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Abstract. We construct ”almost periodic” unbounded domains, where a large class of

elliptic spectral problems have essential spectra possessing peculiar structure: they consist of

monotone, non-negative sequences of isolated points and thus have infinitely many gaps.

§1. Formulation of the spectral problem.

1.1. Domain and boundary-value problem. The purpose of this paper is to
construct unbounded domains Π ⊂ Rd, d > 2, where a large class of elliptic spectral
problems (1.11)–(1.12) has essential spectrum ℘es with infinitely many spectral gaps: as
stated in our main result Theorem 2.1, ℘es equals a countable set without finite accumula-
tion points, Σ ⊂ R+ = [0,+∞), (2.6), which is the set of eigenvalues of an elliptic spectral
problem on a bounded domain. The domain consists of an infinite row of translates of a
bounded cell $ such that the neighboring ones have common tangential boundary com-
ponents and the cells are connected via a sequence of thinning apertures. While further
discussion of the ideas of our construction is postponed to Section 1.3, we start here by a
detailed definition of the domain and the boundary value problems.

Let $ ⊂ Rd, be a domain with Lipschitz boundary ∂$ and compact closure $ =
$ ∪ ∂$. We assume that $ belongs to the layer {(y, z) : y ∈ Rd−1, z ∈ (0, 1)} and
the surface ∂$ has two planar parts γ0 = Bd−1

R (0) × {0} and γ1 = Bd−1
R (0) × {1} where

Bd−1
R (0) = {y ∈ Rd−1 : |y| < R} is a ball in Rd−1 of radius R > 0. We also introduce a

(d−1)-dimensional domain ω ⊂ Bd−1
R/2(0), a positive infinitesimal sequence {αj}j∈Z ⊂ (0, 1)

and the sets

ωj = {(y, z) : α−1
j y ∈ ω, z = j} ⊂ Rd, j ∈ Z = {0,±1,±2, . . . }. (1.1)

The domain Π is the union of the periodicity cells

$j = {(y, z) : (y, z − j) ∈ $}, j ∈ Z, (1.2)

connected through apertures (1.1), Fig. 1.a, namely

Π =
⋃
j∈Z

($j ∪ ωj). (1.3)

Let A be a function matrix of size N × N , which is 1-periodic in z, Hermitian, and
positive definite for all x ∈ $, and let D(∇) be a N × n-matrix of first order differential
operators with constant coefficients, which are in general complex. The matrix D is
algebraically complete, see [24, § 3.7.4], which means that there exists a natural number
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Figure 1.1: Periodic beads connected with converging (a) and straight (b) spoke (shaded).

%D ∈ N = {1, 2, 3, . . . } such that, for any row p = (p1, . . . , pn) of homogeneous polynomials
of order deg pj = % > %D in the variables ξ = (ξ1, . . . , ξd) ∈ Rd, one can find a row of
polynomials q = (q1, . . . , qN) such that there holds the relation

p(ξ) = q(ξ)D(ξ), ξ ∈ Rd. (1.4)

We assume for a while that the surface ∂$ and the entries of the matrix A are smooth
enough and introduce the n×n-matrix of second order differential operators in divergence
form

L(x,∇) = D(−∇)
>
A(x)D(∇). (1.5)

We write the Green formula

(Lu, v)$ + (Nu, v)∂$ = a(u, v;$) := (A(x)D(∇)u,D(∇)v)$, (1.6)

where u = (u1, . . . , un)> and v = (v1, . . . , vn)> are any smooth vector functions. Here,
∇ denotes the gradient, > stands for transposition, ( , )$ is the natural scalar product in
the (scalar or vector) Lebesgue space L2($), and N is the Neumann boundary condition
operator

N (x,∇) = D(ν(x))
>
A(x)D(∇), (1.7)

where ν = (ν1, . . . , νd)
> is the outward normal unit vector on ∂$.

Owing to the algebraic completeness (1.4) of D, operator (1.5) can be called formally
positive [24, § 3.7.4] and the positive Hermitian sesquilinear form a(u, v;$) in (1.6) satisfies
the Korn inequality [24, Theorem 3.7.7]

‖u;H1($)‖2 6 c(A, D,$)(a(u, u;$) + ‖u;L2($)‖2), (1.8)

where c(A, D,$) > 0 is a constant and u is any function belonging to the Sobolev
space H1($)n. (The latter superscript n indicates the number of components of the
vector function u, but we do not display this number in the notation of norms and scalar
products.) Moreover, the couple {L, a} possesses the polynomial property [15, 16]: for any
domain G ⊂ Rd,

a(u, u;G), u ∈ H1(G)n ⇔ u ∈ P
∣∣
G
, (1.9)

where P is some finite-dimensional subspace of vector polynomials p(x) = (p1(x), . . . , pn(x))>

independent of the domain G. It is straightforward to deduce from (1.4) that deg pj < %D
for all p ∈ P . Furthermore, Lp = 0 and Np = 0 for p ∈ P .
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Let Θ be a unitary matrix function of size n× n on the surface ∂$. Denoting by the
subindex q the qth row of a matrix, we compose the n× n-matrices B(x,∇) and T (x,∇)
by defining the qth rows, q = 1, . . . , n, of them in one of the following ways:

Bq(x,∇) = (Θ(x)N (x,∇))q , Tq(x,∇) = Θq(x)

or (1.10)

Bq(x,∇) = Θq(x) , Tq(x,∇) = −(Θ(x)N (x,∇))q.

Notice that here, the index q must be independent of x; however, B(x,∇) and therefore
also T (x,∇)) may contain both types of rows.

In view of (1.10) and (1.7), applying the Green formula (1.6) twice yields the identity

(Lu, v)$ + (Bu, T v)∂$ = (u,Lv)$ + (T u,Bv)∂$.

1.2. The spectral problem and its variational and operator formulations.
We consider the boundary-value problem in the unbounded domain (1.3)

L(x,∇)u(x) = λM(x)u(x), x ∈ Π, (1.11)

B(x,∇)u(x) = 0, x ∈ ∂Π, (1.12)

where M is a smooth Hermitian positive non-zero matrix function of size n× n and λ is
a spectral parameter. The differential operators L and B, which were originally defined
in $ and ∂$, respectively, are extended 1-periodically over the “almost periodic” set Π;
recall that ∂Π ⊂

⋃
j∈Z ∂$j. The entries of the matrix M are assumed to be 1-periodic

in the variable z, too. Since the coefficients are smooth, the polynomial property (1.9)
assures that the matrix operator L(x,∇) is elliptic, cf., [16]; moreover, the boundary
condition operator B(x,∇) covers it on ∂Π, namely, the Shapiro–Lopatinsky conditions
hold true everywhere in ∂Π except for the (d − 2)-dimensional edges ∂Π ∩ ωj, j ∈ Z, of
the connecting apertures (1.1).

