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Abstract. We consider the spectral Dirichlet-Laplacian problem on a domain
which is formed from a periodic waveguide Π perturbed by non-compact, non-
periodic changes of geometry. We show that the domain perturbation causes an
addition to the essential spectrum, which consists of isolated points belonging to
the discrete spectrum of a model problem. This model problem is posed on a
domain, which is just a compact perturbation of Π. We discuss the position of
the new spectral components in relation to the essential spectrum of the problem
in Π.

1. Introduction and formulation of the problems.

We consider the effect of non-compact domain perturbations to the essential spec-
trum of the Dirichlet-Laplacian. To describe our result, we assume that a 1-periodic
quasicylinder Π in the Euclidean space Rd, d ≥ 2, as well as a sequence (`j)

∞
j=1 of

natural numbers tending to +∞ be given. The domain Π is perturbed by an infinite
family of identical cells, such that the neighboring ones are situated at the distance
`j of each other; see Fig. 1.1, 4.1. Our main result, Theorem 3.1, states that the es-
sential spectrum, denoted later by σess(A•), of the perturbed problem is the union of
two components: the first one consists of the essential spectrum of the unperturbed
problem and the second one of the discrete spectrum of a model problem, which is
a spectral problem on the domain Π perturbed only by a single cell.

One of the conclusions is that the result does not depend on the growth rate of
the sequence (`j)

∞
j=1; in particular, the domain perturbation is non-periodic and can

be made as ”sparse” as one wishes. However, it is essential for the result and its
proof that the sequence (`j)

∞
j=1 is unbounded. The result should be compared with

the papers [6], [1], [20], which contain analysis of the essential spectra of elliptic
boundary problems in doubly periodic planar domains with domain perturbation
consisting of semi-infinite open waveguides. These perturbations differ from those
in the present paper, as they still have periodic structure with the same periodicity
dimension as the intact domain and thus are rather analogous with the case of a
constant sequence (`j)

∞
j=1. In [6] it shown that the essential spectrum consist of

two components, one coming from the corresponding problem in the unperturbed
domain and another one related to a family of model problems on the periodic
domain perturbation. In both [6] and [20] there are explicit examples how the
insertion of open waveguides into the domain increases the essential spectrum.
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Figure 1.1. Intact (a), perturbed (b), and model (c) waveguides.

We proceed to detailed descriptions of the domains and equations to be investi-
gated. The wavequide Π is a 1-periodic quasicylinder

Π = {x = (y, z) ∈ Rd−1 × R : (y, z ± 1) ∈ Π} , d ≥ 2,(1.1)

contained inside a circular cylinder {x = (y, z) : |y| < R, z ∈ R} of radius R > 0.
We assume that Π is a domain, in particular a connected set, such that the boundary
∂Π is a smooth (d − 1)-dimensional surface, and consider the spectral Dirichlet
problem for the Laplace operator ∆ = ∇ · ∇,

−∆u(x) = λu(x) for x ∈ Π , u(x) = 0 for x ∈ ∂Π.(1.2)

The left-hand side of the variational formulation

(∇u,∇v)Π = λ(u, v)Π ∀v ∈ H1
0 (Π)(1.3)

contains a positive and closed bilinear form in H1
0 (Π), and thus problem (1.2) is

associated with a positive self-adjoint operator A with domain D(A) = H2(Π) ∩
H1

0 (Π); see [24, Thm. VIII.15], [4, Ch. 10]. Here, (·, ·)Π is the natural scalar product
in the Lebesgue space L2(Π), while H2(Π) and H1

0 (Π) are standard Sobolev spaces,
the latter with the homogeneous Dirichlet condition on ∂Π. It is known that the
essential spectrum σess(A) of A has the band-gap structure

σess(A) =
⋃
k∈N

β(k) ,(1.4)

where N = {1, 2, 3, . . .} and β(k) are compact intervals contained in R+ = (0,∞);
see for example [25], [13]. The spectral bands β(k) are described by means of a
model spectral problem in the periodicity cell, see (1.9),

$ = {x ∈ Π : z ∈ (0, 1)}.(1.5)

We denote by

$(n) = {x ∈ Π : z ∈ (n− 1, n)} , n ∈ N,(1.6)

the translations of the cell $ =: $(1). Let a bounded, perturbed cell $• ⊂ {x :
z ∈ (0, 1)} with $• 6= $ be given. The following translations

