =n'V the normal derivative; T
stands for the transposition, V is the gradient and n is the outward unit normal
vector defined almost everywhere on the Lipschitz surfaces ¥ and 9©. Notice that
the sets (2.1) may consist of several connected components but © is supposed to
be a domain. Moreover, we have to assume that € constitutes a Lipschitz domain
as well (see the comment to (3.3) below).

The motion of the body is of small amplitute, too, and it is coupled with the
motion of water through the kinematic condition John 1950

B (x,1) =n(x) " D(x — x*)da(t), zct.

Here,
-
a(t) = (al (t)’ az (t)’ az (t)’ ay (t)’ as (t)’ ag (t)) (22)
is a column describing the position of the mass centre x* of © at time ¢,
1
x* = . ng(x)dx , m= J o(x)dx, (2.3)
S S

while p(x) and m denote the density and total mass of the body, respectively.
Furthermore,

1 0 y 0 0 —=z
D(x) = 0O 1 - 0 =z O (2.4)
0 0 0 1 —y =

is the matrix of rigid motions so that the translations of © are given by the
components aj, as and a4, while 0;ag and 0sas, 0;ag express the angular velocities
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of ©® about the point x*. Note that the matrix (2.4) is composed in such a way
that the first three components of (2.2) correspond to horizontal motions of the
body, which are not influenced by the buoyancy forces.

Since external forces on the system “water/body” are absent, the linearized
equations of motion of the body arise from the conservation of linear and angular
momenta, and they read (cf. John 1950) as

Mota=—S50,¢ — gKa,

where M and K are symmetric 6 X 6-matrices and S is the integral vector
functional

Sp= J e(x)D(x — x*) 'n(x)dsy. (2.5)
&
Being a Gram matrix, the inertia matrix
M= JD(X —x*) " D(x — x*)o(x)dx (2.6)
e

is positive definite, but the matrix K related to the buoyancy is degenerate and
looks as follows:

_| O3 O3 I 0 =
K_[@g K,],K—KJrK,

K= Jd(w —a®y—y*) da — 2%y — y)dady , d(z,y)=(1,—y,2)(2.7)
0

K= =diag{0,I=, 15} , I = [(z — 2°)dx.

[1] —ory

Here, O3 is the null matrix of size 3 x 3, d(z,y) denotes a fragment of the matrix
(2.4), and in the integrals we write x* = (2°,y°, 2°*).

In the case the body O is surface-piercing, i.e.  # @, K? is a Gram matrix
constructed from linearly independent functions and hence positive definite. If the
body is submerged and § = @, then K vanishes, the rank of K’ becomes 2, and
K is still positive provided

29> 2%, (2.8)

where the buoyancy centre is denoted by

x% = (2%,4°,29) = dex. (2.9)

The condition (2.8), together with
2=z, o =y° (2.10)

is known to maintain the stable equilibrium of a floating submerged body
(see John 1950, Mei et al. 2005). For a surface-piercing body, the classical
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stability condition of Euler 1773 (see also the previous references) becomes a bit
more cumbersome but also leads to positivity of the matrix K with rank K =
3. Referring to the above cited publications, we write the stable equilibrium
condition in the condensed form

0#T=k=rank K=3, K>0,
==k=rank K=2, K>0, (2.11)

and, finally, we recall the Archimedean law

m=v=de. (2.12)

(1

We assume that the motion of the “water/body”-system is time-harmonic,

(6(x,1),a(t)) = Re(e ™" (o(x), a)), (2.13)

and write down the boundary value problem, the John problem, for the spectral
triple {w,,a}, consisting of the eigenfrequency w and compound eigenvector
{p,a} as follows:

—Ap(x) =0, x € Q, (2.14)
d.0(x) = g~ 'wp(x), xeT, (2.15)
Onp(x) =0, xex, (2.16)
Opo(x) = —iwn(x)" D(x — x*)a, TEE, (2.17)

gKa —iwSyp =w’Ma. (2.18)

We are interested in detecting trapped modes, which are solutions to the problem
(2.14)—(2.16) decaying at infinity; the rate is exponential due to the cylindrical
structure of the channel, cf. Mazya et al. 1991, Ch.1,3, and Nazarov 2009. Thus,
we do not need to supply the boundary value problem with radiation conditions
but just to seek for the velocity potential ¢ in an appropriate Sobolev space.
However, in view of the possible irregularities of the Lipschitz boundary 02 the
useful space is nothing but H'(Q) so that the problem must be reformulated as
a variational spectral problem, cf. Nazarov & Videman (submitted). This is done
in detail in Section 3, after imposing the artificial boundary conditions of Evans
et al. 1994. Let us next proceed with that and a discussion on the spectrum.

