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Abstract. We construct asymptotic expansions as ε → +0 for an eigenvalue
embedded into the continuous spectrum of water-wave problem in a cylindrical
three dimensional channel with a thin screen of thickness O(ε). The screen may
be either submerged or surface-piercing. The channel and the screen are mirror
symmetric so that imposing the Dirichlet condition in the middle plane creates an
artificial positive cut-off-value Λ† of the modified spectrum. The wetted part of
the screen has a sharp edge. Depending on a certain integral characteristics I of
the screen profiles, we find two types of asymptotics, Λ†−O(ε2) and Λ†−O(ε4) in
the cases I > 0 and I = 0, respectively. We prove that in the case I < 0 there are
no embedded eigenvalues in the interval [0,Λ†], while this interval contains exactly
one eigenvalue, if I ≥ 0. For the justification of these result, the main tools are a
reduction to an abstract spectral equation and the use of the max-min-principle.

1. Introduction

1.1. Formulation of the problem. We investigate the interaction of water-waves
with a thin screen, which is submerged or surface piercing in a cylindrical three
dimensional channel. The channel is infinite and invariant along the x1-direction,
moreover, it and the screen are assumed to be mirror symmetric. The wave motion
is supposed to take place in an incompressible and inviscid fluid.

We consider the linear-water wave equation, where the spectral parameter, related
to wave motion, appears in the Steklov boundary condition on the free water surface.
Our aim is to discuss the existence and uniqueness of an eigenvalue embedded in
the continuous spectrum. Our main results state that such an eigenvalue exists
depending on the behaviour of a certain integral characteristics I(h) to be defined
later. Indeed we shall show that, in the case I(h) < 0, no eigenvalues exist in the
interval (0,Λ†), where Λ† is a positive, artificial cut-off point, and that for I(h) ≥ 0
an eigenvalue does exist in (0,Λ†). However, in the cases I(h) > 0 and I(h) = 0
the eigenvalues have different asymptotic behaviour. For a sufficiently thin screen
an eigenvalue is shown to be unique in (0,Λ†) so that the inequality I(h) ≥ 0
becomes a criterion for a trapped mode. The edge of the screen is assumed to be
sharp, which simplifies our justification scheme but on the other hand requires an
elaborate analysis of singularities of solutions on the edge, see Section 3.3.

Let us start by describing the water domain under consideration and formulat-
ing the spectral problem. The cylindrical three dimensional channel (Fig. 1.1.a) is
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Figure 1.1. Channel and its cross-section.

defined by

Π = {x = (x1, x2, x3) = (x1, x
′) : x1 ∈ R, x′ ∈ ̟} = R×̟,(1.1)

where the cross-section ̟ ⊂ R
2 is a bounded domain, the boundary ∂̟ of which

consists of the line segment

γ = {x′ = (x2, x3) : z = x3 = 0, |x2| < l} , l > 0,(1.2)

and of a smooth arc ς ⊂ R2
− = {(x2, x3) : x3 < 0} connecting the points P± =

(±l, 0).
The thin screen Θε depending on the small parameter ε > 0 is described as follows.

Let θ ⊂ R
2 an open subset of ̟, such that P± /∈ θ = θ∪∂θ. Assuming that two, not

identically zero profile functions h± ∈ C2(θ) are given such that h = h+ + h− ≥ 0,
we define the thin screen, flat screen and the profile boundary, respectively, by

Θε = {x : x′ ∈ θ,−εh−(x′) ≤ x1 ≤ εh+(x
′)} ,(1.3)

Θ0 = {x : x′ ∈ θ, x1 = 0},(1.4)

θε± = {x : x′ ∈ θ, x1 = ±εh±(x′)} .(1.5)

By rescaling we reduce the characteristic size of the cross section ̟ to one and,
therefore, make the Cartesian coordinates x and all geometric parameters dimen-
sionless. To avoid many inessential technical difficulties we assume that the curve
ψ = ∂θ ∩ ̟ is smooth and that ψ and ς both intersect γ at right angle α = π/2.
Note in particular that in this case the boundary is non-cuspidal and there does not
appear wave processes in finite volume, contrary to cases considered in [27, 28].

We denote by Ωε = Π \Θε, ε ≥ 0, the channel (1.1) with the thin or flat vertical
screen (1.3), Fig. 1.2.a, and consider the Steklov spectral problem describing the
propagation of water-waves along the horizontal free surface

Γε = Γ \Θε,(1.6)

where Γ = γ × R is the intact channel surface . Notice that Γ can be pierced by
the screen, but in the case ∂θ ∩ γ = ∅ the obstacle Θε is submerged, and, therefore
Γε = Γ. The bottom and walls Σ = ς × R of the channel Π can be touched by the
obstacle, too, and we denote

Σε = Σ \Θε.(1.7)



EMBEDDED EIGENVALUES FOR WATER-WAVES 3

a)

b)

c)

d)

Figure 1.2. Channel with screen in different positions.

Let us formulate the problem. For any ε > 0, the velocity potential uε satisfies
the Laplace equation

−∆uε(x) = 0, x ∈ Ωε,(1.8)

the Neumann (no-flow) boundary condition on the wetted surfaces (1.7) and (1.5),

∂νu
ε(x) = 0, x ∈ Σε ∪ θε+ ∪ θε−,(1.9)

and the kinematic condition on the free surface (1.6)

∂zu
ε(x) = λεuε(x), x ∈ Γε.(1.10)

We denote the gradient and Laplacian with respect to the variable x by ∇ and ∆,
while ∂z and ∂ν stand for the partial derivative with respect to z = x3 and the outer
unit normal, respectively. Moreover, λε = g−1(ωε)2 is a spectral parameter, where
g > 0 is the acceleration of gravity and ωε > 0 is the frequency of time harmonic
oscillations.

We make the following assumptions on symmetry and shape of the screen, the
role of which will be discussed in Section 1.3.

1◦. Both ̟ and θ are symmetric with respect to the axis {x′ : x2 = 0}.
2◦. Both profile functions h± in (1.3), (1.5) are even in x2.
3◦. We have h±(x

′) = 0 for x′ ∈ ψ = ∂θ \ γ.
1.2. Main results and plan of the paper. It is known that the spectrum of the
problem (1.8)–(1.10) is continuous and coincides with the intact closed positive semi-
axis R+ = [0,+∞) ⊂ C, see [13]. However, it may contain embedded eigenvalues
associated with exponentially decaying eigenfunctions. The main purpose of our
paper is to derive and justify an asymptotic formula for such eigenvalues as well as
to prove a uniqueness result. To this end we shall use in Section 1.3 the symmetry
assumptions 1◦−3◦ to introduce a problem (1.15)–(1.18) with an artificial Dirichlet
condition on the symmetry plane. The continuous spectrum of this problem is known
to be the interval [Λ†,+∞), where the threshold Λ† is positive. In Sections 2 and 3
we construct formal asymptotics for an eigenvalue

λε• = Λ† − λ̂ε , λ̂ε → +0 as ε→ +0.(1.11)

of the problem (1.15)–(1.18); λε• is also an eigenvalue of the problem (1.8)–(1.10).
We shall apply asymptotic analysis, which involves rectifying the screen Θε and
transferring the Neumann boundary conditions onto the faces of the flat screen Θ0.
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Moreover, in Section 2 we introduce an integral characteristics (2.28), denoted by

I(h), such that for I(h) > 0 the correction term λ̂ε ≈ λ0ε
2 is positive, but for

I(h) < 0 it is not. We can now formulate the first main result of our paper.

Theorem 1.1. Assume that the conditions 1◦–3◦ hold true. Then, there exists ε1 =
ε1(θ, h±) > 0 such that
1) if I(h) < 0, the problem (1.8)–(1.10) has no eigenvalue in the segment [0,Λ†],
when ε ∈ (0, ε1],
2) if I(h) > 0, the problem (1.8)–(1.10) has for every ε ∈ (0, ε1] a unique eigenvalue
(1.11) inside the segment [0,Λ†]. The coefficient λ0 > 0 is given by (2.31), (2.28)

and the asymptotic remainder λ̃ε = λ•−(Λ†−λ0ε20) = λ0ε
2
0−λ̂ε satisfies the estimate

|λ̃ε| ≤ c1ε
5/2,(1.12)

where c1 is independent of the small parameter ε.

The case I(h) = 0 will be examined in Section 3, where a new characteristics

J(h) > 0, (3.22), as well as the formula λ̂ε ≈ λ1ε
4 will be derived. The related cal-

culations become much more complicated, and they crucially rely on the assumption
3◦. The corresponding result is formulated as Theorem 3.1 below.

The asymptotic procedure will be justified in the last two sections. In Section
4 we prove uniqueness assertions, namely, we verify that in the case I(h) < 0 the
interval (0,Λ†) does not contain eigenvalues at all, but in the case I(h) ≥ 0 the
eigenvalue λε ∈ (0,Λ†) is unique. In Section 5 we show that indeed, the eigenvalue
λε exists and has the asymptotic form claimed in Theorems 1.1 and 3.1. Moreover,
we give estimates for the asymptotic remainders. All these results are based on
the reduction of water-wave problem (1.15)–(1.18) to the abstract spectral equation
(4.18) and the application of basic theory of self-adjoint Hilbert space operators, cf.
[2, 31].

We finish the paper with several particular conclusions, possible generalisations
and open questions.