$•(Lj) = {x : (y, z − Lj) ∈ $•} , where j ∈ N and(1.7)

Lj = `1 + . . .+ `j , `k ∈ N \ {1},
are used to define the perturbed waveguide Π• by replacing in (1.1) the cells $(Lj)
by $•(Lj) for all j ∈ N, see Fig. 1.1, b). We assume about the geometry that Π•
becomes a domain with smooth boundary. Then, let us consider the problem

−∆u•(x) = λu•(x) for x ∈ Π• , u•(x) = 0 for x ∈ ∂Π•.(1.8)



NON-PERIODIC PERTURBATION 3

In the same way as above, this problem is associated with a positive self-adjoint
operator A• in L2(Π•).

If all the numbers `j equal a constant, then Π• remains as a periodic quasi-
cylinder so that (1.8) reduces to (1.2) by a rescaling. Instead, we next consider
the case {`k}k∈N is a sequence such that limj→∞ `j = +∞ . As a consequence, the
waveguide Π• loses the periodicity, and the description of the essential spectrum
σess(A•) of the problem (1.8) becomes the main goal of our paper.

The model problem in the cell (1.5) reads as

−
(
∆y + (∂z + iη)2

)
U(x; η) = Λ(η)U(x; η) , x ∈ $,
U(x; η) = 0 , x ∈ κ ,(1.9)

U(y, 1; η) = U(y, 0; η) , ∂zU(y, 1; η) = ∂zU(y, 0; η) , (y, 0) ∈ τ,
where the Dirichlet condition is kept on the lateral side κ = {z ∈ ∂Π : z ∈ (0, 1)}
of the cell and the periodicity conditions are imposed on the cross-section τ = {z ∈
Π : z = 0}. For all values of the Floquet parameter η ∈ [−π, π], the spectrum
of the problem (1.9) is discrete and consists of a positive unbounded sequence of
eigenvalues listed according to their multiplicities,

0 < Λ1(η) ≤ Λ2(η) ≤ . . . ≤ Λn(η) ≤ . . .→ +∞.(1.10)

The functions [−π, π] 3 η 7→ Λn(η) are continuous and 2π-periodic. Hence, accord-
ing to [25, 13], the spectral bands

β(n) := {Λn(η) : η ∈ [−π, π]} ⊂ R+(1.11)

are indeed compact intervals. Moreover, λ† = Λ1(0) > 0 is the minimum of σess(A)
because Λ1(0) < Λ1(η) for η 6= 0.

The other auxiliary problem, needed later, is the Dirichlet problem

−∆w(x) = λw(x) for x ∈ Π0 , w(x) = 0 for x ∈ ∂Π0,(1.12)

in the infinite waveguide Π0, Fig. 1.1,c), which is obtained from Π, (1.1), by only
replacing the ”central” cell $ 7→ $•. Also the problem (1.12) is supplied with a
positive self-adjoint operator A0 in the space L2(Π0), the essential spectrum σess(A0)
of which coincides with (1.4), i.e. σess(A0) = ∪k∈Nβ(k). However, it may also
have discrete spectrum σdi(A0), which consists of isolated eigenvalues either in the
interval γ(0) := (0, λ†) below the essential spectrum, or inside a spectral gap γ(n) =(
β+(n), β−(n+ 1)

)
6= ∅ between disjoint neighboring bands

β(n) =
[
β−(n), β+(n)

]
and β(n+ 1) =

[
β−(n+ 1), β+(n+ 1)

]
.(1.13)

Examples of such eigenvalues will be given in Section 4. In any case every eigen-
function w ∈ H2(Π0) ∩ H1

0 (Π0) of the problem (1.12), corresponding to a spectral
parameter µ ∈ σdi(A0) as λ, has exponential decay at infinity, namely

eβ(µ)|z|w ∈ H1
0 (Π0)(1.14)

for some β(µ) > 0, see Section 3.
As for the structure of our paper, in Sections 2 and 3 we will prove the relationship

σess(A•) = σess(A) ∪ σdi(A0).(1.15)

The proof of this formula consists of two steps. In Section 2 we construct a
parametrix for the operator A• − λ under the assumption λ /∈ σess(A) ∪ σdi(A0),
and in Section 3 we use a quite standard construction of a Weyl sequence for the
operator A•, when λ ∈ σess(A) or λ ∈ σdi(A0).
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Formula (1.15) shows that the non-compact perturbation Π• of the domain Π may
add a family of isolated points to the essential spectrum on the intact domain. As
verified in Theorem 3.2, these points are accumulation points of the point spectrum
σpo(A•), but unfortunately we are not at the moment able to show whether they are
eigenvalues of infinite multiplicity or not.