The variational formulation of the problem (1.11), (1.12) reads as the integral identity
[10, 11]

a(u, v; Π) = λ(Mu, v)Π ∀v ∈ H(Π). (1.13)

Here, H(Π) is the subspace of vector functions v in the Sobolev space H1(Π)n which
satisfy the stable boundary conditions of (1.10), i.e.,

Θq(x)u(x) = 0, x ∈ ∂Π, corresponding to Bq(x,∇) = Θq(x). (1.14)

The indices q, for which (1.14) holds, form the set Q ⊂ {1, . . . , n}.
The integral identity (1.13) makes sense even when the entries of the matrices A and

M are only measurable and bounded, and the matrices are positive almost everywhere
in $. These properties are assumed to hold in the sequel, although in addition the local
smoothness near the flat surfaces γ0 and γ1 will also be needed so that in particular the
periodicity of the matrices A and M will be preserved.

Let us suppose that there holds the condition

p ∈ P , q ∈ Q, (Mp, p)$ = 0, Θq(x)p(x) = 0 ∀x ∈ ∂$
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⇒ p = 0 ; (1.15)

here, P is the subspace of polynomials in (1.9). Then the lemma on equivalent norms
guarantees that the Korn inequality (1.8) can be written on periodicity cells as

‖u;H1($j)‖2 6 c (A,B,M, D,$)(a(u, u;$j) + (Mu, u)$j), (1.16)

where c(A,B,M, D,$) is a constant independent of j and u ∈ H(Π), see [24, Theorem
3.7.7], [3, Theorem 2.2.2] and others. Summing the inequalities (1.16) over j ∈ Z shows
that the sesquilinear Hermitian form

〈u, v〉 = a(u, v; Π) + (Mu, v)Π (1.17)

can be taken as an inner product in the Hilbert space H(Π).
We introduce the operator M in H(Π) by the identity

〈Mu, v〉 = (Mu, v)Π ∀u, v ∈ H(Π) (1.18)

and turn (1.13) into the abstract equation

Mu = µu in H(Π) (1.19)

where, according to (1.17) and (1.13), the spectral parameters are in the relationship

µ = (1 + λ)−1. (1.20)

The operator M in (1.18) is continuous, positive and symmetric, therefore, self-adjoint.
Its norm does not exceed 1; compare (1.17) and (1.18). Thus, the µ-spectrum of the
operator M is located in the segment [0, 1] ⊂ R ⊂ C. Since the domain (1.9) is not
bounded, the embedding H1(Π) ⊂ L2(Π) is not compact and, by [2, Theorem 10.1.5],
the essential µ-spectrum ℘es(M) cannot consist only of the point µ = 0. The relation
(1.20) sends this point to infinity. Hence, the λ-spectrum of the problem (1.13) (or (1.11),
(1.12))

℘ = {λ ∈ C : (1 + λ)−1 ∈ ℘(M)} ⊂ R+ (1.21)

has a non-trivial essential component ℘es. As it was already announced, the main goal
of the paper is to describe the essential spectrum ℘es. It should be emphasized that the
question if ℘es may include an eigenvalue of infinite multiplicity, remains open.

1.3. Motivation. The structure (1.3) of the waveguide Π, consisting of the periodic
family of identical cells connected through thinning apertures, emerges from the previous
works [18, 20, 22, 23] of the authors and their attempts to prove or disprove the existence
of infinite number of spectral gaps in the spectrum of periodic elastic and piezoelectric
waveguides. This question is related to the classical Bethe–Sommerfeld conjecture, see
[31], which has been until now solved only for scalar problems, [25, 29, 30]. The waveguide
Πε of the papers [18, 20, 22, 23] consists of the union of cells (1.2) and the thin cylinder
Ωε = {(y, z) : ε−1y ∈ ω, z ∈ R}, where the domain ω ⊂ Rd−1 is as above, but ε > 0
is a small parameter. In other words, the cells are connected through small but fixed
apertures ωεj = {(y, z) : ε−1y ∈ ω, z = j}; compare Fig. 1.a and b, where Π and Πε are
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depicted. The main results of the citations state that for any N ∈ N = {1, 2, 3, . . . } there
exists εN > 0 such that the spectrum of the problem in Πε with ε ∈ (0, εN ] has at least
N opened spectral gaps. This was proven by constructing asymptotics of eigenvalues
of a model problem in $, which is obtained from the system (1.11)–(1.12) in Πε using
the Floquet–Bloch–Gelfand transform [5]. However, since εN → +0 as N → +∞, this
asymptotic analysis appears not to be adequate to solve, if an infinite number of gaps can
occur.

Using a different argument from the asymptotic theory of elliptic problems in singularly
perturbed domains, see [12], we will show in Section 2 that the essential spectrum of the
problem (1.11), (1.12) coincides with an unbounded countable set Σ in R+ = [0,+∞),
which is the discrete spectrum of the model problem (2.1), (2.2) in the periodicity cell $,
see Theorem 2.1. Thus, we have an infinite number of spectral gaps for sure. Since (1.3)
is not a periodic set, the Floquet–Bloch–Gelfand technique does not apply. To identify
the essential spectrum we construct for any point (1.20) with λ ∈ Σ ⊂ ℘es a Weyl singular
sequence for the operator M , and on the other hand in the case λ 6∈ Σ we construct a
right parametrix for the problem operator (1.13); this implies the Fredholm property for
M and thus assures that λ 6∈ ℘es. These facts together lead to the equality Σ = ℘es.

For the sake of shortness of the paper, we will mostly consider the problem (1.11),
(1.12) in dimension d > 3 and outline modifications needed for the planar case d =
2 only in Section 3.2. The procedures are quite similar in both cases, however, since
the fundamental solutions and resolvent kernels (i.e. the integral kernels of the inverse
operators) behave logarithmically for d = 2, all related formulas would look quite different;
a direct transformation algorithm between the two cases could be found in [6, 12].

1.4. Concrete spectral problems. 1◦. Scalar case. Let n = 1, N = d and
D(∇) = ∇. Then, (1.5) is a scalar elliptic second-order differential operator in the
divergence form. Clearly, %D = 1 in (1.4). If in addition A = IN is the unit N × N -
matrix, then L(∇) = −∆ is the Laplacian. In the case B(x,∇) = ν(x)>∇ with the
outward normal unit vector ν, we have the Neumann problem, which describes for example
the propagation of waves in a homogeneous acoustic media. For a more general real,
symmetric and positive definite matrix function A, the medium can be anisotropic and
inhomogeneous, in particular, stratified. The case of the Dirichlet boundary condition
corresponds to quantum waveguides. In Section 3.4 we will also discuss the spectral
Steklov problem

−∆u(x) = 0, x ∈ Π, ∂νu(x) := ν(x)>∇u(x) = λu(x) = 0, x ∈ ∂Π, (1.22)

with the spectral parameter λ in the boundary condition. This is related to the linear
theory of water waves, cf., [9].