1.3. Role of symmetry restrictions. Operator theoretic methods, crucial in our
paper, work only for the discrete spectrum, but the problem (1.8)–(1.10) cannot have
isolated eigenvalues, since the continuous spectrum is R+ = [0,+∞). To create an
artificial positive cut-off value Λ† we borrow an elegant idea [6] of the Dirichlet
boundary condition on the midplane of the the waveguide Πε, for which we need the
symmetry assumptions 1◦, 2◦. These requirements allow us to restrict the problem
(1.8)–(1.10) to the half of the channel Ωε,

Ωε
♭ = {x ∈ Ωε : x2 > 0},(1.13)

and to impose the artificial Dirichlet condition on the middle plane

Υε = {x ∈ Ωε : x2 = 0} = Υ \Θε ,

Υ = υ × R , υ = {x′ ∈ ω : x2 = 0}.(1.14)

All objects restricted to the domain (1.13) are supplied with the subscript ♭ so that
the new problem reads as

−∆uε(x) = 0, x ∈ Ωε
♭ ,(1.15)

∂νu
ε(x) = 0, x ∈ Σ♭ ∪ θε+,♭ ∪ θε−,♭(1.16)

∂zu
ε(x) = λε♭u(x), x ∈ Γ♭,(1.17)
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uε(x) = 0, x ∈ Υε.(1.18)

A reason for the artificial boundary condition (1.18) is that, owing to general re-
sults in [11], [26, §3.1, §5.1], the continuous spectrum of the problem (1.15)–(1.18)
coincides with the ray [Λ†,+∞), where Λ† is nothing but the first eigenvalue of the
model problem on the half ̟♭ of the cross-section ̟:

−∆′U(x′) = 0, x′ ∈ ̟♭,(1.19)

∂νU(x
′) = 0, x′ ∈ ς♭(1.20)

∂zU(x
′) = ΛU(x′), x′ ∈ γ♭,(1.21)

U(x′) = 0, x′ ∈ υ.(1.22)

Here, ∆′ is the Laplacian in the coordinates x′. Due to the Dirichlet condition
(1.22), the first eigenvalue Λ = Λ† is positive and can be computed from the max-
min-principle

Λ† = inf
V

‖∇′V ;L2(̟♭)‖2
‖V ;L2(γ♭)‖2

,(1.23)

where the infimum is taken over all V ∈ H1
0 (̟♭, υ) \ H1

0 (̟♭, γ♭) and H1
0 (̟♭, ω) is

the Sobolev space of functions vanishing in the subdomain ω ⊂ ̟♭. According to
the strong maximum principle the corresponding eigenfunction U† can be chosen
positive in ̟♭ and subject to the normalization condition

l∫

0

|U†(x2, 0)|2dx2 = 1.(1.24)

Since the cut-off value (1.23) is positive, the problem (1.15)–(1.18) may still have
discrete spectrum in the interval (0,Λ†). Moreover, the odd extension of an eigen-
function uε ∈ H1(Ωε

♭ ; Υ
ε) of (1.15)–(1.18) is smooth and harmonic, and therefore it

becomes an eigenfunction of the original problem (1.8)–(1.10). In this way, eigen-
values embedded into the interval (0,Λ†) can be examined using operator theory.

Remark 1.2. It was observed in [22], in connection with a different spectral problem,
that the existence of the eigenvalue (1.11) for (1.8)–(1.10) implies the existence of a
solution, stabilizing at infinity, for the limit problem corresponding to ε = 0,

−∆u0(x) = 0, x ∈ Ω0
♭ = Π♭ \Θ0

♭ ,(1.25)

∂νu
0(x) = 0, x ∈ Σ♭ ∪ θ0+,♭ ∪ θ0−,♭(1.26)

∂zu
0(x) = Λ†u

0(x), x ∈ Γ♭,(1.27)

u0(x) = 0, x ∈ Υ0.(1.28)

In our case this stabilizing at infinity-solution can be readily found: it is

u0(x) = U†(x
′),(1.29)

where U† is the eigenfunction of (1.19)–(1.22) associated with the eigenvalue Λ†.
Indeed, on the surfaces θ0± = {x : x′ ∈ θ, x1 = 0} of the flat screen (1.4), the
derivative ∂ν equals ∓∂1 = ∓∂x1

, while the stable wave (1.29) does not depend on
the longitudinal coordinate x1.
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1.4. Literature review. There exist quite many interesting results about eigen-
frequencies of water-waves in different open geometries, like the half-space of an
infinite channel with obstacles, obtained with miscellaneous methods. We refer to
the review papers [14, 5] and the monograph [13] for exhaustive expositions, and
mention here only a few cases.

The first example of an eigenvalue belonging to the discrete spectrum of a prob-
lem on oblique waves for a submerged circular cylinder was proposed in [32]. An
eigenvalue embedded in the continuous spectrum was constructed in [12] by means
of the semi-inverse method. The results in these pioneering papers were obtained by
analytic calculations, and they have inspired many other publications with analytic,
operator theoretic or numerical methods. In particular, the existence of eigenval-
ues below the continuous spectrum has been verified with the help of a comparison
principle in the paper [33], which also extends the results of [32] to a cylinder with
an arbitrary cross-section with positive area.

The papers [19, 21] and also [29] contain an approach relying upon a reformulation
of the water-wave problem as a self-adjoint operator in a specific Hilbert space and
an application of the max-min-principle, see e.g. [2, Thm. 10.2.2.] and [31]. This
method has given rather simple proofs of known facts and also new results. In
particular, assuming the symmetry property 1◦–2◦ and taking a screen Θε, ε > 0,
which is either submerged or of null thickness h = 0 (the case of an absolutely flat
screen (1.4) excluded), it follows from [19] that the problem (1.8)–(1.10) has an
eigenvalue and the corresponding eigenfunction decays exponentially at infinity; see
also [35]. This result cannot be obtained by the approach of [33], because mes3Θ

ε = 0
in the case h = 0. Moreover, the paper [19] gives a simple sufficient condition for
the existence of trapped modes supported by surface-piercing obstacles, but it does
not provide any uniqueness result. In Section 6.1 we shall show that in the case of
small ε this condition becomes a necessary condition for a unique eigenvalue.

In addition to the above described approach of [6], which requires the symmetry
conditions 1◦ and 2◦, there exists another method [22, 25] to detect embedded
eigenvalues. This is based on the asymptotic analysis of the so-called augmented
scattering matrix, which provides a criterion for the existence of trapped modes.
This approach does not require the symmetry of the domains ̟, θ, or the evenness
of the profile functions h±. Instead, it uses the natural instability of embedded
eigenvalues and performs a very fine tuning of several geometric parameters of the
screen shape in order to keep an eigenvalue in the continuous spectrum. We plan
to return to this later. We emphasize that the eigenvalue λε•, to be found in the
sequel, is stable, when h± are perturbed with functions even in x2, but asymmetric
perturbations may lead λε• out of the spectrum and turn it into a point of complex
resonance, cf. [1, 23].

The method of matched asymptotic expansions, cf. [34, 9] will be employed
in Sections 2 and 3 by applying the interpretation of [20, 22]. Related asymptotic
procedures have been used in [8, 7, 20, 3, 4] etc. to describe asymptotic behaviour of
eigenvalues of different physical systems in cylindrical waveguides with small regular
and singular perturbations. However, the present work is quite different in several
aspects. Let us conclude this section by discussing that.

First of all, the reference waveguide Ω0 = Π \Θ0 has originally a large defect, the
flat screen (1.4), but it is known not to possess an eigenvalue. The two papers [35, 24]
treat problems for two-dimensional water-wave and acoustic waveguides with similar
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screens. Asymptotic analysis is much simpler in dimension 2, and in the citations
it is thus possible to investigate the boundary layer phenomenon in the vicinity of
rounded, chamfered and biased ends of the linear screen. Such boundary layers
have not been investigated yet in dimension 3, although a few particular results
can be found in [15, Part IV]; see also Section 6.3 of the present paper. Thus, we
unfortunately have to accept the restriction 3◦: this makes the edge of the screen

(1.30) Ψ = {x : x1 = 0, x′ ∈ ψ}
dihedral or cuspidal, see Fig. 1.2.b-d, but it avoids the boundary layer effect. See
Section 6 for a further discussion.

Second, we deal with screens which pierce the free surface, Fig. 1.2.b, and abut the
walls and bottom, Fig. 1.2.d, while in [35] the screen is situated inside the channel,
Fig. 1.2.c. Note that in the case of a surface-piercing screen Θε we are able to single
out shapes, which do not support trapped modes for any λε ∈ (0,Λ†), while screens
which always trap a wave are outlined in Fig. 1.2.c,d.

Third, although the sharp edge (1.30) of the screen causes singular behaviour of
the velocity potential uε, the assumption 3◦ enables the use of asymptotic methods
generated by regular perturbations of the boundary.

Finally, we shall find two different types of asymptotic expansions of the eigenvalue
(1.11), which depend on some integral characteristics of the screen and which are in
full agreement with the sufficient condition for the existence of trapped modes, see
Section 6.1. In this way the sufficient condition of [19] becomes also a necessary one
for a small ε.