As verified in Nazarov & Videman (submitted), the continuous spectrum of
the John problem (in variational formulation) covers the whole real axis R of
the complex plane. In the sequel we employ the idea of Evans et al. 1994 about
artificial boundary conditions to create a non-empty interval

(—wi,wi) (2.19)

which may only contain discrete spectrum. Namely, we assume that both the
channel IT and the body © are symmetric with respect to the central plane {x :



y =0}, which formally means

Q={x:(z,—y,2) €}, o(x,y,z)=0(x,—y, 2) (2.20)

and y®* =y° =0. We also fix the origin such that *=0=2%, cf. (2.10). The
symmetry requirement (2.20) permits to impose the artificial Dirichlet condition
Evans et al. 1994

o(2,0,2) =0, (2.21)
and this, together with the restriction,
a] =a4 = a5 = 0 (2.22)

forbids surging, heaving and swaying motions of the body. We emphasize that due
to its definition (2.5), the functional S acts as follows:
S : Holdd — ngd, (223)
where
HYa(Q) = {pe HY(Q) : ¢ satisfies (2.21)}, (2.24)
CSqa = {a=(a1,...,a6)" €CC: (2.22) is fulfilled} (2.25)
and H'(Q) stands for the Sobolev space. In its subspace (2.24), an equivalent
norm is given by the Dirichlet norm ||[V¢; L2(Q)| = (V, Vap)}z/z, where (-,-)q is
the natural scalar product of the Lebesgue space L?().
As shown in Nazarov & Videman (submitted), Nazarov 2011b, the continuous

w-spectrum of the John problem, with additional restrictions (2.21), (2.22),
coincides with the set

(—00, —wi] U [wy, +00), (2.26)

where wy = (/gA+ and Ay >0 is the principal eigenvalue of the following model
Steklov problem

_(85 + ag)‘oo(ya Z) =0 ) (ya Z) Cwy
az(p(:% 0) = )‘w(yv 0) ) Yy € (07 l)? (2 27)
Bncp(y,z) = 0, (yvz) co, y>0, .
90(0’ Z) = 0, (0’ Z) € w,

in the half w;={(y,z)€w:y>0} of the cylinder cross-section. The
corresponding eigenfunction is denoted by ;.

Thus, the interval (2.19) indeed remains available for the discrete spectrum.
Any eigentriple

{w,p,a} € (—wy,wt) x Hygq(Q) x Clyq (2.28)

obviously remains as an eigentriple for the original problem in €, i.e., w is an
eigenfrequency embedded in the continuous spectrum, and {¢,a} is a trapped
mode with velocity potential having exponential decay at infinity.



3. Variational and operator formulations of the problem.

Following Nazarov & Videman (submitted) we formulate the boundary value
problem (2.14)—(2.18) as the integral identity

(Vo, Vib)a + g(Ka,b)c + iw(a, St)c — iw(Se,b)c
= g e, )y +w?(Ma,b)c V¥ {¢,b} € H'(Q) x C°, (3.1)

where (-,-)y and (-,-)c are the natural scalar products in L?*(Y) and CS,
respectively. We still call the variational problem (3.1) the John problem. It can
be restricted onto the product space Hly (Q) x C8,,. We then introduce the
Dirichlet scalar product in H',,(€2),

(p,¥) = (Vi, Vi)o (3.2)
and the trace operator T', Nazarov 2008, 2009,
<T(p7 ¢> = (907 w)T v 2 ¢ € H&dd(Q); (33)

this is positive, continuous, and self-adjoint with the essential spectrum [0, )‘T_ 1].
Note that ¢ =0 is an eigenvalue of T' with infinite multiplicity. Moreover, the
continuous spectrum (0, )‘T_ 1] emerges from surface wave processes at infinity; such
processes may also appear in a finite volume water domain, if the boundary is
not Lipschitz (see Nazarov & Taskinen 2010 and Nazarov & Taskinen (in press)),
however, our assumption on the Lipschitz property of 02 prevents the latter in
the present work.