If the outlet Π is a straight cylinder and σess(A) = [λ†,+∞), then the new
component of the spectrum consists of a finite number of eigenvalues belonging
to σdi(A0) ⊂ (0, λ†), i.e. below the cut-off value λ†. For a periodic quasi-cylinder
Π, the spectrum (1.4) may have gaps and σdi(A0) may contain points in these gaps.
In Section 4 we will provide examples of both types of eigenvalues and also discuss
possible generalizations of the problem setting.

We finish this section by a short discussion comparing our work with the liter-
ature on the Schrödinger equation. Non-periodic perturbations of the Schrödinger
equation with periodic potentials have been investigated in many papers (see for
example [10, 11, 14, 15] and others) especially in the case of the scattering prob-
lem in a system with ”sparse bumps”. In spite of some similarity of the geometric
situation, our approach and results differ from these studies in many respects. In
particular in our situation the essential spectrum of the unperturbed problem has
band-gap structure and we are able to detect points of the essential spectrum of the
perturbed problem, which are situated inside the gaps, not only below the essential
spectrum as in the case of sparse bumps in the Schrödinger equation.

Our approach for finding the spectrum σess(A•) is standard, namely we will con-
struct a singular Weyl sequence and a right parametrix in the regularity field. Be-
cause of the periodic geometry, these constructions need quite different arguments
from those in [14, 15]. In fact our techniques would apply to the Schrödinger equa-
tion having a potential with ”stationary” behavior at infinity in the terminology
of [10]; this is analogous with our fully periodic case. However, we consider only
deterministic sparse potentials, contrary to the random ones in [10, 11].

2. Constructing a parametrix.

In this section we prove the relation

σess(A•) ⊂ σess(A) ∪ σdi(A0).(2.1)

To this end, we assume

λ /∈ σess(A) ∪ σdi(A0)(2.2)

and construct a parametrix for the operator A• − λ (cf. (1.8)) of the problem

−∆u•(x)− λu•(x) = f•(x) , x ∈ Π•,

u•(x) = 0 , x ∈ ∂Π•,(2.3)

in other words a continuous operator

R•(λ) : L2(Π)→ H2(Π•) ∩H1
0 (Π•)(2.4)

such that the mapping(
A• − λ

)
R•(λ)− 1 : L2(Π•)→ L2(Π•)

is compact. This implies that the operator A• − λ is Fredholm and therefore λ /∈
σess(A). Hence, by the Fredholm alternative, the problem (2.3) with the right-hand
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side f• ∈ L2(Π•) has a solution u• ∈ H2(Π•)∩H1
0 (Π•), if and only if the compatibility

conditions

(f•, v•)Π• = 0 ∀ v• ∈ ker (A• − λ)(2.5)

are satisfied. Here, the kernel, ker (A•−λ), is a finite dimensional space of solutions
of the problem (1.8) in H2(Π)•) ∩H1

0 (Π•), due to the existence of the parametrix.
Since λ /∈ σess(A), a parametrix R(λ) of the operator A − λ for the problem in

Π exists, see [16], [21, § 3.4, § 5.1]. We introduce the C∞-smooth cut-off functions
χ : R→ [0, 1] and X : R→ [0, 1],

χ(z) = 1 for z ∈ (0, 1) and χ(z) = 0 for z /∈ (−1
2
, 3

2
),

X(z) = 1−
∑
j∈N

χj(z), where χj(z) = χ(z − Lj).(2.6)