2◦. Elasticity system. Let d = n = 3, N = 6 and

D(∇)> =

 ∂1 0 0 0 2−1/2∂3 2−1/2∂2

0 ∂2 0 2−1/2∂3 0 2−1/2∂1

0 0 ∂3 2−1/2∂2 2−1/2∂1 0

 . (1.23)

Regarding the column u(x) = (u1(x), u2(x), u3(x))> as the displacement vector of point
x in a solid, we observe that

D(∇)u = (ε11(u), ε22(u), ε33(u),
√

2ε23(u),
√

2ε31(u),
√

2ε12(u))> (1.24)
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is the corresponding strain column with the Cartesian components εjk(u) of the strain
tensor; the components are defined by the linearized Cauchy formulas

εjk(u) =
1

2

(
∂uj
∂xk

+
∂uk
∂xj

)
, j, k = 1, 2, 3.

Denoting by A(x) the real, symmetric and positive definite 6× 6-matrix of elastic moduli
of the waveguide solid material at point x, we remark that Hooke’s law

σ(u;x) = A(x)ε(u;x) = A(x)D(∇)u(x)

gives the stress column the same structure as in (1.24). Furthermore, M(x) = ρ(x)Id,
where ρ > 0 is the material density. We emphasize that the factors 2−1/2 and

√
2 in (1.23)

and (1.24) make the intrinsic norms of the strain tensor (εjk(u))j,k=1,2,3 and the strain
column ε(u) equal to each other. In the case of a homogeneous isotropic material the
numerical matrix A has the block-diagonal form

A =

(
A(11) O3×3

O3×3 A(22)

)
, A(11) =

 2µ + λ λ λ
λ 2µ + λ λ
λ λ 2µ + λ

 , A(22) =

 2µ 0 0
0 2µ 0
0 0 2µ

 ,

where On×m is the null n×m-matrix and λ > 0 and µ > 0 are the Lamé constants.
The matrix (1.23) is algebraically complete with %D = 2 in (1.4), see [24, § 3.7.5].

[16, Example 1.12], and possesses the polynomial property (1.9), where the 6-dimensional
subspace P consists of rigid motions d(x)a with arbitrary a ∈ R6 (three translations plus
three rotations) and the 3× 6-matrix

d(x) =

 1 0 0 0 2−1/2x3 −2−1/2x2

0 1 0 −2−1/2x3 0 2−1/2x1

0 0 1 2−1/2x2 −2−1/2x1 0

 .

If B = N , see (1.7) and (1.10), then the boundary condition (1.12) corresponds to a
traction-free surface and involves the traction vector

D(ν(x))>σ(u;x) = D(ν(x))>A(x)D(∇)u(x) = 0, x ∈ ∂Π. (1.25)

The Dirichlet condition in (1.12) is related to Bu = u and T u = −Nu in (1.10), meaning
that the surface ∂Π is clamped and the displacement vector u vanishes there. Also,
choosing in (1.10) the orthogonal 3 × 3-matrix Θ = (ν, s1, s2) which is composed from
the unit normal vector ν and two tangential unit vectors s1 and s2 perpendicular to each
other, leads to the linearized Signorini conditions

uν = 0, σsiν(u;x) = 0, x ∈ ∂Π, i = 1, 2. (1.26)

Here, uν = ν>u and σsiν(u) = (si)>σ(u). Hence, in (1.26) there are the normal component
of the displacement vector as well as two tangential components of the traction vector
(1.25).
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3◦ Piezoelectricity system. Let us denote the differential operator matrix (1.23) by
DM(∇) and let DE(∇) = ∇, where the superscripts M and E stand for “mechanical” and
“electric”, respectively. Setting d = 3, n = 4 and N = 9, we introduce the matrices

D(∇) =

(
DM(∇) O6×1

O3×3 DE(∇)

)
, A =

(
AMM −AME

AEM AEE

)
(1.27)

of sizes 9 × 4 and 9 × 9 respectively. Here, AMM and AEE are the elastic and dielectric
matrices (tensors), which are real, symmetric, and positive definite, and of sizes 6 × 6
and 3× 3 respectively, while no restriction is exposed on the piezoelectric matrix AME =
(AEM)> 6= O6×3. Although the matrix A in (1.27) is not symmetric, the spectrum of the
piezoelectricity system (1.11) with appropriate boundary conditions (1.12) is contained
in R+. This is due to the specific structure of the diagonal matrix

M(x) = ρM(x) diag {1, 1, 1, 0}. (1.28)

on the right of (1.11), where ρM > 0 is the same mechanical material density as in the
previous example of elasticity. Moreover, the vector function u = (uM1 , u

M
2 , u

M
3 , u

E)> is
composed of the displacement vector uM = (uM1 , u

M
2 , u

M
3 )> and the electric potential uE.

The Dirichlet condition for uE,

uE(x) = 0, x ∈ ∂Π, (1.29)

means contact with an absolute conductor, and this case matches logically with the me-
chanically clamped surface

uM(x) = 0, x ∈ ∂Π. (1.30)

The Neumann boundary condition

D(ν(x))>A(x)D(∇)u(x) = 0, x ∈ ∂Π, (1.31)

for both elastic and electric fields appears, if the piezoelectric solid waveguide is in vacuum,
which is an insulator and also corresponds to a traction-free boundary.

The operator (1.5) of the piezoelectric system (1.11) possesses the polynomial property
(1.9) with %D = 2, see [16, Example 1.13], because, according to (1.27), the quadratic form

a(u, u;G) = (AD(∇)u,D(∇)u)G

= (AMMDM(∇)uM, DM(∇)uM)G + (AEEDE(∇)uE, DE(∇)uE)G

is positive and degenerates on the subspace

P = {u : uM = d(x)a, a ∈ R6, uE = a0 ∈ R}, dimP = 7.

In the case (1.29), formula (1.28) shows that condition (1.15) is met and therefore all
our considerations in Section 2 only require cosmetic modifications, so that they can be
applied to the piezoelectricity system with either the Dirichlet conditions (1.30), (1.29),
or mixed boundary conditions (1.25) for uM and (1.29) for uE. However, in the case of the
Neumann conditions (1.31), implication (1.15) fails, since u = (0, 0, 0, a0)> satisfies the
relations on the left-hand side of (1.15). In Section 3.5 we however will adapt the whole
scheme to problem (1.11), (1.31) in piezoelectricity, too.
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§2. Essential spectrum.