The restricted problem can now be rewritten equivalently as an abstract
spectral equation in the Hilbert space H} () x C8,

I 0 © 0 iS* o\ _ of go'T 0 ®
(06 )(2)re(as D) (2) (70 a1 (%),
(

where I is the identity operator in H'(w) and S* is the adjoint of (2.23), (2.5).

The equation (3.4) gives rise to the quadratic operator pencil w— A(w) (a
polynomial spectral family), and, aiming to use general results for self-adjoint
operators in Hilbert space (cf. Birman & Solomyak 1987), we further process
it following the scheme developed in Nazarov & Videman (submitted). The
symmetry assumption (2.20) will lead to substantial simplifications.

To simplify the equation (3.4), we take into account the requirement (2.22)
and the structure (2.7) of the matrix K and write

e

000
Ki=( 00 0], k=Jy2dxdy+J(z—z')dx>0.
0 0 k ] :

Here, M35 is a scalar, Mg, =Mbl—) is a row of length 2, and M,, is a positive

definite 2 x 2-block of the 3 x 3-matrix M constructed similarly to (2.6) from



the fragment

0 y O
Diz,y,z)=| 1 —z =z (3.6)
0 0 —y

of the rigid motion matrix (2.4). Denoting a, = (as,a3)" and S, = (Sop, S3p) "
we omit the empty lines in the algebraic part of the system (3.4) and reduce the
latter to

—iwSyp = w (Mya, + Mysas), (3.7)
gkas —iwSsp = w*(Msya, + Mssas). (3.8)

We still introduce the function and the column
n=wg PTV2p  fi=(fo, f3, f5)| =wMFdl, (3.9)

where T1/2 is the positive square root of the positive, continuous, self-adjoint
operator T in (3.3) (see for example Th.12.33 in Rudin 1982 or §10.3 in Birman
& Solomyak 1987). We also split the (symmetric and positive definite) inverse
matrix N%= (M%)~! into the blocks N,,, Nys =N;; and Nps as in (3.5). From
(3.7) and (3.9) we derive

—iSyp = wMp,a, + wMysas = f, | (3.10)
—iNg, Sy + Nas fs =was
—iSya, = —iSy Ny, fi, — 1Sy Nys f5 = Sy Ny Syp — Sy Nys f.
These relations reduce the equations (3.7) and (3.9) to the spectral equation for
a linear pencil
BX =wDX in H=H!,;(Q) x HL4(Q) x C x C, (3.11)

where X = (¢,7,as, f5)| and the matrix operators B and D, respectively, take
the form

I+ SNyS, 0 0 iSNy 0 g 2T —isE 0

0 I 0 0 g~1/271/2 0 0 0

0 0 gk 0 ' iSs 0 0 1

—iN5S, 0 0 Nz 0 0 1 0
(3.12)

Both operators are clearly self-adjoint, and B is also positive definite due to the
calculation

(BX, X)y = (¢ + SINypSyp, ) + i(SkNys f5, ) + (n,1)

+gklas|* — i(N5, Sy, f5)c + Nas| f5]?

= (0, %) + (n, 1) + gklas|* + (N< _ZEW > , ( _Zgb@ ))C

We now set

(3.13)

V=B"x, £ A=B"?DB? a=1/w (3.14)
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and write (3.11) as
AV=aY ,YeH. (3.15)

The operator A is continuous, self-adjoint but not positive: due to the relation of
the spectral parameters o and w in (3.14), the essential spectrum of A equals the
segment

[—wi o, (3.16)

which is just the inversion of the set (2.26).
The spectral problems (3.15) with « >0, and (3.4) or (3.10) with w >0 are
evidently equivalent with each other. As a conclusion, we have obtained the

standard spectral problem (3.15) using the reduction scheme Nazarov & Videman
(submitted).

4. Reference problem.

Setting K = Qg formally in (2.18) yields
a=—iw TM1Sp (4.1)

and therefore the boundary condition (2.17) on the surface £ of the immersed
body turns into

Ohp(x)=—-n(x)"D(x—x*)M Sy, xe¢. (4.2)

To write the variational formulation (cf. Nazarov 2011b) of the boundary value
problem (2.14)-(2.16), (4.2) we again employ the artificial Dirichlet condition
(2.21) and take into account the evident formula

sz(x)n(x)TD(x —x* )M 71S®ds, = (M~1S®, Sip)c, (4.3)
13
thus obtaining the integral identity
(VO, Vi) + (M1, S¢)c = AP, ¢)r V¥ b € Hogq(Q). (4.4)