2. Asymptotic analysis. Non-degenerate case

2.1. Outer expansions. In this section we search for an eigenvalue of (1.15)–(1.18)
in the form

λε• = Λ† − ε2λ0 + λ̃ε,(2.1)

where λ0 is a positive number to be computed. We shall obtain an estimate for the

remainder λ̃ε in Section 5.4.
At a long distance from the screen Θε we assume the following asymptotic ansatz

for a trapped wave corresponding to (2.1),

uε•(x) = c±(ε)e
∓µ(ε)x1V (ε; x′) + . . . , ±x1 ≫ 1,(2.2)

where the dots stand for higher order terms and the couple {µ(ε), V (ε; x′)} is a
solution of the following problem in a two-dimensional domain,

−∆′V (ε; x′) = µ(ε)2V (ε; x′), x′ ∈ ̟♭,

∂νV (ε; x′) = 0, x′ ∈ ς♭, V (ε; x′) = 0, x′ ∈ υ,(2.3)

∂zV (ε; x′) = λεV (ε; x′), x′ ∈ γ♭.

Perturbation theory of linear operators, see e.g. [10, Ch. 6], yields the representations

µ(ε) = 0 + εµ0 + µ̃(ε) , V (ε; x′) = U†(x
′) + ε2V0(x

′) + Ṽ (ε; x′),(2.4)

the following problem for the correction terms in (2.4),

−∆′V0(x
′) = µ2

0U†(x
′), x′ ∈ ̟♭,(2.5)

∂νV0(x
′) = 0, x′ ∈ ς♭ , V0(x

′) = 0, x′ ∈ υ,(2.6)

∂zV0(x
′) = Λ†V0(x

′)− λ0U†(x
′), x′ ∈ γ♭,(2.7)
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as well as the error estimates

|µ̃(ε)| ≤ cε2 , ‖Ṽ (ε, ·);H1(̟♭)‖ ≤ cε3.(2.8)

We mention that (2.3) is obtained by inserting the exponential waves e±µ(ε)x1V (ε, x′)
into the problem (1.15)–(1.18), while (2.5)–(2.7) follows by substituting (2.1), (2.4)
into (2.3) and extracting terms of order ε2.

Since Λ† is a simple eigenvalue of the problem (1.19)–(1.22), the Fredholm alter-
native yields only one compatibility condition, which by the Green formula turns
into

µ2
0

∫

̟♭

|U†(x
′)|2dx′ = −

∫

̟♭

(
U†(x

′)∆′V0(x
′)− V0(x

′)∆′U†(x
′)
)
dx′

=

∫

∂̟♭

(
V0(x

′)∂νU†(x
′)− U†(x

′)∂νV0(x
′)
)
dsx′ = λ0

l∫

0

|U†(x2, 0)|2dx2.

This was obtained by taking into account the differential equations (1.19) and (2.5)
as well as the boundary conditions (1.20)-(1.22) and (2.6), (2.7). Moreover, accord-
ing to the normalization condition (1.24) we have

µ0 = ‖U†;L
2(̟♭)‖−1λ

1/2
0 .(2.9)

As a consequence, the outer expansions (2.2) looks as follows:

uε(x) = c±(0)U†(x
′) + ε

(
c′±(0)U†(x

′)∓ c±(0)µ0x1U†(x
′)
)
+ . . . , ±x1 ≫ 1(2.10)

Note that c±(ε) = c±(0)+εc
′
±(0)+O(ε

2) is just the Taylor formula for the coefficients
in (2.2).

2.2. Inner expansion. In a bounded part of the channel Ωε
♭ , e.g. near the screen

Θε
♭ , we can take a traditional expansion for a trapped mode:

uε•(x) = v0(x) + εv1(x) + . . . .(2.11)

The matching procedure, cf. [34, 9, 20, 22], requires that the behaviour of v0(x) and
v1(x) as x1 → ±∞ is given by the similar terms in (2.10). Thus, as the first step
we notice that

v0(x) = c±(0)U†(x) + . . . for x1 → ±∞.

Recalling the stabilizing solution (1.29) of the limit problem (1.25)–(1.28), we set

c±(0) = 1 and v0(x) = U†(x
′).(2.12)

To derive a problem for the correction term v1 in (2.11) we first observe that
passing to the limit ε → 0+ flattens the curved screen Θε into the planar one Θ0,
cf. formulas (1.3) and (1.4). Hence, the equation (1.15) in Ω and the Neumann
condition (1.16) on Σε

♭ yield

−∆v1(x) = 0 , x ∈ Ω ,(2.13)

−∂νv1(x) = 0 , x ∈ Σ0
♭ , ,(2.14)

In the same way, the artificial Dirichlet condition (1.18) turns into

v1(x) = 0 , x ∈ Υ0,(2.15)
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while the spectral condition (1.17) gains the threshold parameter because of the
relation λ• = Λ† +O(ε2), so that

−∂νv1(x) = Λ†v1(x) , x ∈ Γ0
♭ , ,(2.16)

It remains to transfer the Neumann condition (1.16) from the curved surfaces θε±,♭

onto the flat ones θ0±,♭. To do so, we recall definition (1.3) and write the representa-
tion

νε±(x
′) =

(
1 + ε|∇′h±(x

′)
)−1/2(± 1, ε∇′h±(x

′)
)

for the unit normal vector. Hence,

(
1 + ε2|∇′h±(x

′)|2
)1/2

∂νε
±
= ∓∂1 + ε∇′h±(x

′) · ∇′,(2.17)

where ∇′ = (∂2, ∂3), ∂j = ∂/∂xj and the central dot stands for the scalar product
in R2. This and the Taylor formula with respect to x1 yield

(
1 + ε2|∇′h±(x

′)|2
)1/2

∂νε
±
v(±εh±(x′), x′)

= ±∂1v(±εh±(x′), x′) + ε∇′h(x′) · v(±εh±(x′), x′)
= ±∂1v(±0, x′)− εh±(x

′)∂21v(±0, x′)

+ε∇′h±(x
′) · ∇′v(±0, x′) + . . . , x′ ∈ θ.(2.18)

Finally, inserting (2.11), (2.12) into (2.18) and extracting terms O(ε) yield the fol-
lowing Neumann conditions on the faces θ0±♭ of the planar incision Θ0

♭ :

∓∂1v1(±0, x′) = −∇′h±(x
′) · ∇′U†(x

′) , x′ ∈ θ♭.(2.19)

2.3. Solutions of the limit problem at threshold and matching procedure.

In addition to the solution (1.29), even in x1, the problem (1.25)–(1.28) has a solu-
tion, which is odd in x1 and has the representation

u1(x) = ũ(x) +
∑

±

χ±(x1)(x1 ± b)U†(x
′),(2.20)

where the remainder ũ1(x) decays exponentially as x1 → ±∞, b is a constant
depending on ̟, θ, and χ± are smooth cut-off functions such that

χ±(x1) = 1 for ± x1 > 2 , χ±(x1) = 0 for ± x1 < 1 , 0 ≤ χ± ≤ 1.(2.21)

There is no other solution with at most polynomial growth at infinity.
These facts are based on the information on the model problem (1.19)–(1.22) in

Section 1.3 and follow from general results of the elliptic theory in domains with
cylindrical outlets to infinity, see e.g. [26, Ch. 5], [17, § 3], [18]. They can also be
obtained using the Fourier method by reducing the problem (1.25)–(1.28) to the
quarter

Π♭,+ = {x ∈ Π : x1 > 0, x2 > 0}(2.22)

of Π and imposing either the Neumann condition (even case) or the Dirichlet condi-
tion (odd case) on the subset {x : x1 = 0, x′ ∈ ̟♭\θ♭} of the end of the semi-infinite
cylinder (2.22). We also mention that in Section 4.1 we shall verify the absence of
trapped modes in the problem (1.25)–(1.28).
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By similar arguments we can find out that the problem (2.13)–(2.16), (2.19) has
a solution v1 with linear growth at infinity. Since it is only defined up to a linear
combination c0u

0 + c1u
1, we may choose the coeffients c0, c1 such that

v1(x) = ṽ1(x) +
∑

±

χ±(x1)
(
b11|x1| ± b01

)
U†(x

′),(2.23)

see (1.29), (2.20). The remainder ṽ1(x) decays exponentially and the coefficients
b11, b

0
1 are now uniquely defined. We do not need an explicit expression for b01 and

thus we only note that, if h+ = h− in (2.19), the function (2.23) is even in x1 and
therefore b01 = 0. Let us compute b11.

We insert v1 and u0 into the Green formula on the truncated channel Ω0
♭ (R) =

{x ∈ Ω♭ : |x1| < R} and obtain

0 =

∫

∂Ω0
♭
(R)

(
U†(x

′)∂νv1(x)− v1(x)∂νU+(x
′)
)
dsx

=
∑

±

−
∫

θ♭

U†(x
′)∇′h±(x

′) · ∇′U†(x
′)dx′ +

∑

±

±
∫

̟♭

U†(x
′)∂νv1(±R, x′)dx′

= −
∫

θ♭

U†(x
′)∇′h(x′) · ∇′U†(x

′)dx′ + 2b11

∫

̟♭

|U†(x
′)|2dx′ + o(1)(2.24)

as R → +∞. Here we have used the boundary conditions on ∂Ω0
♭ , in particular

(2.19), and the asymptotic expansion (2.23) at x1 = ±R. Passing to the limit
R → +∞ in (2.24) yields

b11 = −1

2
‖U†;L

2(̟♭‖−2I(h),(2.25)

where we have after integration by parts

I(h) =

∫

θ♭

h(x′)U†(x
′)∆′U†(x

′)dx′ +

∫

θ♭

h(x′)|∇′U†(x
′)|2dx′

−
∫

∂θ♭

h(x′)U†(x
′)∂νU†(x

′)dsx′.(2.26)

The first integral on the right vanishes due to (1.19), and our assumption 3◦ reduces
the last integral to the set

φ♭ = γ♭ ∩ ∂θ♭(2.27)

(the bold segment in Fig. 1.1.b), where ∂νU† = ∂zU† = Λ†U† according to (1.21).
Thus,

I(h) =

∫

θ♭

h(x′)|∇′U†(x
′)|2dx′ − Λ†

∫

φ♭

h(x′)|∇′U†(x
′)|2dx2.(2.28)

Notice that I(h) > 0 for sure, if h does not vanish identically and the set (2.27) is
empty, i.e., the screen is submerged.