2.1. Limit problem and formula for ℘es. The spectral problem

L(x,∇)U(x) = ΛM(x)U(x), x ∈ $, (2.1)

B(x,∇)U(x) = 0, x ∈ ∂$, (2.2)

posed in the finite periodicity cell $, has the variational formulation

a(U, V ;$) = Λ(MU, V )$ ∀V ∈ H($) (2.3)

and its spectrum consists of the unbounded monotone sequence of nonnegative eigenvalues

0 6 Λ1 6 Λ2 6 · · · 6 Λm 6 · · · → +∞, (2.4)

where multiplicities are taken into account. Here, H($) is the subspace of vector functions
U ∈ H1($)n satisfying the stable boundary conditions in (2.2), see (1.14). The corre-
sponding eigenvectors U1, U2, . . . , Um, · · · ∈ H($) can be subject to the normalization
and orthogonality conditions

a(Up, U q;$) + (MUp, U q)$ = δp,q (2.5)

where δp,q is the Kronecker symbol.
These well-known facts can be proved by introducing in the same way as in (1.18),

(1.19) a positive and self-adjoint operator in H($), which is also is compact due to the
compact embedding H1($) ⊂ L2($) in the bounded Lipschitz domain $. According to
[2, Theorems 10.1.5 and 10.2.2] the spectrum of this operator consists of the essential
spectrum {M∞ = 0} and the infinitesimal positive sequence of eigenvalues {Mm}m∈N,
which turns into (2.4) via the relation (1.20) between the spectral parameters M and Λ.
We will also need the countable set

Σ = {Λm : m ∈ N}, (2.6)

which does not take into account the multiplicities of eigenvalues.
Let us assume that

(F) the matrices A and Θ, which are 1-periodic in z, belong to the classes C1,δ and
C0,δ for some δ ∈ (0, 1) in the d-dimensional half-balls $ ∩ BdR(P q) = {x = (y, z) :
|x − P q| < R, (−1)q(z − q) > 0} and the (d − 1)-dimensional balls Bd−1

R (0) × {q} ⊂ ∂$,
respectively.

Here, q = 0, 1, R > 0 is the same radius as in Section 1.1 and P q = (0, . . . , 0, q) are
the opposite points on the surface ∂$, around which the apertures have been created.

Assumption (F) allows us to apply the local elliptic estimates [1], [11, Ch. 2] and to
conclude the inequality

‖Um;H2($ ∩ Bd3R/4(P q)‖ 6 c(Λm‖Um;L2($ ∩ BdR(P q)‖+ ‖Um;L2($ ∩ BdR(P q)‖)
6 c(Λm + 1)‖Um;L2($ ∩ BdR(P q)‖ 6 Cm. (2.7)

The last estimate is due to to the normalization condition (2.5) and the Korn inequality
(1.16).

In the next sections we will prove
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Theorem 2.1. Under condition (F), the essential spectrum ℘es of the problem (1.13)
(or problem (1.11)–(1.12)) coincides with set (2.6).

2.2. Singular Weyl sequence. For any Λm ∈ Σ, we will construct a sequence
{um(j)}j∈N ⊂ H(Π) such that

1◦. ‖um(j);H(Π)‖ = 1,

2◦. um(j) ⇁ 0 weakly in H(Π),

3◦. ‖Mum(j) + (1 + Λm)−1um(j);H(Π)‖ → 0.

These three properties make {um(j)}j∈N into a singular sequence for the operator M at the

point µm = (1 + Λm)−1 and thus the Weyl criterion, see, e.g., [2, Thm 9.1.2] and [27,
Thm. VII.12] implies that µm ∈ ℘es(M). By the definition of ℘, see (1.21), this means
that Λm ∈ ℘es.

For each j ∈ Z, we set

um(j) = ‖Um(j);H(Π)‖−1Um(j), Um(j)(x) = Xj(x)Um(y, z − j), x ∈ $j, (2.8)

where Um is an eigenvector of the problem (2.3) and Xj ∈ C∞($j) is a cut-off function
such that

Xj(x) = 1 for x ∈ $j \ (Bd3Rαj/4(P j) ∪ Bd3Rαj/4(P j+1)),

Xj(x) = 0 for x ∈ $j ∩ (BdRαj/2(P j) ∪ BdRαj/2(P j+1)),

0 6 Xj 6 1, |∇kXj(x)| 6 ck(min{αj, αj+1})−k, k ∈ N0 = {0, 1, 2, . . . }. (2.9)

Here, Um(j) can be extended as null over Π\$j, because Xj = 0 on the apertures ωj∪ωj+1 =
Π ∩ ∂$j.

Obviously, um(j) satisfies 1◦. For any test function v belonging to the space C∞c (Π)n of
infinitely differentiable, compactly supported vector functions, we have

〈um(j), v〉 = 0 for all large j ∈ N.

Since C∞c (Π)n is dense in the space H(Π), condition 2◦ holds as well. Moreover, in view
of (1.17), (1.18) and (2.4), we obtain

‖Mum(j) − (1 + Λm)−1um(j);H(Π)‖ = sup |〈Mum(j) − (1 + Λm)−1um(j), v〉|
= (1 + Λm)−1‖Um(j);H(Π)‖−1 sup

∣∣a(Um(j), v; Π)− (1 + Λm)(MUm(j), v)Π

∣∣ . (2.10)

Here, according to the definition of the norm of a Hilbert space, supremum is calculated
over all v ∈ H(Π) such that ‖v;H(Π)‖ = 1.

The last expression inside the modulus sign in (2.10) is equal to

a(Um,Xjv;$j)− (1 + Λm)(MUm,Xjv)$j
+ (A(D(∇)Xj)Um, D(∇)v)$j − (AD(∇)Um, (D(∇)Xj)v)$j . (2.11)

The first couple of terms in (2.11) cancel each other owing to the integral identity (2.3)
with U = Um, Λ = Λm and V = Xjv. To estimate the last two terms, we need the
following Hardy type inequalities in dimensions d > 3; see Section 3.2 for d = 2.
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Lemma 2.2. Given an arbitrary number δ > 0, let κ = 1 for d > 4, κ = 1− δ for d = 4
and κ = 1

2
− δ for d = 3. Then,

‖r−1U ;L2($)‖ 6 c‖U ;H1($)‖, (2.12)

‖r−1−κU ;L2($ ∩ BdR(P q))‖ 6 c‖U ;H2($ ∩ BdR(P q))‖, (2.13)

where r = dist(x, P 0 ∪ P 1) and the constant c = cδ does not depend on U .