The notation ®, A is used instead of ¢, A in order to distinguish (4.4) from the
problems discussed above. Since M ™! is positive definite, the left hand side of
(4.4) can be taken as the new scalar product (®, ) in the Sobolev space (2.24).
Moreover, similarly to (3.3), the formula

(Tor®, )0 = (B, 4)r V¥ @, € HLyy(Q) (4.5)

generates the modified trace operator Tjs in H&dd(Q). It is still positive,
continuous and self-adjoint. The scalar product (®,v),, differs from the “old”
one, (3.2), by the term (M 'S¢, S¢)c, but this only gives rise to a compact
perturbation operator; recall that the integration surface in (4.3) is bounded and
hence the trace embedding H'(Q)) C L?(¢) is compact. As a consequence, Ty

inherits the essential spectrum [0, A" ] from T.
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Figure 1. The longitudinal cross-section of the channel with bodies.

Problem (4.4) converts into the abstract equation
Ty® = pd (4.6)

in H, containing the spectral parameter y = 1/A. The variational method of Evans
et al. 1994, Kamotskii & Nazarov 2003 was adapted in Nazarov 2009 and also
Nazarov & Videman (submitted) to water-wave problems, and it was used in
Nazarov 2011b to prove the following sufficient condition for the existence of
trapped modes in the problem (4.4):

THEOREM 1. Assume that

(Veor, Vior)z > (1, 01)0 + (M~ 1Swt, Set)e, (4.7)

where {Ai, o1} is the principal eigenpair of the model Steklov problem (2.27).
Then the dicrete spectrum of Ty is not empty, and thus the problem (4.4) has
an eigenvalue Ay € (0,)\t), and the corresponding eigenfunction ®1 € HL ,(S2)
constitutes a trapped mode.

The condition (4.7) is stronger than the sufficient condition in Nazarov 2009,

190100212 3 ey, 0) Py, (4.8)
= 0

which ensures a trapped surface wave in the case of a fixed obstacle ©,
corresponding to the boundary value problem (2.14)-(2.16), (4.2), with M~! =
0. For example, (4.8) is always satisfied when the body © is submerged, because
0 =2 and the right hand side of (4.8) vanishes. (Recall the classical works
Ursell 1951, 1987 and Garipov 1967 on trapped modes for submerged obstacles.)
However, the inequality (4.7) is not evident at all even in case (¢4, ¢3)g = 0. Note
that passing to the limit M — oo leads to a fixed obstacle ©, and this surely
contradicts with the Archimedean law (2.12), because the volume v is prescribed.
This is the very reason why the the fixed obstacle problem cannot form a good
approximation of the John problem.

We next employ the ideas of Nazarov 2008 to give an example of a trapped
mode in the problem (4.4). We denote, for some positive numbers b, d and h,

Gr={(z,y,2) : |z| <bye(0,d),z€(—h,0)}CcQ =N {y>0}, (4.9)

which is a water layer near the surface surrounding the submerged part (2.1) of
O (overshadowed in Fig.4.1).
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The lateral surface of GG}, is denoted by Lj; and the horizontal surfaces by Rg
and Rp. Considering the auxiliary Steklov problem

Av(x) = 0, x € Gy,

82v(:c,y,0) = /Bv(:r?y?())? x € Ry, (4 10)

—8zv(x,y,—h) = 0, X € Rp, '
v(x) = 0, X € Ly,
we readily compute one of its eigenpairs, which is not the principal one:
—2hF
—an (T (T F | —(z+2n)F _pl—e
V(x) =sin <3x) sin <Ey) (e*" +e (2+2h) ), B= F1+e——2hF’ (4.11)

with F'=7vb~2 + d—2. Because of the homogeneous Dirichlet condition on Ly,
we can extend V as null to Q4, and then to 2 as an odd function in y. Since V'
is odd in both variables x and y, we obtain the equality

Sv= J V(w,y,—h)D(w,y,z = 2*)7(0,0,~1) T ddy =0€C®  (4.12)
Ro

which is a crucial property of (4.11). We insert this trial function to the very
definition of the operator norm ||Tj/||, obtaining

Tyv,v Ty V,V
Tull= sup artethe, Gats
verl, @ (UM (V.V)m

IV L2(10)|1” _ Vs L2(Ro)|1?