Setting X(y, z) := X(z) for (y, z) ∈ Π, we have f = Xf• ∈ L2(Π) and clearly also

‖f ;L2(Π)‖ ≤ ‖f•;L2(Π)‖.
Let u[ = R(λ)f ∈ H2(Π) ∩H1

0 (Π) and u] = Xu[ ∈ H2(Π•) ∩H1
0 (Π•). We have

−∆u] − λu] − f•
= −X(∆ + λ)R(λ)Xf• +X2f• + (1−X2)f• − [∆, X](∆ + λ)RλXf•

= −X
(
(A− λ)R(λ)− 1

)
Xf• +

∑
j∈N

fj , fj = χ2
jf• − [∆, χj]u[,(2.7)

where according to (2.6) the support of fj is contained in θj = {x ∈ Π0 : −1
2
≤

z − Lj ≤ 3
2
} and the estimate∑

j∈N

‖fj;L2(θj)‖2 ≤ c
(
‖f•;L2(Π•)‖2 + ‖u[;H2(Π)‖2

)
≤ C‖f•;L2(Π•)‖2(2.8)

holds true.
In order to compensate the terms fj in (2.7) we need to derive more precise

information on the problem

−∆u0(x)− λu0(x) = f0(x) , x ∈ Π0,

u0(x) = 0 , x ∈ ∂Π0.(2.9)

Because of the assumption (2.2), the operator of the problem (2.9),

A0 − λ : H2(Π0) ∩H1
0 (Π0)→ L2(Π0)(2.10)

is an isomorphism. We introduce the weighted spaces L2
β(Π0) and W q

β (Π0) as the

completions of the linear set C∞0 (Π0) with respect to the norms

‖f0;L2
β(Π0)‖ = ‖eβ|z|f0;L2(Π0)‖,

‖u0;W q
β (Π0)‖ =

( q∑
p=0

‖∇pu0;L2(Π0)‖2
)1/2

,

where β ∈ R and q = 1, 2 are the weight and smoothness indices and ∇pu0 is the
collection of all partial derivatives of u0 of order p. Clearly, L2

0(Π0) = L2(Π0) and
W q

0 (Π0) = Hq(Π0) in the case β = 0, but for β > 0, the spaces contain only functions
with exponential decay at infinity. By W 1

β,0(Π0) we denote the subspace of W 1
β (Π0)

consisting of functions which vanish in ∂Π0.
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Obviously, the operator

W 2
β (Π0) ∩W 1

β,0(Π0) 3 u0 7→ Oβ(λ)u0 =: f0 ∈ L2
β(Π0)(2.11)

is continuous for all β ∈ R. If additional conditions are posed on the index β, it
follows from the results in [16], [21, § 3.4] that the operator (2.11) can gain certain
desirable properties: in particular, there exists a number β(λ) > 0 such that if

|β| ≤ β(λ)(2.12)

then the operator (2.11) is an isomorphism (notice that in the case β = 0, the
mapping (2.11) coincides with the operator (2.10), which is an isomorphism due to
our assumption on λ).

The number β(λ) can be found as follows. For a fixed λ, problem (1.9) gives rise
to a polynomial (quadratic) operator pencil η 7→ Aλ(η), cf. [7, Ch. 1], [21, § 1.2].
The condition λ /∈ σess(A) in (2.2) implies that there is no η-spectrum of Aλ in the
segment [−π, π] ⊂ R ⊂ C. Due to the analytic Fredholm alternative, see e.g. [7,
Thm. 1.5.1], the η-spectrum of Aλ consists of normal eigenvalues and has no finite
accumulation points. Furthermore, the η-spectrum is evidently 2π-periodic with
respect to the real variable. Thus, there exists β(λ) > 0 such that the rectangle
{η ∈ C : |Re η| ≤ π , |Im η| ≤ β(λ)} does not contain points of the η-spectrum of
Aλ. By [16, Thms. 4-6], [21, § 3.4, § 5.1], the operators (2.11) with β ∈ (−β(λ), β(λ))
have the same properties and therefore inherit the isomorphism property of (2.10).