Proof. Let us recall the standard one-dimensional Hardy inequality

+∞∫
0

r−1+t|W (r)|2dr 6 4

t2

+∞∫
0

r1+t

∣∣∣∣dWdr (r)

∣∣∣∣2dr (2.14)

where t > 0 and W ∈ C1
c [0,+∞). To prove (2.12), we put t = d − 2 > 0 and W (r) =

U(x)χ(r), where χ is a smooth cut-off function, χ(r) = 1 for 0 < r < 3R/4 and χ(r) = 0
for r > R (this χ is needed to satisfy the condition W (r) = 0 for r > rW in (2.14)).
Integrating the obtained inequality in the angular variables φ over the unit semi-sphere
and using the relation dx = rd−1drdsφ we conclude that

‖r−1U ;L2($ ∩ Bd3R/4(P q))‖2 6 ‖r−1χU ;L2($ ∩ BdR(P q))‖2

6
4

(d− 2)2

∥∥∥∥ ∂∂r
(χU);L2($ ∩ BdR(P q))

∥∥∥∥2

6 c(‖∇U ;L2($ ∩ BdR(P q))‖2

+‖U ;L2($ ∩ (BdR(P q) \ Bd3R/4(P q))‖2) 6 c‖U ;H1($ ∩ BdR(P q))‖2. (2.15)

Hence, (2.12) is indeed true.
To verify (2.13) it suffices to prove the weighted inequality

‖r−1−κU ;L2($ ∩ Bd3R/4(P q))‖2 6 c(‖r−κ∇U ;L2($ ∩ BdR(P q))‖2

+‖U ;L2($ ∩ (BdR(P q) \ Bd3R/4(P q)))‖2). (2.16)

We may still use the one-dimensional Hardy inequality (2.14) in the same way as in (2.15),
although we now take t = d − 2 − 2κ > 0; this restriction just implies the conditions
on κ formulated in the lemma. To treat the weight r−κ multiplying ∇U in (2.16) we
recall that κ 6 1 and, hence, ‖r−κ∇U ;L2($ ∩ BdR(P q))‖ 6 ‖r−1∇U ;L2($ ∩ BdR(P q))‖ 6
c‖∇U ;H1($ ∩ BdR(P q))‖, by (2.12). �

Since the matrix function D(∇)Xj is supported in the union Aj of the semi-annuli Aj,0

and Aj+1,1, where

Aj,q = {x ∈ Bd3Rαj/4(P j) \ BdRαj/2(P j) : (−1)qz > j} , q = 0, 1, (2.17)

we have |D(∇)Xj(x)| 6 cα−1
j+q due to (2.9) and rj(x) = min{rj, rj+1} 6 Rmin{αj, αj+1}

for x ∈ Ad
Rαj

(P j) ∪ Ad
Rαj+1

(P j+1); here rj = |x− P j|. We now obtain that

|(A(D(∇)Xj)Um, D(∇)v)$j | 6 c
∑
q=0,1

α−1
j+q‖Um;L2(Aj+q,q)‖ ‖D(∇)v;L2($j)‖

10



6 c(α−1
j α1+κ

j + α−1
j+1α

1+κ
j+1 )‖Um;H2($ ∩ (Bd3R/4(P 0) ∪ Bd3R/4(P 1))‖ 6 cm(min{αj, αj+1})κ,

|(AD(∇)Um, (D(∇)Xj)v)$j | 6 c
∑
q=0,1

‖Um;L2(Aj+q,q)‖α−1
j+q‖v;L2(Aj+q,q)‖

6 cm min{αj, αj+1}. (2.18)

Here, we have applied inequalities (2.7) and (2.12), (2.13). Hence, expression (2.13) tends
to zero as j → +∞. In a similar way, it is straightforward to verify that

‖Um(j);H(Π)‖2 → a(Um, Um;$) + (MUm, Um)$ = Λm + 1 as j → +∞.

We have checked up condition 3◦, and therefore µm ∈ ℘es(M) as well as Λm ∈ ℘es.

2.3. Parametrix. We are now going to present the most complicated part of the
proof of Theorem 2.1. Let us assume that Λm < Λm+1 and

λ ∈ (Λm,Λm+1). (2.19)

We aim to construct a continuous operator

R(λ) : H(Π)→ H(Π) (2.20)

such that the mapping

(M − (1 + λ)−1)R(λ)− 1 : H(Π)→ H(Π) (2.21)

is compact. Operator (2.20) is called a (right) parametrix and, as known, properties
of (2.19) and (2.20) assure that the operator M − (1 + λ)−1 in H(Π) is Fredholm and,
therefore, the point (1 + λ)−1 belongs to the regularity field of M . In view of definitions
(1.17), (1.18) and (1.20) we observe that either λ is an isolated normal eigenvalue of
problem (1.11)–(1.12), see also (1.13), or for any f ∈ H(Π)∗, the inhomogeneous problem

a(u, v; Π)− λ(Mu, v)Π = f(v) ∀v ∈ H(Π) (2.22)

has a unique solution u ∈ H(Π) and there holds the estimate

‖u;H(Π)‖ 6 c(λ)‖f ;H(Π)∗‖

with a constant c(λ) which depends on λ but not on f .
We now construct the parametrixR(λ) for the variational problem in Π. To determine

the vector R(λ)f ∈ H(Π), we first proceed with the inhomogeneous limit problem in the
cell,

a(U(j), V(j);$j)− λ(MU(j), V(j))$j = f j(V(j)) ∀V(j) ∈ H($j), (2.23)

where j ∈ Z and f j(V(j)) = f(XjV(j)) with the cut-off function Xj, (2.9). We emphasize
that ∑

j∈Z

|f j(V(j))|2 6 c‖f ;H(Π)∗‖2
∑
j∈Z

‖XjV(j);H($j)‖2

11



6 c‖f ;H(Π)∗‖2
∑
j∈Z

(‖Xj∇V(j);L
2($j)‖2 + ‖(∇Xj)V(j);L

2($j)‖2)

6 c‖f ;H(Π)∗‖2
∑
j∈Z

‖V(j);H($j)‖2, (2.24)

where we used the remarks above the calculation (2.18) and the following consequence of
the Hardy inequality (2.12) ,

‖(∇Xj)V(j);L
2($j)‖2 6 c‖r−1

j V(j);L
2($j)‖2 6 c‖V(j);H($j)‖2. (2.25)

Since λ is not an eigenvalue of the spectrum (2.4) of the problem (2.3), there exists a
unique solution U(j) ∈ H($j) of the problem (2.11), which satisfies the estimate

‖U(j);H($j)‖2 6 c(λ)‖f j;H($j)
∗‖2; (2.26)

notice that the constant c(λ) is independent of j ∈ Z and f j due to the periodicity of
coefficients in differential operators.