IVVELAHQ)|]P + (M-1SV,SV)e  [[VVLA(Gh)|]?

l B 11 +€_2hF
B F1—e 2k
From (4.11) it follows that B~! and ||T)| can be made arbitrarily large by
preserving the sizes b, d and diminishing h. In particular, for a certain hy >0
and h < hy there holds the inequality || T[] > p4, where pup = Ay 1is the end point

of the continuous spectrum [0, 4] of Tps. Since the norm of a continuous self-
adjoint operator always belongs to its spectrum, we conclude that py := ||Th|| is
an eigenvalue of Tjs. Thus, A := ul_l € (0, ;) is an eigenvalue of the auxiliary
problem (4.4), or, the problem (2.14)-(2.16), (4.2). We found a trapped mode
@y € Hl,4(Q), and the desired example is completed.

5. Localization estimate for an eigenfrequency.

According to the spectral theorem (see Rudin 1982, Thm. 12.21, 12.22; or Birman
& Solomyak, Thm.6.1.1) any continuous self-adjoint operator A:#H — H can be
associated with an operator valued spectral measure E 4, which in turn defines
the scalar valued positive measure py y = (E4Y,Y)y for any element ) € H. We
need the following formulas, which can be found for example in Theorem 12.21 of
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Rudin 1982 or in the proof of Theorem 6.1.3 of Birman & Solomyak 1987:

VHE = [duyytt) for yen,
R

IAY — ay; HI?

J(t — a)%duy y(t) for Y €H and a €R. (5.1)
R

Let {A,®} be an eigenpair of the problem (4.5). Recalling the formulas (4.1)
and (3.9), (3.14), we set

a=w=(gA)V?, X =(pmasf5) , V=B X,
o=, n=wg PT?®  a=—iw 'M7'5%, f=wMa=—iS®.(5.2)
Since the components (2.22) of the comlumn a vanish, (3.13) and (4.5) imply
IV HIP = (BX,X)y = (®,®) + g'w*(T®, ) + gklas|* + (M 'SP, 5)c
= 20 ®; L*(T)|* + gklas .
Then

[AY —aYiH| = sup [(AY = Y, W)l
WEH, ||W;H||=1

sup |(wDX — BX,U)y| ;
UEH, ||BY 2U;H||=1

here we have changed W to U = B~Y/2W and used (3.14). Let us calculate the
components of the column

BX —wDX = (4,Y, A, F)".
In view of the structure of the matrix operators (3.12) we obtain
U = @+ SiNySyp +iSy Nis fs — wg™ 2T + iwS3as
= ®+ SiN,Sy® + Sy N,5S5® — g LW TP + SE(M~15®)5
= &4+ S*M1SP - ATD®=0,
Y = n—wg 2TV = g PTV2E — T 20 =0,
A = gkas —iwSsp — wfs = gkas — iwSs® + iw(SP)5 = gkas,

S

F = —iNgSpp + Nssf5 — was = —iNg, Sp® — i N5555D + i(M_15CI>)5 =0.
We now see that
IAY — a3 H| = w™" sup [gkasbs| = w ™'/ gk|as|*. (5.3)

Indeed, the supremum is computed over all U = (¢,&,b,h)T € H such that
(BU,U)y =1, while the latter formula together with (3.13) yields the inequality
gk|bs|?> <1, and this readily leads to (5.3).
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The above calculations show that
|AY —aY;H|| 1 gklas|*
oA, @ —_— = . 5.4
W) =" =W\ 2818 LT + ghlas G4

Taking some 6 > §(A, P) we assume that the segment v(d) = [a — §, + 8] does
not contain a point of the spectrum of A. Using (5.1) we then write

e L IR R

R\v(0)
> 4 J duyy(t)=52Jduy7y(t)=52||y;7i|l2,
R\v(4) R

which is absurd due to the choice of ¢ and (5.4). Hence, the segment v(d) must
have a non-empty intersection with the spectrum of A. If in addition

1 1
——0>—, (5.5)
w ws
then the intersection becomes free of the continuous spectrum (3.16) of A and
thus must contain an eigenvalue a1 = (w1)~! of the discrete spectrum of A. This
means that the problem (3.1) gets an eigenfrequency wy > 0 with a trapped mode
{p.a} € Hygq(Q) x Clyq
Let us formulate the result obtained above.