We can now deduce the formula for the coefficient λ0 in the asymptotic formula
for the eigenvalue λ•, see Theorem 1.1. As mentioned in Section 2.2, the behaviour
of the correction term v1(x) as x1 → ±∞ in the inner expansion (2.11) is described
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by the coefficients of ε in the outer expansion. Comparing the linear functions in
(2.10) and (2.23) we see that

∓µ0 = ±b11 and c′±(0) = ±b00.(2.29)

Hence, the relations (2.9) and (2.25) lead us to the formula

‖U†;L
2(̟♭)‖−1λ

1/2
0 = µ0 = −b11 =

1

2
‖U†;L

2(̟♭)‖−2I(h),(2.30)

which makes sense only, if I(h) > 0, whence

λ0 =
1

4
‖U†;L

2(̟♭)‖−2I(h)2.(2.31)

On the other hand, the inequality I(h) < 0 makes it impossible to obtain λ0 > 0
from (2.30). We shall consider the degenerate case I(h) = 0 in the next section
and now only recall that the specification (2.31) of λ0 completes the formulation of
Theorem 1.1; the justification will be presented in Sections 4 and 5.

3. Asymptotic analysis. Degenerate case.

3.1. Updating the asymptotic ansätze. Throughout this section we assume
I(h) = 0. Then, by (2.25), (2.31), and (2.9), we have

b11 = 0 and λ0 = 0, µ0 = 0.(3.1)

The solution (2.20) of the problem (2.13)–(2.16), (2.19) becomes bounded. More-
over, to ensure the inclusion λε• ∈ (0,Λ†), we must amend the ansatz (2.1) by setting

λε• = Λ† − ε4λ1 + λ̃ε , λ1 > 0.(3.2)

We also have to modify the ansätze (2.4) as follows:

µ(ε) = 0 + ε2µ1 + µ̃(ε) , V (ε, x′) = U†(x
′) + ε4V1(x

′) + Ṽ (ε; x′)(3.3)

Accordingly, estimates (2.8) turn into

|µ̃(ε)| ≤ cε4 , ‖Ṽ (ε, ·);H1(̟♭)‖ ≤ cε6.(3.4)

The pair {µ1, V1} in (3.3) satisfies the problem (2.5)–(2.7), which is again derived
from (2.9) with evident changes. The compatibility condition in this problem is
converted into the relation

µ1 = ‖U†;L
2(̟♭)‖−1λ

1/2
1 .(3.5)

Finally, applying the above mentioned modifications to the outer expansions (2.2)
results into the following ansatz,

uε0 = c±(0)U†(x
′) + εc′±(0)U†(x

′)

+ε2
(
c′′±(0)U†(x

′)∓ c±(0)µ1x1U†(x
′)
)
+ . . . , ±x1 >> 1.(3.6)

Then, the inner expansion (2.11) becomes

uε0(x) = v0(x) + εv1(x) + ε2v2(x) + . . . .(3.7)
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3.2. First asymptotic terms. Formulas (2.12) can be obtained in the same way as
in Section 2.2. Moreover, the coefficient (2.25) in the decomposition (2.23) vanishes,
so that matching the multiplier of ε in (3.6) with the corresponding term in (3.7),
namely

v1(x) = ṽ1(x) +
∑

±

±χ±(x1)b
0
1U†(x

′),(3.8)

gives the relation (2.29).
Let us compose a boundary value problem in Ωε

♭ for the term v2 in (3.7). Of course
this function satisfies the differential equation (2.13) and the boundary conditions
(2.14)–(2.16), when the subscripts are changed from 1 to 2. To derive the boundary
conditions on the faces θ0±,♭, we refine the decomposition (2.18) and write

(
1 + ε2|∇′h±(x

′)|2
)1/2

∂νε
±

(
v0(x

′) + εv1(±εh±(x′), x′) + ε2v2(±εh±(x′), x′)
)

= 0 + ε
(
± ∂1v1(±0, x′) +∇′h(x′) · ∇′v0(x

′)
)

+ε2
(
± ∂1v2(±0, x′) +∇′h±(x

′) · ∇′v1(±0, x′)− h±(x
′)∂21v1(±0, x′)

)
+ . . . .(3.9)

We recall the Laplace equation (2.13) and delete the coefficient of ε2 in (3.9) by
imposing the Neumann conditions

±∂1v2(±0, x′) = −∇′h±(x
′) · ∇′v1(±0, x′)− h±(x

′)∆′v1(±0, x′)

= −∇′ ·
(
h±(x

′)∇′v1(±0, x′)
)
, x′ ∈ θ♭.(3.10)

3.3. Remarks on singularities. The boundary value problems under considera-
tion have been posed on domains with corner points and edges, which may cause
singular behaviour for their solutions. Actually, some of our geometric assumptions
in Section 1 were made in order to reduce the influence of the singularities to the
asymptotic procedure.

First of all we mention that the eigenfunction U† of the problem (1.19)–(1.22) is
infinitely differentiable everywhere in ̟♭, because the arc ς♭ is smooth and meets
the x2- and x3-axis at right angle. A reason for the exclusion of the singularities can
be found, e.g., in [26, § 2.4].

The behaviour of the solution v1 of the problem (2.13)–(2.16), (2.19) near the
edge Ψ♭ of the screen Θ♭ may be quite complicated because of the endpoints of the
arc ψ♭, which are tops of polyhedral angles. As known e.g. by [26, Ch. 10,Ch. 11],
the behaviour of v1 in the interior of Ψ is determined by the functions

Kj(s)r
j/2 cos(jϕ/2) , j = 0, 1, 2, . . . ,(3.11)

where s ∈ (0, L) is the arc length along ψ and (r, ϕ) ∈ R+ × (0, 2π) is the polar
coordinate system in planes, which are perpendicular to Ψ. The function (3.11)
with j = 0 is smooth so that the main singularities of the derivatives of v1 are
produced by K1(s)r

1/2 cos(ϕ/2). The coefficient function K1 is called the intensity
factor in mechanics, and since the data in (2.19) is infinitely differentiable, it belongs
to C∞(0, L). However, K1 may become singular at the tops s = 0 and s = L of the
polyhedral angles.

As for the point s = 0, which is marked by � in Fig. 1.1.b, the function K1 is
smooth there, since v1 can be extended as an odd function with respect to x2 from
Ω0

♭ onto Ω0 (recall the artificial Dirichlet condition): such an extension preserves the
differentiability properties of the data and renders the point in the middle of the
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Figure 3.1. Hemisphere with incision.

smooth edge Ψ. However, K1 may be only Hölder-continuous at the point s = L
which is marked by • in Fig. 1.1.b; that is, K1 ∈ C0,δ[0, L] for any δ ∈ (0, 1), while

|∂psK1(s)| ≤ C(L− s)1−p , p = 0, 1, 2, . . . .(3.12)

Let us explain this last fact. According to the general procedure, e.g. [26,
Ch. 10,Ch. 11], the asymptotic expansion of v1 near the endpoint of s = L of the
edge Ψ includes the power-law solutions

̺βφ(ϑ)(3.13)

of the Laplace-Neumann problem in the polyhedron K, which is the complement of
the quadrant {x : x1 = 0, x2 > x02, x3 < 0} in the lower half-space. In (3.13),
(̺, ϑ) are the polar coordinates, β is a number, and φ is a function in the lower
hemisphere without half of the meridian, Fig. 3.1.b. We extend this model problem
evenly with respect to x1 through the horizontal plane, and this turns it into the
Neumann problem in the domain, which is the full space R3 with unbounded incision
of the shape of the half-plane. The power-law solutions (3.13) with non-negative
exponents β of this problem look like

̺k/2φk(ϑ) = rk/2 cos(πk/2) , k = 0, 1, 2, . . . ,(3.14)

cf. (3.11). In this way the extension turns the endpoint s = L into an interior point
of a smooth edge. At the same time the Neumann boundary condition on the plane
{x : z = 0} (the horizontal one in Fig. 3.1.a) was obtained by neglecting the term
Λ†v1 in the Steklov condition (2.16). Thus, there emerges a discrepancy, the main
term of which is Λ†K1(L)r

1/2 cos(ϕ/2), and this has to compensated by a solution
of the following model problem in K:

̺3/2
(
C0φ3(ϑ) ln ̺+ φ′

3(ϑ)
)

=
1

2
C0r

3/2 ln(r2 + z2) cos
(3
2
ϕ
)
+ (r2 + z2)3/4φ′

3(ϑ).(3.15)

The first term on the right (with cos(3ϕ/2)) does not affect the singularity of (3.11)
(which is cos(ϕ/2) anyway), but the second term may cause a peculiar behaviour of
K1(s) as s→ L− 0, and this is apparent in the estimates (3.12).