We now set

R(λ)f =
∑
j∈Z

XjU(j) +R](λ)f =: R0(λ)f +R](λ)f, (2.27)

where the second term is still to be determined and the first term can be estimated as
follows: ∥∥∥∥∑

j∈Z

XjU(j);H(Π)

∥∥∥∥2

=
∑
j∈Z

‖XjU(j);H($j)‖2 6 c
∑
j∈Z

(‖U(j);H($j)‖2

+ ‖(∇Xj)U(j);H($j)‖2) 6 c
∑
j∈Z

‖U(j);H($j)‖2 6 cλ
∑
j∈Z

‖f j;H($j)
∗‖2. (2.28)

Here, we took into account that the supports of Xj and Xk are disjoint for j 6= k, then
applied the relation (2.25) with V(j) = U(j) as well as the inequalities (2.26) and (2.24),
and finally summed with respect to j ∈ Z. This yields the upper bound Cλ‖f ;H(Π)∗‖2

for the expression (2.28).
Let us now describe discrepancies left by R0(λ)f in problem (2.22). To this end, we

need the cut-off function

χj(x) =

{
1−Xj(x), x ∈ $j ∩ Bd3Rαj/4(P j),

1−Xj−1(x), x ∈ $j−1 ∩ Bd3Rαj/4(P j),
equivalently, χj(x) = χ(α−1

j |x− P j|).

(2.29)
To have the latter identity with some standard cut-off function χ ∈ C∞c (R) we assume
that the choice in (2.9) has been done in a proper, translation invariant, way. Then, using
the definition f j(v) = f(Xjv) of the right-hand side of (2.23) and formulas (2.9), (2.29),
we obtain that

a(R0(λ)f, v; Π)− λ(MR0(λ)f, v)Π − f(v) (2.30)
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=
∑
j∈Z

((A[D(∇),Xj]Um, D(∇)v)$j − (AD(∇)Um, [D(∇),Xj]v)$j)

+
∑
j∈Z

(
(AD(∇)Um, D(∇)(Xjv))$j − λ(MUm,Xjv)$j

)
− f(v)

=
∑
j∈Z

(F j0(v) + F j1(v)) +
∑
j∈Z

f(Xjv)− f(v) =
∑
j∈Z

(F j0(v) + F j1(v)− f(χjv)).

Here, [D(∇), χj] is the commutator of the differential matrix operator D(∇) and the
function χj, which is an operator of multiplication with the matrix function D(∇)χj.
Furthermore, F j0 and F j1 are functionals supported in the semi-annulus (2.17). In this
way, discrepancy (2.30) can be indeed represented as the sum of the functionals

v 7→ F j(v) = F j0(v) + F j1(v)− f(χjv) (2.31)

with support in the closed ball Bd3Rαj/4(P j). We define the sets

Ξ = Rd \ Ω, Ω = {(y, z) : y 6∈ ω, z = 0}, Ωj = {(y, z) : ξ := α−1
j (y, z − j) ∈ Ω}.

(2.32)
Then, owing to estimates (2.24) and (2.26), we have∑

j∈Z

‖F j;H(Rd \ Ωj)
∗‖2 6 c‖f ;H(Π)∗‖2. (2.33)

2.4. Boundary layer phenomenon. In order to compensate the functionals F j
we employ a general asymptotic procedure of [12, Ch.4] and construct boundary layers
around apertures (1.1). We fix a point P j = (0, . . . , 0, j) and make the coordinate dilation

x 7→ ξj = (ηj, ζj) := (α−1
j y, α−1

j (z − j)). (2.34)

In view of (2.32) and (1.1), letting αj → +0 formally transforms the union $j∪$j+1∪ωj =
{x ∈ Π : j − 1 < z < j + 1} into the space Rd with an infinite cut, namely the domain
Ξ in (2.32); this is the union of two half-spaces connected through the aperture ω in the
wall {ξ = (η, ζ) : ζ = 0}. Furthermore, we freeze coefficients of the differential operators
L and B at the points P 0 and P 1, recall the smoothness and periodicity assumptions (F),
and thus obtain the differential operator matrices with constant coefficients

L0(∇) = D(−∇)
>
A(P q)D(∇), q = 0, 1,

and Bq(∇), q = 0, 1. Notice that L0(∇), the principal part of L(x,∇), consists of a matrix
of homogeneous second-order differential operators,

L0(∇x) = α−2
j L0(∇ξj). (2.35)

Recalling our choice of the boundary condition operator B, we see that B+ := B0 and
B− := B1 may differ from each other.
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Performing the coordinate change (2.34) and setting αj = 0 turn the boundary-value
problem (1.11), (1.12) locally into

L0(∇ξ)W (ξ) = g(ξ), ξ ∈ Ξ, (2.36)

B±(∇ξ)W (η,±0) = 0, η ∈ Ω := Rd−1 \ ω. (2.37)

We remark that, according to (2.35),

L0(∇x)− λM0 = α−2
j L0(∇ξ)− λM0, (2.38)

where the last term is of higher order in αj and thus has been neglected when composing
the equation (2.36). The differential operators have been replaced by their principal parts
for the same reason; see also Corollary 2.4. The boundary conditions (2.37) are posed on
the two surfaces Ω± of Ω. The variational formulation of problem (2.36), (2.37) reads as

(A0D(∇ξ)W,D(∇ξ)V )Ξ = G(V ), (2.39)

where G(V ) = (g, V )Ξ and, at first, the test functions V = (V1, . . . , Vn)> are compactly
supported and infinitely differentiable in Ξ up to the surfaces Ω± = (Rd−1 \ ω)× {±0} of
the wall, and satisfy the stable boundary conditions (2.37), cf. (1.14). By a completion
argument, we may extend the integral identity (2.39) to the space V(Ξ), which consists of
vector functions V ∈ H1

loc(Ξ ∪Ω±)n decaying at infinity (see below), satisfying the above
mentioned stable boundary conditions on Ω±, and having the finite Dirichlet norm

‖V ;V(Ξ)‖ = (‖∇ξV ;L2(Ξ)‖2 + ‖V ;L2(Ξ ∩ BdR(0))‖2)1/2 (2.40)

where R > 0 is a radius such that ω × {0} ⊂ BdR(0). The Hardy type inequality

‖(1 + |ξ|)−1V ;L2(Ξ)‖ 6 cd‖∇ξV ;L2(Ξ)‖, d > 2

can be easily proved in the same way as in Lemma 2.2, by changing r 7→ ρ = |ξ|, and this
implies that the weighted Kondratiev norm [7](∫

Ξ

|∇ξV (ξ)|2dξ +

∫
Ξ

(1 + |ξ|2)−1|V (ξ)|2dξ
)1/2

(2.41)

is equivalent to the norm (2.40) in the space V(Ξ) The above mentioned decay properties
of V emerge from the last integral.