THEOREM 2. Let {A1,®1} € (0,A\+) x HL  (Q) be an eigenpair of the reference
problem (4.4), ®1 normalized in L*(Y), and let s5 be the fifth component of the
column

s=M"15%y, (5.6)
where M is the inertia matriz (2.6) and S is the functional (2.23). If

A1 ]{7|S5|2
1> Vo TV 2R ks (5:7)

then the problem (3.1) has an eigenfrequency wy such that

\/gAl k|85|2
— = 1‘ <G| =——"7- 5.8
‘ w1 —\ 2A% + kss|? (58)

Note that, first, A < A\ and the first term on the right of (5.7) is strictly less
than 1, and, second, the condition (5.7) ensures the existence of an eigenfrequency
embedded into the continuous spectrum of the problem (3.1). It is different from
the sufficient conditions of Nazarov 2011b and Nazarov & Videman (submitted),
which also concern modes trapped by freely floating bodies.

Applications of the method, which we have developed above for localization
estimates, will not be restricted to Theorem 2.
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6. Concluding remarks.

Since the factor k, from (3.5), does not appear in the reference problem (4.5), it
is straightforward to give an example of a trapped mode, based on our study in
Section 4 on wave processes in the near-surface water-layer (4.9). Indeed, after
finding an eigenpair {Ay, ®1} € (0, \;) x H.;(w) we may choose k so small that
(5.7) is valid, since the first term on the right hand side of it is smaller than 1. We
emphasize that for a submerged body with § = & one has k — +0, if 2* =2 — 0
(see (2.9) and (3.5)). The relations 2® ~ 2® and hence k < 1 can be achieved by
redistributing the mass inside the fixed volume ©, that is, by varying the density
o(x) while keeping the matrix (2.6) unchanged and the conditions (2.8), (2.20)
satisfied. If the body © is surface-piercing, then to make k small we need to assume
that the cross-section # =© NI is small, cf. Fig. 4.1,b. It should be stressed here
that the analysis at the end of Section 4 is local, and the existence of an eigenvalue
Ay € (0, A\y) is proven without any global assumptions on the geometry of © or II.
Moreover, a simple asymptotic analysis of singular perturbations, Maz’ya et al.
1991, Ch. 2,5, would demonstrate that varying 6 at some distance from G}, has
only small influence on the eigenvalue.

The inequality (5.8) must be regarded as a localization estimate, since it
contains an estimate for the deviation of w; from /gA;. We emphasize that in
the case s5 =0 the quantities wi and +/gA; coincide. This curious observation has
a clear physical backround. The heaving and pitching motions are forbidden by
the symmetry restriction (2.22), and the rolling is cancelled, too, by the condition
s5=0, see (5.6) and (4.1), hence, we have Ka =0, and the formal derivation
of the integro-differential boundary condition (4.2) becomes fully rigorous. In
other words, the equality s5=0 turns {Aj, &1, —i(gA;)"/2M 1S} € (0, \;) x
Hl, (w) x C8,, into a spectral triple of the John problem (3.1).

It is worthwhile to point out the difference between the above conclusion and
a result in Kuznetsov 2010. First, we do not need a complete annulation of the
motion column « (yawing and swaying may appear in M ~1S¢), and, second, the
localization estimate allows for a perturbation, because the sufficient condition
(5.7) still remains valid, if s5 is small.

We conlude by a remark that the present approach gives a straightforward way
to find motionless freely floating bodies supporting trapped modes. To this end,
we just assume additional symmetry with respect to the plane {z =0},

Q:{X : (—.fL‘,y,Z)GQ} ) Q(xayvz):lg(_xvyvz)’ (61>
and impose the duplicate of the artificial boundary condition
©(0,y,2) =0 (6.2)
with the concomitant restrictions
a2 = a3 =ag = 0, (63)

cf. (2.20), (2.21) and (2.22), respectively. Since the velocity potential ¢ is now
odd both in z and y, we have Sp =0, cf. (4.12). Hence, if

Qi ={x€eQ:2,y>0}, Oi;:={x€0:z,y>0}
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and @, is a trapped mode of the water-wave problem in €4, with the fixed
“quarter” obstacle ©4,, then extending ¢ to 2 as an odd function of x and
y and augmenting with the null column ¢ =0 give a trapped mode for the John
problem with the same eigenfrequency. The analysis of trapped modes arising from
the near-surface layer is local (in Nazarov 2008 and also in Section 4), hence, the
appearance of the additional Dirichlet condition (6.2) does not affect the existence
of trapped modes for the problem in 4., ©, . Of course, we did not use the
additional symmetry assumption (6.1) in Section 4.
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