Finally, we apply the above solvability result in weighted spaces to the construc-
tion of the parametrix. This is based on the fact that the supports of the functions
in (2.7),

Π0 3 x 7→ fj,0(y, z) = fj(y, z + Lj),

are compact, and they thus belong to L2
β(Π0) for any β, and consequently, the

problem (2.9) with f0 = fj,0 has a unique solution uj,0 ∈ W 2
β(λ)(Π0) ∩W 2

β(λ),0(Π0)

decaying exponentially. We define for every j ∈ N the cut-off functionXj : R→ [0, 1]
by

Xj(z) = X (z − Lj−1 − 1)
(
1−X (z − Lj−1 + 1)

)
,

where

X (z) = 0 for z < 0 and X (z) = 1 for z > 1(2.13)

so that

Xj(z) = 1 for z ∈ (Lj−1 + 2, Lj − 1) and

Xj(z) = 0 for z /∈ (Lj−1 + 1, Lj).(2.14)

Let

u• = R•(λ)f• = u] +
∑
j∈N

Xjuj,(2.15)

where uj(y, z) = uj,0(y, z − Lj) and Xj(y, z) := Xj(z). The identities (2.6), (2.7)
and (2.15) yield

−∆u• − λu• − f• = X
(
(A− λ)R(λ)− 1

)
Xf• −

∑
j∈N

[∆, Xj]uj.(2.16)
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The operator X
(
(A−λ)R(λ)−1

)
X is compact in L2(Π•), since R(λ) is a parametrix.

We denote the last sum in (2.16) by Kf• and verify that the operator K : L2(Π•)→
L2(Π•) is compact, too.

Due to (2.8), (2.14) and the inclusion uj,0 ∈ W 2
β(λ)(Π0) we have∑

j∈N

(
e2β(λ)`j

∥∥[∆, Xj]uj;H
1($(Lj−1 + 1))

∥∥2

+ e2β(λ)`j+1
∥∥[∆, Xj]uj;H

1($(Lj+1 − 1))
∥∥2
)

≤ c
∑
j∈N

∥∥uj,0;W 2
β(λ)

(
$(Lj−1 + 1− Lj) ∪ ($(Lj+1 − 1− Lj)

)∥∥2

≤ c
∑
j∈N

‖uj,0;W 2
β(λ)(Π0)‖2

≤ c
∑
j∈N

‖fj,0;L2
β(λ)(Π0)‖2 ≤ C‖f•;L2(Π•)‖2(2.17)

Let Θ = ∪j∈Z ∪± $(Lj ± 1) be the union of the cells appearing on the left of
(2.17). We define the space Hα(Θ) as the space of functions on Θ with weighted
norm

‖g;Hα(Θ)‖ =
(∑
j∈N

α2
j

∥∥g;H1
(
∪± $(Lj ± 1)

)∥∥2
)1/2

,

where we can choose the sequence {αj}j∈N tending to +∞ for example as

αj = eβ(λ)`j .

The embedding Hα(Θ) ↪→ L2(Θ) is compact, because it can be written as a sum of
a compact operator (considering the restriction of the functions of Hα(Θ) to finitely
many domain components $(Lj ± 1)) and another one with operator norm, which
can be made as small as one wishes (due to the coefficients αj in the remaining
components).

According to (2.17), the operator K is compact as well. Consequently, the oper-
ator (A− λ)R•(λ)− 1 from the left of (2.16) is also compact.

We formulate the proven fact as the following result.

Theorem 2.1. Assume that (2.2) holds for the spectral parameter λ. Then, the
operator A• of the problem (1.8) has a parametrix determined by the formula (2.15).

3. Constructing a Weyl sequence.

We now complete the proof of the formula (1.15) by verifying the relation inverse
to (2.1). For any λ ∈ σess(A), the problem (1.2) in the intact quasicylinder Π has a
bounded solution, the Floquet wave u(x) = eiηzU(y, z), where U is the eigenfunction
of the problem (1.9) corresponding to Λ(η) = λ (cf. (1.4)). We compose a Weyl
sequence by using translations of the functions

vn(y, z) = ‖Xnu;L2(Π)‖−1Xn(z)u(y, z),(3.1)

where Xn is the cut-off-function (see (2.13))

Xn(z) = X (n− |z|).(3.2)
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Notice that by definition we have

‖Xnu;L2(Π)‖2 ≥ 2(n− 1)‖U ;L2($)‖2

‖(A− λ)Xnu;L2(Π)‖2 = ‖[∆,Xn]u;L2(Π)‖2 ≤ c,(3.3)

because the commutator [∆,Xn] is supported in the union of $(n) and $(1− n).
Since `j → +∞ as j → +∞, we find a monotonely increasing sequence {jn} ⊂ N

such that `jn ≥ 2n+ 1. Owing to (3.1)–(3.3), the functions

Π• 3 (y, z) 7→ vn(y, z − Lj + n)(3.4)

are well-defined and form a singular Weyl sequence for the operator A• at the point
λ, which thus falls into σess(A•), see [4, Thm. 9.1.2], [24, Thm.VII.12].