The asymptotic expansion of v1 could be studied further, in particular it would be
possible to verify that the derivative ∂sK1 is Hölder continuous. However, this would
require a much more elaborate analysis, while the information contained in (3.12)
suffices in order to conclude that the problem (2.13)–(2.16), (3.10) has a solution
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which belongs to H1(Ω0
♭ (R)) for any R > 0. The inclusion v2 ∈ H1

loc(Ω
0
♭ ) is obtained

from the Hardy-type inequality
∫

θ0
±,♭

r−1(1 + | ln r|)−2|w(0, x′)|2dx′ ≤ c

∫

Ω0
♭
(R)

(
|∇w(x)|2 + |w(x)|2

)
dx,(3.16)

and the weak formulation of the problem in a weighted space with detached asymp-
totics, cf. [18, 22]. Instead of using these involved techniques one may directly
observe that the right hand sides g±(x

′) in (3.10) satisfy the bound |g±(x′)| ≤
cr−1/2(1 + r/̺) as a consequence of the assumption 3◦.

We shall return to a discussion on the singularities in Section 6.4 and now finalize
our consideration by writing down the following expansion near the edge:

v1(x) = v̂1(x) +K0(s) +K1(s)r
1/2 cos(ϕ/2).(3.17)

Here, K0 ∈ C∞[0, L], K1 belongs to C∞[0, L) and satisfies (4.8), and the remainder
satisfies the estimates

r−1|v̂1(x)|+ |∇v̂1(x)| ≤ C ,

|∇pv̂1(x)| ≤ cr−p+3/2(1 + | ln(L− s)|) , p = 2, 3, . . .(3.18)

for small r > 0. Notice that the first of these estimates follow from the smooth term
K2(s)r

1 cos(ϕ), see (3.11) with j = 2, but the last one indicates the singularities
K3(s)r

3/2 cos(3ϕ/2) and (3.15).

3.4. Asymptotics of v2 at infinity. Since the data in the problem (2.13)–(2.16),
(3.10) is compact, its solution v2 admits the same representation (2.23) as v1:

v2(x) = ṽ2(x) +
∑

±

χ±(x1)
(
b12|x1| ± b02

)
U†(x

′).(3.19)

Let us compute the coefficient b12. Using integration by parts inside Ω0
♭ (R) and along

θ0±,♭ we obtain, similarly to (1.12),

2b12

∫

̟♭

|U†(x
′)|2dx′ = lim

R→+∞

∑

±

±
∫

̟♭

U†(x
′)∂1v2(±R, x′)dx′

=
∑

±

±
∫

θ♭

U†(x
′)∂1v2(±R, x′)dx′

=
∑

±

∫

θ♭

U†(x
′)∇′ ·

(
h±(x

′)∇′v1(±0, x′)
)
dx′

=
∑

±

(
−

∫

θ♭

h±(x
′)∇′U†(x

′) · ∇′v1(±0, x′)
)
dx′

+

∫

φ♭

h±(x2, 0)U†(x2, 0)∂zv1(±0, x2, 0)
)
dx2

=
∑

±

( ∫

θ♭

v1(±0, x′)∇′h±(x
′) · ∇′U†(x

′)dx′
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+

∫

θ♭

v1(±0, x′)h±(x
′)∆′U†(x

′)dx′

+

∫

φ♭

h±(x2, 0)
(
U†(x2, 0)∂zv1(±0, x2, 0)− v1(±0, x2, 0)∂zU†(x2, 0)

)
dx2

)
.(3.20)

The last and second but last integrals vanish, due to the Steklov conditions (1.21),
(2.16) and the Laplace equation (1.19), respectively. Hence, similarly to (2.25), we
have

b12 = −1

2
‖U†;L

2(̟♭)‖−2J(h),(3.21)

where J(h) is obtained by taking (2.19) into account and integrating by parts in Ω0
♭ :

J(h) =
∑

±

∓
∫

θ♭

v1(±0, x′)∂1v1(±0, x′)dx′

=

∞∫

−∞

(∫

̟♭

|∇v1(x)|2dx′ − Λ†

l∫

0

|v1(x1, x2, 0)|2dx2
)
dx1.(3.22)

We emphasize that the representation (3.8) of the bounded solution va guarantees
that the integrand

j(v1; x1) =

∫

̟♭

|∇v1(x)|2dx′ − Λ†

l∫

0

|v1(x1, x2, 0)|2dx2(3.23)

decays exponentially at infinity: in view of (1.19)–(1.22), we have j(U†) = 0 and
hence, constant terms become null in the asymptotics of (3.23) as x1 → ±∞. It
is worth mentioning that the convergence of all integrals in (3.20) follows from the
material in Section 3.3.

3.5. Asymptotics of the eigenvalue. In Section 4.1 we shall verify the inequality

J(h) > 0.(3.24)

We are now in position to complete the matching procedure and to derive a formula
for the correction term in (3.2). Recalling the conclusions (2.12) and (2.29) we
compare linear terms in the coefficients of ε2 in (3.6) and (3.7). According to (3.5),
(3.19), and (3.21) we see that, first, ∓µ1 = ±b12, and, second,

‖U†;L
2(̟♭)‖−1λ

1/2
1 = µ1 = −b12 =

1

2
‖U†;L

2(̟♭)‖−2J(h).

Because of (3.24) we can write

λ1 =
1

4
‖U†;L

2(̟♭)‖−2J(h).(3.25)

The next assertion will be proven in Sections 4 and 5.

Theorem 3.1. Assume that the conditions 1◦–3◦ hold true and that I(h) = 0, see
(2.28). Then, there exist ε2 = ε2(θ, h±) > 0 and c2 > 0 such that the problem (1.8)–
(1.10) has for every ε ∈ (0, ε2] a unique eigenvalue (3.2) inside the segment (0,Λ†].
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The correction term λ0 > 0 is given by (3.25), (3.22) and the asymptotic remainder
meets the estimate

|λ̃ε| ≤ c2ε
9/2.(3.26)

4. Uniqueness assertions.

4.1. Additional assertions. We first prove that the problem (1.25)–(1.28) has no
trapped modes at the threshold Λ = Λ†, cf. Section 2.3 and Theorems 1.1, 3.1. Let
u0 ∈ H1

0 (Ω
0
♭ ; Υ

0) be a solution of this homogeneous problem. The Green formula
gives

∫

Ω0
♭

∣∣∣∂u
0

∂x1
(x)

∣∣∣
2

dx+

∫

Ω0
♭

|∇′u0(x)|2dx−
∫

Γ0
♭

|u0(x1, x2, 0)|2dx1dx2.(4.1)

The max-min-principle (1.23) implies for all V ∈ H1
0 (̟♭; υ)∫

Ω0
♭

|∇′V (x′)|2dx′ ≥ Λ†

∫

γ♭

V (x2, 0)dx2.(4.2)

Setting V (x′) = u0(x1, x
′) in (4.2) and integrating the result in x1 ∈ (−∞, 0) ∪

(0,+∞) shows that the difference of the second and third integrals in (4.1) is non-
negative. Hence,

∫

Ω0
♭

|∂1u0(x)|2dx ≤ 0

and therefore u0 does not depend on the longitudinal variable x1. Owing to the
decay of u0 at infinity, this is possible only, if u0 = 0.

A similar consideration proves the key inequality (3.24) of Section 3.5. Indeed,
we have

J(h) =

∫

Ω0
♭

∣∣∣∂v1
∂x1

(x)
∣∣∣
2

dx+

∞∫

−∞

j(v1; x1)dx1,

where the first integral converges, because the x1-derivative of the function (2.23)
decays exponentially. The integrand (3.23) is non-negative due to the inequality
(4.2), and thus J(h) ≥ 0. The equality J(h) = 0 is possible only in the case
∂1v1 = 0 in Ω0

♭ . The asymptotic behaviour (3.8) shows that v1(x) = ±b01U†(x
′) for

±x1 > 0, and the continuity of v1 requires the equality b01 = 0. Of course, u0 = 0
cannot be a solution of the problem (2.13)–(2.16) with inhomogeneous boundary
conditions (2.19).

4.2. Asymptotics of eigenvalues in a bounded domain. In the next section
we shall need some information on the eigenvalues of the problem

−∆wε(x) = 0, x ∈ Ωε
♭(R),(4.3)

∂νw
ε(x) = 0, x ∈ Σε

♭(R) ∪
⋃

±

(
θε+,♭ ∪̟♭(±R)

)
,(4.4)

∂zw
ε(x) = βεwε(x), x ∈ Γε

♭(R),(4.5)

wε(x) = 0, x ∈ Υε(R)(4.6)
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in the bounded domain Ωε
♭(R) = {x ∈ Ωε

♭ : |x1| < R} with some fixed R > 0;
the sets Σε

♭(R), Γ
ε
♭(R), and Υε(R) are defined similarly. On the truncated cross-

sections ̟♭(±R), an artificial Neumann condition is imposed in (4.4), and the other
conditions are inherited from (1.16)–(1.18).

Putting ε = 0 leads to the limit problem in the bounded cylinder Π♭(R) =
(−R,R) × ̟♭ with the incision Θ0

♭ . For this problem, we readily find the eigen-
value β0

1 = Λ† and the corresponding eigenfunction w0
1(x) = U†(x

′). Since U† > 0
in ̟♭, the strong maximum principle shows that this is the first, simple eigenvalue.
We also need the second eigenvalue

β0
2 > β0

1 = λ†,(4.7)

which of course may be multiple.
In view of the assumption 3◦, Section 1.2 and the definition (1.3) of Θε, there

exists a diffeomorphism κ of class H1,∞ which transforms Ωε
♭(R) into Ω0

♭ (R) and
which is ”almost identical”,

|κε(x)− x| ≤ cε ,
∣∣∣dκ

ε

dx
− Id

∣∣∣ ≤ cε.