We look for a solution W of the problem (2.39) in the space V(Ξ) and also assume
that G belongs to the dual space V(Ξ)∗. All terms in (2.39) are now properly defined.

The Kondratiev theory [7] (see also papers [26, 13, 14, 16] and, e.g., monographs [21, 8])
can be applied to problem (2.36), (2.37). It is straightforward to see that all results of
the theory, which usually deal with the classical formulation of elliptic boundary-value
problems, can be passed over to integral identities of type (2.39), cf. the review paper
[17]. Repeating an argument in [16, § 5], we observe that, first, the operator

A : V(Ξ) → V(Ξ)∗ (2.42)
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of problem (2.39) is self-adjoint, and, second, any solution W ∈ V(Ξ) of the homogeneous-
problem (2.39) (G = 0) must be a polynomial W ∈ V(Ξ), by the polynomial property
(1.9). However, due to the convergence of integrals in (2.41) we must have W = 0; this
argument requires d to be at least 3, cf., Section 3.2.. By the Kondratiev theory, these
facts lead to the following assertion.

Proposition 2.3. Mapping (2.42) is an isomorphism, that is, for any G ∈ V(Ξ)∗,
problem (2.39) has a unique solution W ∈ V(Ξ) and the following estimate is valid:

‖W ;V(Ξ)‖ 6 c‖G;V(Ξ)∗‖. (2.43)

We will actually need the following, a bit more general version of the proposition.

Corollary 2.4. Proposition 2.3 remains true, with the constant c of (2.43) independent
of j, for the problem

(A0jD(∇ξ)W,D(∇ξ)V )Ξ = G(V ) ∀V ∈ V(Ξ), (2.44)

which is obtained by perturbing the constant matrix A0 of (2.39) on a compact set as
A0j(ξ) = A0 + χ0(ξ)(A(αjξ)−A0),where

χ0 ∈ C∞(Rd), χ0(ξ) = 1 for ρ < R, χ0(ξ) = 0 for ρ < 5R/4. (2.45)

Proof. The assertion follows, since the operator (1.5) with the matrix A0j in place of
A is still formally positive; the independence of c on j is a consequence of the assumption
(F) which makes the perturbation A0 −A0j small when j → ±∞. �

The properties of the solutions of the problem (2.39) can be improved by using again
the Kondratiev theory, when the functional G ∈ V(Ξ)∗ has a compact support, i.e.

G(V ) = 0 for all V ∈ V(Ξ) such that V (ξ) = 0 for ξ ∈ Ξ ∩ Bd3R/4(0). (2.46)

Proposition 2.5. If (2.46) holds for G, then the solution W ∈ V(Ξ) of the problem
(2.39) is smooth outside a larger ball BdR(0), R > 3R/4, and has the bound∫

Ξ\BdR(0)

(1 + ρ2)κ
(
(1 + ρ2)|∇2

ξW (ξ)|2 + |∇ξW (ξ)|2 + ((1 + ρ2)−1|W (ξ)|2
)
dξ

6 cκ(R)‖G;V(Ξ)∗‖ (2.47)

where ρ = |ξ| and the constant cκ(R) depends on the fixed radius R and the choice of the
exponent κ < (d− 2)/2. In particular, ‖W ;V1

κ(Ξ)‖ 6 cκ(R)‖G;V(Ξ)∗‖.

2.5. Parametrix (continuation). The discrepancies (2.31), which were left to the
problem (2.22) by the first term R0(λ)f in (2.27), are compensated by the sum

R](λ)f(x) =
∑
j∈Z

α−dj Xj(x)W j(ξj), (2.48)
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where Xj is a cut-off function

Xj(x) = 0 outside BdR(P j) and Xj(x) = 1 inside Bd3R/4(P j). (2.49)

The boundary layer terms W j are determined as solutions of the problem (2.44), where
the right-hand sides are taken from (2.33) and written in the stretched coordinates (2.34),

G(V ) = Gj(V ), Gj(V ) = α2
jF j(V j), V j = V (α−1

j y, α−1
j (z − j)).

The factor α2
j comes from (2.35), (2.38) and (2.48). Furthermore, we obtain

|Gj(V )|2 = α4
j |F j(V j)|2

6 cα4
j‖F j;H(Rd \ Ωj)‖2(‖∇xV

j;L2(Π ∩ BdRαj)‖
2 + ‖V j;L2(Π ∩ BdRαj)‖

2)

6 cα4
j‖F j;H(Rd \ Ωj)‖2αd−2

j (‖∇ξV ;L2(Ξ ∩ BdR)‖2 + α2
j‖V ;L2(Ξ ∩ BdR)‖2)

6 cαd+2
j ‖F j;V(Rd \ Ωj)‖2‖V ;V(Ξ)‖2 (2.50)

so that
‖Gj;V(Ξ)∗‖2 6 cαd+2

j ‖F j;V(Rd \ Ωj)‖2. (2.51)

According to estimate (2.43) in Proposition 2.3,

‖W j;V(Ξ)‖2 6 cαd+2
j ‖F j;V(Rd \ Ωj)‖2. (2.52)

Note that

‖XjW
j;H1(Π ∩ BdR(P j))‖2

6 c(‖∇xW
j;L2(Π ∩ BdR(P j))‖2 + ‖W j;L2(Π ∩ BdR(P j))‖2)

6 cαd−2
j (‖∇ξW

j;L2(Ξ ∩ BdR/αj(0))‖2 + α2
j‖W j;L2(Ξ ∩ BdR/αj(0))‖2)

6 cαd−2
j (‖∇ξW

j;L2(Ξ ∩ BdR/αj(0))‖2 + ‖(1 + ρ)−1W j;L2(Ξ ∩ BdR/αj(0))‖2)

6 cαd−2
j ‖W j;V(Ξ)‖2; (2.53)

here we took into account the equivalence of the norms (2.40) and (2.41). From (2.52),
(2.53) and (2.33) we derive that the expression (2.48) has the bound

‖R](λ)f ;V(Ξ)‖2 6 c
∑
j∈Z

α−2d
j ‖XjW

j;H1(Π ∩ BdR(P j))‖2

6 c
∑
j∈Z

α−d−2
j ‖W j;H(Π ∩ BdR(P j))‖2 6 c

∑
j∈Z

‖F j;V(Rd \ Ωj)
∗‖2 6 c‖f ;H(Π)∗‖2.