Let now λ ∈ σdi(A0) and let w ∈ H2(Π0) ∩ H1
0 (Π0) be the corresponding eigen-

function of the problem (1.12), normalized in L2(Π0). Changing u into w in (3.1)
yields a singular Weyl sequence and thus the inclusion λ ∈ σess(A•) follows as above.
We have thus proven the converse of (2.1), and hence we can formulate the main
result of our paper:

Theorem 3.1. The formula (1.15) is valid, that is, σess(A•) = σess(A) ∪ σdi(A0).

We complete this section by deriving some more accurate information on the
spectrum.

Given µ ∈ σdi(A0), the exponential decay in (1.14) yields the inequalities∣∣∣‖Xnw;L2(Π0)‖2 − 1
∣∣∣ ≤ ce−β(µ)n

‖(A0 − λ)Xnw;L2(Π0)‖2 ≤ ce−2β(µ)n,(3.5)

so that λ ∈ σdi(A•) is seen to be an accumulation point of the point spectrum
σpo(A•) of the problem (1.6).

Theorem 3.2. Let µ ∈ σdi(A0). Given arbitrary N ∈ N and ε > 0, the total
multiplicity of the point spectrum of A• contained in the interval

υε(λ) = [µ− ε, µ+ ε](3.6)

is at least N .

Proof. Let E•(t)dt be the spectral measure generated by A•, see [4, Ch. 6], [24,
Sect. VII.2]. If ε is small and υε(µ) ∩ σess(A) = ∅, then this is a discrete measure
on υε(µ). Thus, we have to verify that

dε•(λ) := dim
(
P ε
• (λ)D(A•)

)
≥ N,(3.7)

where P ε
• (λ) is the orthogonal projection

P ε
• (λ) =

∫
υε(λ)

E•(t)dt.

Since `j → +∞ as j → +∞, we can select a monotonely increasing sequence
{jn} ∈ N such that `jn−1, `jn ≥ n+ 1 and thus the functions

wn(y, z) = Xn(z − Ljn)w(y, z − Ljn)

belong to D(A•). Moreover, the functions

vn = ‖wn;L2(Π0)‖−1wn , n ∈ N,
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are orthonormalized in L2(Π•) because supp vn ∩ supp vm = ∅ for n 6= m. Then,

δn,m −
(
P ε
• (λ)vn, P ε

• (λ)vm
)

Π•
=
(
(1− P ε

• (λ))vn, vm
)

Π•

=
1

4

(
‖(1− P ε

• (λ))(vn + vm);L2(Π•)‖2 − ‖(1− P ε
• (λ))(vn − vm);L2(Π•)‖2

)
=

1

4

∫
R\υε(λ)

dµvn+vm −
1

4

∫
R\υε(λ)

dµvn−vm ,(3.8)

where δn,m is the Kronecker symbol and dµW = (E•W,W )Π• is the non-negative
scalar measure generated by W ∈ D(A•). Using relations (3.5) and∫

R\υε(λ)

dµvn±vm ≤
1

ε2

∫
R\υε(λ)

(t− λ)2dµvn+vm(t)

≤ ε−2
∥∥(A• − λ)(vn ± vm);L2(Π•)‖2

yields the bound cε−2e−2β(λ) min {m,n} for the moduli of the two integrals in (3.8).
Thus, for fixed ε > 0, N ∈ N and arbitrary δ > 0, we find M such that∣∣(P ε

• (λ)vn, P ε
• (λ)vm)Π• − δn,m

∣∣ ≤ δ

for all M ≤ n,m < M+N . In other words, for sufficiently small δ > 0, the functions
P ε
• (λ)vM , . . . P ε

• (λ)vM+N−1 are ”almost orthonormal” and they in particular form a
linearly independent sequence. This can happen, if and only if (3.7) is true. �

Unfortunately, the authors do not know if λ ∈ σess(A0) can be an eigenvalue with
infinite multiplicity for the problem (1.8), although this possibility seems improba-
ble.