According to [10, 7.6.5], see also [26, Ch. 5], this means that βε
p = βε

p +O(ε) and in
particular

βε
2 > Λ† for ε ∈ (0, ε0](4.8)

by virtue of (4.8). Let us compute the asymptotics of βε
1.

In spite of the edge Ψ, the transition from Θε
♭ to Θ0

♭ can be regarded as a regular
perturbation of the boundary, cf. Section 3.3, and we thus choose the standard
ansätze

βε
1 = Λ† − αε+ β̃ε

1,(4.9)

wε
1(x) = U†(x

′) + εW (x) + w̃ε
1(x).

We insert them into the problem (4.3)–(4.6), repeat the arguments of Section 2.2
and thus obtain the following problem for the corrections terms in (4.9):

−∆Wx) = 0, x ∈ Ω0
♭ (R),

∂νW (x) = 0, x ∈ Σ0
♭ (R) , ±∂1W (±R, x′) = 0, x ∈ ̟♭,

±∂1W (±0, x′) = −∇′h±(x
′) · ∇′U†(x

′), x′ ∈ θ♭

∂zW (x) = Λ†W (x)− αU†(x
′), x ∈ Γ0

♭ (R),

W (x) = 0, x ∈ Υ0(R).

Moreover, since the eigenvalue Λ† is simple, the only compatibility condition in this
problem reads as

0 =

∫

∂Ω0
♭

(
U†(x

′)∂νW (x)−W (x)∂νU†(x
′)
)
dsx

= −α
∫

Γ0
♭
(R)

|U†(x2, 0)|2dx1dx2 −
∑

±

∫

θ♭

U†(x
′)∇′h±(x

′) · ∇′U†(x
′)dx′.

Hence, (1.24), (2.26), (2.28) imply

α = (2R)−1I(h).(4.10)
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Finally, again accoding to [10, 7.6.5], the remainder in (4.9) can be bounded by

|β̃ε
1| ≤ cε2.(4.11)

Remark 4.1. We emphasize the obvious difference of the asymptotic ansätze (2.1)
and (4.9) for the eigenvalues in the infinite waveguide Ωε

♭ and its truncated part Ωε
♭ .

Moreover, the relations (2.31) and (4.10) have been derived with crucially different
arguments. These observations are discussed in detail in the paper [20].

4.3. Max-min-principle. Following [19, 21] we equip the Sobolev-space Hε =
H1

0 (Ω
ε
♭ ; Υ

ε) with the scalar product

〈uε, vε〉 = (∇uε,∇vε)Ωε
♭

(4.12)

and define the operator T ε by the identity

〈T εuε, vε〉 = (uε, vε)Γε
♭
,(4.13)

where (·, ·)Ξ stands for the natural scalar product of the Lebesgue space L2(Ξ). The
inequality

‖uε;L2(Ωε
♭)‖2 + ‖uε;L2(Γε

♭)‖2 ≤ c‖∇uε;L2(Ωε
♭)‖2(4.14)

follows from the standard Friedrichs inequality in the truncated channel,

‖uε;L2(Ωε
♭(R))‖2 + ‖uε;L2(Γε

♭(R))‖2 ≤ c‖∇uε;L2(Ωε
♭(R))‖2,(4.15)

and the trace inequality in the cross-section ̟,

‖Uε;L2(̟♭)‖2 + ‖Uε;L2(γ♭)‖2 ≤ c‖∇′Uε;L2(̟♭)‖2.(4.16)

These inequalities are valid owing to the Dirichlet conditions (1.18) and (1.22),
respectively. In (4.16) we set Uε(x′) = uε(x) and in addition integrate over x1 ∈
(−∞,−R)∪(R,+∞). The constant c in (4.15) does not depend on ε, since the parts
of the surface ∂Ωε

♭ which are inside Π♭ can be considered as graphs of functions in
the variable x′, cf. [35].

The inequality (4.14) and the definition of the inner product (4.12) imply that the
operator T ε is continuous, positive, and symmetric, hence, self-adjoint. Moreover,
by (4.12) and (4.13), the variational formulation of the problem (1.15)–(1.18),

(∇uε,∇vε)Ωε
♭
= λε(uε, vε)Γε

♭
∀vε ∈ H1

0 (Ω
ε
♭ ; Υ

ε),(4.17)

can be formulated as the abstract equation

T εuε = τ εuε in Hε,(4.18)

where

τ ε = 1/λε.(4.19)

This relation implies that the continuous spectrum of T ε is [0, λ−1
† ]. Moreover,

the operator −T ε (with the minus sign) is bounded from below and eigenvalues
τ ε1 , . . . , τ

ε
N in its discrete spectrum can be obtained from the max-min-principle

−τ εn = max
Hε

n

min
vε∈Hε

n\{0}

−〈T εvε, vε〉
〈T εvε, vε〉 ,(4.20)

where Hε
n is any subspace of Hε with codimension n− 1. More precisely, Theorem

10.2.2. of [2] or Th XXX of [31] state that if the right hand side of (4.20) is less
than Λ−1

† , then the discrete spectrum of T ε as well as the discrete spectrum of the
problem (1.15)–(1.18) contains at least n points, which thus are isolated eigenvalues.
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Let us assume that I(h), (2.28), is negative. Then, by (4.10) and (4.11), the
first eigenvalue (4.9) of the auxiliary problem (4.3)–(4.6) satisfies βε

1 ≥ λ† for small
ε ∈ (0, ε0] and therefore we have in inequality 1

‖∇vε;L2(Ωε
♭(R))‖2 ≥ βε

♭ ‖vε;L2(Γε
♭(R))‖2.(4.21)

We take the inequality (4.2) with V (x′) = vε(x1, x
′), integrate it in x1 ∈ (−∞,−R)∪

(R,+∞), add it to (4.21) and obtain

‖∇vε;L2(Ω♭)‖2 ≥ Λ†‖vε;L2(Ω♭)‖2.(4.22)

Thus, for all vε ∈ Hε we have

−〈T εvε, vε〉
〈vε, vε〉 = − ‖vε;L2(Γε

♭)‖2
‖∇vε;L2(Ωε

♭)‖2
≥ − 1

Λ†

,(4.23)

so that the right hand side of (4.20) with n = 1 exceeds −λ†. By the above mentioned
theorems of [2] and [31], the discrete spectrum of T ε is empty. This first assertion
of Theorem 1.1 has been verified.

Let I(h) ≥ 0. We now deal with the second eigenvalue βε
2 and introduce the

subspace of codimension 1,

Hε
⊥ =

{
vε ∈ H1

0 (Ω
ε
♭ ; Γ

ε
♭) :

∫

Ωε
♭
(R)

vε(x)wε
1(x)dx = 0

}
.(4.24)

In (4.24), wε
1 is the first eigenfunction of the problem (4.3)–(4.6). Owing to the

orthogonality condition (4.24), any function vε ∈ Hε
⊥ satisfies the relation (4.21)

with p = 2, which is an inequality of Poincaré type. We obtain the formula (4.22)
by (4.7) and (4.2) and conclude that

inf
vε∈Hε\{0}

−〈T εvε, vε〉
〈vε, vε〉 = − sup

vε∈Hε\{0}

‖vε;L2(Γε
♭)‖2

‖∇vε;L2(Ωε
♭)‖2

≥ − 1

Λ†
≥ − 1

Λ†
.

Once more, the above mentioned theorems of [2] or [31] implies that the discrete
spectrum of the operator T ε cannot contain two eigenvalues.

The uniqueness statements in Theorems 1.1, (2), and 3.1 have been confirmed.

5. Existence of an eigenvalue.

5.1. Searching for an eigenvalue. We shall construct a non-trivial function uεas ∈
H1(Ωε

♭ , υ
ε) and a positive number τ ε0 such that

‖T εuεas − τ εasu
ε
as;Hε‖ = δ‖uεas;Hε‖,(5.1)

τas − δ > Λ−1
† .(5.2)

A classical lemma on ”approximate eigenvalues”, see e.g. [36], and the formulas
(5.1), (5.2) guarantee that the segment [τ εas − δ, τ εas + δ] does not intersect the con-
tinuous spectrum [0, λ−1

† ] and contains an eigenvalue τ ε1 of the operator T ε. Then,
the relation (4.19) of the spectral parameters implies the existence of the eigenvalue
λε1 = 1/τ ε1 ∈ (0,Λ†) of the problem (1.15)–(1.18), as well as the estimate

|λε1 − λεas| ≤ Cεδ with λεas =
1

τ εas
, Cε =

δ

τ εas(τas − δ)
.(5.3)

1This inequality is quite similar to (4.2) and both of them can be derived by using a reduction
to an abstract equation and applying the min-principle.
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Figure 5.1. a) Cut-off-functions. b) Extension through the screen.

In the previous section we have proved that an eigenvalue in (0,Λ†) is unique, if it
exists. That is why the above mentioned lemma additionally yields an eigenfunction
uε1 ∈ H1

0 (Ω
ε
♭ ; Υ

ε), which corresponds to λε1, but is not necessarily normed in Hε, and
satisfies the estimate

‖uε1 − uεas;Hε‖ ≤ δ‖uεas;Hε‖.(5.4)

The simplest way to derive these and similar facts is to apply elementary tools
of the theory of the spectral measure; in this way the reduction to the abstract
equation becomes very important. In particular, the key estimate

|τ ε1 − τ εas| ≤ δ(5.5)

is a consequence of the spectral decomposition of the resolvent, see [2, §6.2], which
includes an estimate of the distance of a point to the spectrum in terms of the norm
of the resolvent, see (5.1). The estimate (5.4) for the eigenfunction follows by using
the spectral projection. A detailed explanation of this technique is given for example
in [29].

5.2. Approximate eigenvalue and eigenfunction. We assume the condition
I(h) > 0 and set

λεas = Λ† − ε2λ0(5.6)

and correspondingly τ εas = (Λ†− ε2λ0)
−1; here λ0 is taken from (2.31). Moreover, by

{µas(ε), Vas(ε; x
′)} we understand the solution (2.4) of the model problem (2.3) on

̟♭ with the spectral parameter (5.6).
We glue the inner and outer expansions (2.11) and (2.2) of Section 2 by using the

smooth cut-off functions (2.21) and the function

Xε(x1) = 1 for |x1| < 1/ε , Xε(x1) = 0 for |x1| > 1 + 1/ε , 0 ≤ Xε ≤ 1.(5.7)

Namely, we set

uεas(x) = Xε(x1)
(
v0(x) + εv1(x)

)
+
∑

±

χ±(x1)(1± εβ0
1)e

∓µ(ε)x1V (ε; x′)

−Xε(x1)
∑

±

χ±(x1)
(
1 + ε(β1

1 |x1| ± β0
1)
)
U†(x

′).(5.8)

The supports of the cut-off-functions (2.21) and (5.7) overlap like in Fig. 5.1.a.
Therefore the terms which have been matched in Section 2.3 are taken into ac-
count twice in the first and second terms, but this duplication is compensated by
subtracting the third term.
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We emphasize that in the case h± > 0, when Θ0 ⊂ Θε and θε± lays inside Π± =
{x ∈ Π : ±x1 > 0}, we may just use the function v1 in (5.8), but in the case when
the surfaces θε± penetrate in Θ0, this function must be substituted by its extension
v±1 through the screen Θ0

♭ . For example, if −h− < h+ < 0 in θ, see Fig. 3.1.b, v1
must be extended from Π+,♭ to the domain

{x ∈ Π♭ : x1 > 0 for x′ ∈ ̟♭ \ θ♭, x1 > εh+(x
′) for x′ ∈ θ♭}.(5.9)

We take a smooth extension, which has a singularity at the edge (1.30); the larger
domain is denoted in Fig. 5.1.b. More precisely, we use the representation (3.17)
near the edge and keep the form of K0(s), K1(s)r

1/2 cos(ϕ/2) unchanged and handle
the remainder v̂1 only. In this way the extensions v̂±1 will still satisfy the estimates
(3.18).

To avoid superfluous technical details we describe the first case and only comment
the second one at the end.

Let us derive a lower estimate for the L2-norm of the function (5.8) written in the
form

uεas(x) =
(
1−

∑

±

χ±(x1)
)
U†(x

′) +Xε(x1)εṽ1(x)

+
∑

±

χ±(x1)(1± εb01)e
∓µ(ε)U†(x

′),

where the formulas (2.12) for v0 and (2.23) for v1 were applied. The first term on the
right has compact support and the second one decays exponentially, but, according
to (2.4), the decay of the third term is very slow. Thus,

‖uεas;L2(Ωε
♭)‖2 ≥ ‖uεas;L2(Ωε

♭ \ Ωε
♭(2))‖2

≥ C1

∞∫

2

e−2εµ0|x1|d|x1| − C0ε ≥
C2

ε
, Cp > 0.(5.10)

5.3. Further calculations. Let us compute in the equation (1.15) the discrepancy
of the function (5.8), which is written more briefly as follows:

uεas = Xεu
ε
in +

∑

±

χ±u
ε
out,± −Xε

∑

±

χ±u
ε
mat,±.(5.11)

We denote by [∆, Xε] the commutator of the Laplace operator with the cut-off-
function Xε and observe that

[∆, Xεχ±] = χ±[∆, Xε] + [∆, χ±],

hence,

∆uεas = Xε∆u
ε
in +

∑

±

χ±

(
∆uεout,± −Xεu

ε
mat,±

)

+
∑

±

χ±[∆, Xε]
(
uεin,± − uεmat,±

)
+
∑

±

[∆, Xε]
(
uεout,± − uεmat,±

)
.(5.12)

Since uεin, u
ε
out,±, and u

ε
mat,± are harmonic, the first three terms on the right vanish.

Coefficients of the differential operator χ±[∆, Xε] are supported in {x ∈ Π♭ : ±x1−
1/ε ∈ [0, 1]}, where the difference uεin−uεmat,± = εṽ1 is exponentially small, see (2.12)
and (2.23). Recalling the asymptotic formulas (2.4) and (2.8) and the decomposition
(2.10) specified in (2.9), (2.12), (2.29), and (2.25), we conclude that the difference
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uεout,± − uεmat,± is of the order ε2 in the set {x ∈ Π♭ : 1 ≤ ±x1 ≤ 2}. In this set the
commutator [∆, χ±] is not null, in view of (2.21). Hence,

|∆uεas(x)| ≤ Cε2e−α0|x1| for some α0 > 0.(5.13)

On the cylindrical surface ∂Π the normal derivative annihilates all three cut-
off functions depending on the longitudinal variable only. We thus find that the
asymptotic solution (5.8) satisfies the Neumann condition

∂νu
ε
as(x) = 0 , x ∈ Σε

♭ ,(5.14)

and the discrepancy in the Steklov condition looks as follows:

∂zu
ε(x)− (Λ† − ε2λ0)u

ε
as(x) = ε2λ0Xε(x1)

(
uεin(x)−

∑

±

χ±(x1)u
ε
mat,±(x)

)

= ε2λ0

(
1−

∑

±

χ±(x)
)
U†(x

′) +Xε(x1)ε
3ṽ1(x) , x ∈ Γε

♭ .

Recalling the exponential decay of the remainder in (2.23) we see that

|∂zuε(x1, x2, 0)− λεasu
ε(x1, x2, 0)| ≤ cε2e−α0|x1| , x ∈ Ωε

♭ .(5.15)

We are left with examining the boundary conditions (1.16) on the screen surfaces
(1.5). Clearly, uεas(x) = U†(x

′) + εv1(x) in a neighbourhood of Θε
♭ . We use the

representation (2.17) for the normal derivative and the relation (2.19). As a result,
we obtain

(
1 + ε2|∇′h±(x

′)|2
)1/2

∂νε
±

(
U†(x

′) + εv1(x)
)∣∣∣

x1=±εh(x′)

= ε(∇′h±(x
′) · ∇′U†(x

′)∓ ∂1v1(±εh±(x′), x′) + ε∇′h±(x
′) · ∇′v1(±εh±(x′), x′)

= ±ε(∂1v1(±0, x′)− ∂1v1(±εh±(x′), x′) + ε2∇′h±(x
′) · ∇′v1(±εh±(x′), x′)

Applying the Taylor formula and the estimates

|∇pv(x)| ≤ cp(1 + r−p+1/2 + r1/2(L− s)1−p) , p = 0, 1, 2,(5.16)

which follow for example from the relations (3.17) and (3.18), yield the inequality
∣∣∂νε

±

(
U†(x

′) + εv1(±εh±(x′), x′)
)∣∣ ≤ cε2r−1/2 , x ∈ θε±,♭.(5.17)

5.4. Final estimate. By the definition of the Hilbert space norm and the formulas
(4.12), (4.13) we have

‖T εuεas − τ εasu
ε
as;Hε‖ = inf

∣∣〈T εuεas, w
ε〉 − τ εas〈uεas, wε〉

∣∣
= τ εas inf

∣∣λεas(uεas, wε)Γε
♭
− (∇uεas,∇wε)Ωε

♭

∣∣

= τ εas inf
∣∣∣(∆uεas,∇wε)Ωε

♭
− (∂zu

ε
as − λεasu

ε
as, w

ε)Γε
♭
−

∑

±

(∂νε
±
uεas, w

ε)θε
±,♭

∣∣∣.

Here, the infimum is calculated over all functions vε ∈ Hε such that

‖wε;Hε‖ = ‖∇wε;L2(Ωε
♭)‖ = 1;

according to (4.15) and (3.16), these functions also satisfy

‖wε, L2(Ωε
♭)‖+ ‖wε, L2(Γε

♭)‖+
∑

±

‖r−1/2(1 + | ln r|)−1wε;L2(θε±,♭)‖ ≤ C.(5.18)

Now the estimates (5.13), (5.15), and (5.17) imply the inequality

‖T εuεas − τ εasu
ε
as;Hε‖ ≤ cε2,(5.19)
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which together with (5.10) show that the factor in (5.1) does not exceed cε5/2, and
therefore (5.2) is true. Hence, the operator T ε has an eigenvalue τ ε1 ∈ [τ εas−δ, τ εas+δ].
Finally, the calculation (5.3) and the formula (5.6) assure the relations (2.1) and
(1.12) for the eigenvalue λε• = λε1 = (τ ε1 )

−1 of the problems (1.15)–(1.18) and (1.8)–
(1.10). Theorem 1.1 is proved.

Let us comment on the case h+ < 0 depicted in Fig. 5.1.b, and outlined at the end
of Section 3.3. The formulas (5.14) and (5.17) remain unchanged. The extension
v+1 is not harmonic in the thin domain Ξε

+ = {x : 0 > x1 > εh+(x
′), x′ ∈ θ♭}, and

therefore

∆uεas(x) = 0 in Π+,♭ but ∆uεas(x) = ε∆v+1 (x) in Ξε
+.(5.20)

However, according to the relations (3.17), (3.18) and the Taylor formula in the
variable x1, we have

|∇v+1 (x)| = |∆v+1 (x)−∆v+1 (+0, x′)| ≤ C|x1|r−3/2(1 + | ln ̺|).