4. Examples and generalizations.

Let us first demonstrate by some examples that the essential spectra σess(A•) and
σess(A) of Theorem 3.1 indeed may be different. We start by discussing the possi-
bility of having an eigenvalue λ− ∈ σdi(A0), see (1.12), below the cut-off (minimum)
λ† of the essential spectrum σess(A). Our smoothness assumptions on the boundary
∂Π• can clearly be omitted, because each step in our analysis can be adapted to the
variational problem (1.3) and the one corresponding to (1.12):(

∇w,∇v
)

Π0
= λ(w, v)Π0 ∀ v ∈ H1

0 (Π0).(4.1)

If Π ( Π0 holds, we can apply the comparison principle, [12], which is a consequence
of the max-min-principle [4, Thm. 10.2.2], [24, Sec. XIII.1], and which implies that
enlarging the waveguide Π0 yields at least one eigenvalue λ− for A0 in the interval
(0, λ†) below the essential spectrum. In view of Theorem 3.1, these remarks imply
that λ− ∈ σess(A•) although λ− < λ†.

However, if Π0 ⊂ Π and Π = ω × (0,+∞) is a cylindrical outlet, the discrete
spectrum σdi(A0) is empty and, therefore, by Theorem 3.1,

σess(A•) = σess(A).(4.2)

Next, we consider possible eigenvalues inside spectral gaps. We assume that Π is a
quasicylinder such that there exists a spectral gap γ(n) 6= ∅ between the bands β(n)
and β(n + 1), (1.13), and that the edges β+(n) and β−(n + 1) are non-degenerate,
i.e., the second derivatives satisfy ∂2

ηΛn(ηmax) < 0 and ∂2
ηΛn+1(ηmin) > 0. Then,
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a)

b)

Figure 4.1. Different geometries of the waveguide Π yielding spec-
tral gaps.

a) b)

Figure 4.2. Wide (a) and short (b) gaps of the essential spectrum (shaded).

according to [19], slightly diminishing the waveguide Π0 in the case Π0 ( Π (or
enlarging it, if Π0 ) Π), gives rise to an eigenvalue inside the gap γ(n) near its lower
edge β+(n) (respectively, upper edge β−(n+ 1) ).

We complete the above argument by the remark that there are several known
ways to open spectral gaps in periodic waveguides, based on controlling the shape
of the periodicity cell:

1◦. Identical beads connected by a thin needle, Fig. 4.1,a). In this case the spectrum
(1.4) consists of short bands separated by wide gaps as in Fig. 4.2,a); see [23].

2◦. Periodic perturbation by small voids of the cylindrical surface ∂Π = ∂ω × R,
see Fig. 4.1, b). Under certain conditions on the perturbation profile one can open
short spectral gaps as in Fig. 4.2,b); see [17, 5, 18].

Notice that in both cases the band edges are non-degenerate.
Finally, if the Dirichlet boundary conditions are replaced by Neumann conditions,

we have σess = [0,+∞) for the Laplace operator in a straight cylinder, and formula
(1.15) holds trivially true. However, in the case the domain is a quasicylinder,
spectral gaps may appear, and our proofs of Theorems 2.1, 3.1 and 3.2 can easily be
adapted to these and other boundary conditions. In particular, spectral gaps can
be opened by the methods 1◦ and 2◦, cf. [17], [18] and [2].

3◦. Contrasting coefficients of the differential operators, see [8], [9], [26] and [1].

We remark that the methods 1◦ and 3◦ can directly be generalized to elliptic
systems, for example the elasticity problem, see [22, 3, 6], but there are serious
obstacles to apply the approach 2◦ in this way, and this has not been done in the
literature yet.

We finish the paper by the remark that the results and their proofs directly
generalize to domains in Rd having one or finitely many outlets to infinity: for
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example, a waveguide Ω could be composed of the semi-infinite outlet

Π+ = {x ∈ Π : z ≥ 0},(4.3)

where Π is as before, and the attached bounded domain ω contained in the half-
space Rd

− = {x : z < 0}. A perturbed domain Ω• could be defined in the same
way as around (1.7), and the results in Theorem 3.1 and 3.2 would hold as such, for
equations and proofs where Π is replaced by Ω and Π• with Ω•.
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