Furthermore, a direct consequence of the Newton-Leibnitz formula
∫

Ξε
+

|wε(x)|2dx ≤ cε

∫

Ωε
♭

(
|∇wε(x)|2 + |wε(x)|2

)
dx(5.21)

shows that

ε
∣∣∣
∫

Ξε
+

wε(x)∆v+1 (x)dx
∣∣∣
2

≤ cεε1/2‖wε; Ωε
♭(R)‖

( 0∫

εh+(x′)

|x1|2
∫

θ♭

r−3(1 + | ln ̺|)2dx′dx1
)1/2

≤ cε3
(∫

θ♭

h+(x
′)3r−3(1 + | ln ̺|)2dx′

)1/2

≤ cε3.

Here we used the relation (5.18) for wε and observed that the last integral converges
because the singular factor r−3 is compensated by h+(x

′)3, owing to the assumption
3◦. A similar calculation shows that

∣∣(∂zuεas − λεasu
ε
as, w

ε)Γε
♭

∣∣ ≤ cε2,(5.22)

and hence our previous conclusion (5.19) as well as Theorem 1.1, (2) are still valid.
It should be mentioned that instead of (5.21) the derivation of (5.22) can be based
on the estimate

l∫

0

0∫

εh+(x2,0)

|wε(x1, x2, 0)|2dx1dx2 ≤ cε(1 + | ln ε|)2‖wε;H1(Ωε
♭(R))‖2

which follows from a Hardy-type trace inequality analogous to (3.16).
Theorem 1.1 can be proven in the same way but the extension of the asymptotic

ansätze in Section 3.1 requires much more cumbersome but still routine calculations,
which we omit here for brevity.
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6. Concluding remarks.

6.1. A criterion. The following inequality∫

Θε
♭

|∇′U†(x
′)|2dx− Λ†

∫

Γ∩Θε
♭

|U†(x
′)|2dx1dx2 ≥ 0(6.1)

was shown in [19] to be a sufficient condition for the existence of a trapped mode.
The result holds without a restriction on the parameter ε > 0, i.e., for a massive
obstacle Θε, and it was derived by imposing the artificial Dirichlet condition (1.18),
by assuming 1◦ and 2◦ and applying the minimum principle (4.20) with n = 1 and
Hε

1 = H1
0 (Ω

ε
♭ ; Υ

ε). By (1.3), an integration with respect to x1 converts (6.1) into
the inequality εI(h) ≥ 0, where I(h) is the expression (2.28). If 3◦ is in addition
assumed, Theorems 1.1 and 3.1 yield a positive number ε0(θ, h±) depending on the
screen profiles such that if 0 < ε < ε0(θ, h±), then (6.1) is also a necessary condition
for a unique trapped mode. For large ε this necessity and uniqueness may of course
be lost.

6.2. Higher order asymptotic terms. The asymptotic procedures described in
Sections 2 and 3 can be continued to construct infinite asymptotic series for the
eigenvalue λε• and the corresponding eigenfunction uε•. Indeed, the use of the Taylor
formula for the asymptotic terms εmvm(±εh±(x′), x′) of the inner expansion cannot
be avoided, and this produces derivatives of vm of order n, but their singularities
at r → +0 are compensated by the related small factors h±(x

′)n = O(rn), see the
assumption 3◦. Hence, this again guarantees the existence of vm ∈ H1

loc(Ω
ε
♭).

However, in our scheme it is not possible to control the upper bound εm(θ, h±)
for the small parameter ε, and it may happen that εm(θ, h±) tends to zero at a
very high rate as m → ∞. From this point of view it is doubtful, if the infinite
asymptotic series is useful.

6.3. Particular screens. As was mentioned in Section 1.2 and follows from the
sufficient condition (6.1), any submerged screen Θε ⊂ Π traps a surface wave, with
the exception of the case of a vertical planar screen. Let us discuss the boundary
layer phenomenon for the flattened ellipsoid

Θε = {x : R−2(x22 + (x3 − z0)
2) + ε−2x21 ≤ 1}(6.2)

and for the penny-shaped obstacle

Θε = {x : x22 + (x3 − z0)
2 ≤ R2, |x1| < ε}.(6.3)

Both screens (6.2) and (6.3) are submerged and do not touch the wetted surface Σ
of the channel Π, see Fig. 6.1.a,c.

The ellipsoid (6.2) is given by the formula (1.3), where θ is a disc of radius R and

h±(x
′) =

√
1−R−2(x22 + (x3 − z0)2) =

√
r(R−1 +O(r)).(6.4)

Since h± vanish on the circle ψ = ∂θ, all calculations of Section 2 can be repeated
word-to-word to derive the asymptotic formula (2.1) for the single eigenvalue λε• ∈
(0,Λ†) of (1.8)–(1.10). However, the decay rate O(r1/2) in (6.4) is not enough to
compensate the growth O(r−3/2) of the second order derivatives of v, cf. the right
hand side of (3.10). As a result, higher order terms mentioned in Section 6.2 cannot
be found using the above presented asymptotic method. Indeed, it was shown in
[9], see also [15], that the boundary layer phenomenon occurs in the vicinity of the
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a) b)

c)
d)

Figure 6.1. Particular screens.

edge Ψ = {x : x1 = 0, r := (x22 + (x2 − z0)
2)1/2 = R}. Namely, dilating coordinates

as

(x1, r) 7→ ξ = (ξ1, ξ2) = (ε−2x1, ε
−2(r−R)),

using the arc length s ∈ [0, 2πR) on Ψ and setting ε = 0 lead to a Neumann problem
for the two-dimensional Laplacian ∆ξ in the plane R2 with parabolic notch

P = {ξ : ξ2 < 0, |ξ1| ≤ (2|ξ2|/R)1/2},
see Fig. 6.1.b. Detailed analysis of the boundary can be found in [9] and [15, Ch. 5].

For the penny-shaped screen (6.2) we have h±(x
′) = 1, and we come across a

notable inconsistency in the previous calculations: the right hand side of (2.19) van-
ishes and the problem (2.13)–(2.16), (2.19) thus turns homogeneous, but according to
(2.28), the coefficient b11 in (2.23) takes the form (2.25) with I(h) = 2‖∇′U†;L

2(θ♭)‖2.
This contraduction is of course caused by the boundary layer effect. Using the co-
ordinate dilation

(x1, r) 7→ ξ = (ε−1x1, ε
−1(r− R)),

the effect is described by the solutions of the Neumann problem for ∆ξ in the plane
without the semi-strip

S = {ξ : ξ2 ≤ 0, |ξ1| < 1},
see Fig. 6.1.d. Indeed, the function v0(x) = U†(x

′) has the discrepancy G(s) =
∂
r
U†(x

′)
∣∣
r=R

in the Neumann condition on the lateral side of the circular cylinder
(6.3). Therefore the main asymptotic term εW (ξ, s) of the boundary layer is to be
chosen as a solution of the following problem with parameter s:

−∆ξW (ξ, s) = 0, ξ ∈ S,

∓∂1W (±1, ξ2, s) = 0, ξ2 < 0,(6.5)

−∂2W (ξ1, 0, s) = G(s), ξ1 ∈ (−1, 1).

Unfortunately, this problem has no solutions which decay at infinity. This is why
we employ the traditional method of matched asymptotic expansions, see [34, 9]
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and change the essence of εW (ξ, s): it is regarded as a term in the inner expansion
near the edge of the screen, and it is fixed as a solution of the problem (6.5) with
logarithmic growth at infinity,

W (ξ, s) = −π−1G(s) ln |ξ|+ o(1), |ξ| → +∞.(6.6)

Now, (2.11) is regarded as the outer expansion in a neighbourhood of Θε, and its
term εv1(x) must be subject to the asymptotic condition

v1(x) = −π−1G(s) ln r +O(1), r → +0.(6.7)

This term thus becomes a nontrivial singular solution of the homogeneous problem
(1.25)–(1.28). This explains why our calculations in Section 2.3 do not work for the
penny-shaped screen. In other words, the assumption 3◦ simplifies calculations and
removing it requires a different asymptotic analysis.

6.4. Surface-piercing screens. If the screen thickness function h does not vanish
at the endpoints of the line segment φ = ∂θ ∩ γ, then, yet another boundary layer
must be taken into account, in addition to those discussed in Section 6.3. This
amounts to solving a Neumann problem in the lower half-space with the infinite slit
of width h0 = h0+ + h0− > 0,

{η = (η1, η2, η3) : η3 < 0, η2 < 0, η1 ∈ [−h0−, h0+]}.
The authors do not know published results in this direction. Another open question
is related to the situation, when h is null on ψ \ τ but positive on the arc τ = {s :
s ∈ (−t, t)} of length 2t > 0.

In addition to the assumption 3◦ we have required in Section 1.1 that the angle
α between ψ and γ is right. We used this restriction in Section 3.3, since we needed
the extension trick to study the singularities of v2. However, this assumption may
be weakened: it was shown in [16] that the exponent β in the ”worst” power-law
solution (3.13) is a function, which decreases monotonely from 1 to 0, when the
variable is the angle α measured from the side of θ. Thus, our calculations remain
valid at least for acute angles.
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