Let f ∈ H(Π) and let f ∈ H(Π) be defined as

f(v) = −(1 + λ)−1〈f , v〉 (2.54)

where 〈 , 〉 is the scalar product (1.17) in the Hilbert space H(Π). We now define the
operator (2.20) by the formula

R(λ)f = R(λ)f
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and show that mapping (2.21) becomes compact. In view of (1.17), (1.18) and (2.54), the
abstract equation

Mu− (1 + λ)−1u = f in H(Π) (2.55)

is equivalent to the variational problem (2.22). Thus, we need to consider the expression

I(f, v) = a(R(λ)f, v; Π)− λ(MR(λ)f, v)Π − f(v) (2.56)

which by (2.30), (2.31), (2.27), and (2.48) can be written as∑
j∈Z

(a(XjU(j), v;$j)− λ(MXjU(j), v)$j + α−dj
(
a(XjW

j, v; Π ∩ BdR(P j))

−λ(MXjW
j, v)Π∩BdR(P j))

)
− f(v)

=
∑
j∈Z

α−dj (a(XjW
j, v; Π ∩ BdR(P j))− αdjF j(v)− λ(MXjW

j, v)Π∩BdR(P j)).

First, we have F j(v) = F j(Xjv), and using (2.52) and (2.47) we write the simple
estimate

α−dj λ
∣∣∣(MXjW

j, v)Π∩BdR(P j)

∣∣∣ 6 cα−dj ‖v;L2(Π ∩ BdR(P j))‖
(
αdj

∫
Π∩BdR(P j)

|W j(ξ)|2dξ
)1/2

6 cα
−d/2
j ‖v;L2(Π ∩ BdR(P j))‖

(
‖W j;V(Ξ)‖2 + α

−min{0,2κ−2}
j

∫
Ξ∩(BdRαj (0)\BdR(0))

(1 + ρ2)−1+κ|W j(ξ)|2dξ
)1/2

6 cα
−d/2
j α

−min{0,κ−1}
j ‖W j;V(Ξ)‖ ‖v;L2(Π ∩ BdR(P j))‖

6 cα
1+max{0,κ−1}
j ‖F j;V(Rd \ Ωj)‖ ‖v;L2(Π ∩ BdR(P j))‖, (2.57)

where we may choose κ ∈ (0, 1/2) ⊂ (0, (d − 2)/2) such that the final exponent of αj in
(2.57) becomes positive, see Proposition 2.5.

Furthermore, we have

α−dj a(XjW
j, v; Π ∩ BdR(P j))−F j(Xjv) = α−dj a(W j, Xjv; Π ∩ BdR(P j))−F j(Xjv)

+α−dj (A[D(∇), Xj]W
j, D(∇)v)Π∩BdR(P j) − α−dj (AD(∇)W j, [D(∇), Xj]v)Π∩BdR(P j)

= ((A0 + χ0(A−A0))D(∇ξ)W
j, D(∇ξ)(Xjv))Ξ − Gj(Xjv) (2.58)

+α−dj ((1− χ0)(A−A0))D(∇)W j, D(∇)(Xjv))Π∩BdR(P j)

+α−dj (A0[D(∇), Xj]W
j, D(∇)v)Π∩BdR(P j) − α−dj (A0D(∇)W j, [D(∇), Xj]v)Π∩BdR(P j).

The first couple of terms on the right vanishes due to the definition of W j as a solution
of problem (2.44) and the last one obeys the estimate

α−dj
∣∣(AD(∇)W j, [D(∇), Xj]v)Π∩BdR(P j)

∣∣
6 cα−dj ‖v;L2(Π ∩ (BdR(P j) \ Bd3R/4(P j)))‖

(
αd−2
j

∫
Aj

|∇ξW
j(ξ)|2dξ

)1/2
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6 cα
−1−d/2
j ‖v;L2(Π ∩ BdR(P j))‖

(
α2κ
j

∫
Aj

(1 + ρ2)κ|∇ξW
j(ξ)|2dξ

)1/2

6 cα
−1+κ−d/2
j ‖v;L2(Π ∩ BdR(P j))‖ ‖Gj;V(Π)∗‖

6 cακ
j ‖F j;V(Rd \ Ωj)

∗‖ ‖v;L2(Π ∩ BdR(P j))‖, (2.59)

where the integration domain is as above, Aj = Ξ ∩ (BdR/αj(0) \ Bd3R/(4αj)(0)). In the

calculation (2.59) we have taken into account that, by (2.49) and (2.34), the coefficients
of the commutator are non-vanishing only in the annulus BdR(0)\Bd3R/4(0) where ρ = |ξ| ∼
α−1
j , and finally we also have applied relation (2.51).

Integration by parts in the second and third terms on the right hand side of (2.58)
makes them into

α−dj

(
D(−∇)

>
(1− χ0)(A−A0)D(∇)W j, Xjv

)
Π∩BdR(P j)

+ α−dj

(
D(−∇)

>
A[D(∇), Xj]W

j, v
)

Π∩BdR(P j)
. (2.60)

The last scalar product contains the factors W j and ∇W j, and due to factor [D(∇), Xj],
this term can be restricted to the above-mentioned annulus. Hence, it can be estimated
similarly to the calculation (2.59) and thus has the same bound. To process the first
scalar product in (2.60) we need to use a different argument. We observe that

|A(x)−A0| 6 crj = c |x− P j| (2.61)

and, by definitions (2.45) and (2.49), the scalar product can be restricted to the annulus
BdR(P j) \ Bd3Rαj/4(P j), where A − A0 (assumption (F)) and W j (Proposition 2.5) are

smooth. Finally, fixing some κ ∈ (0, 1/2) in (2.47), we first write:

α−dj
∣∣(D(−∇)

>
(1− χ0)(A−A0)D(∇)W j, Xjv)Π∩BdR(P j)

∣∣
6 α−dj ‖r−κj v;L2(Π ∩ BdR(P j))‖

×
(
αd−2+2κ
j

∫
Ξ∩Bd

R/αJ
(0)

ρ2κ(ρ2|∇2
ξW

j(ξ)|2 + |∇ξW
j(ξ)|2)dξ

)1/2

. (2.62)

In the last integral, the factor |ξ|2 is obtained from (2.61), and α2κ
j , |ξ|2κ from the factor

r−κj in the norm of v and from the Cauchy–Schwartz–Bunyakovski inequality. Now we
apply (2.47) and (2.51) to bound (2.62) by

cα
−1+κ−d/2
j ‖r−κj v;L2(Π ∩ BdR(P j))‖ ‖Gj;H(Π)∗‖

6 cακ
j ‖F j;V(Rd \ Ωj)

∗‖ ‖v;L2(Π ∩ BdR(P j))‖. (2.63)

Summarizing our calculations, we observe that inequalities (2.57), (2.59) and (2.63)
involve factors αδj with some positive exponents δ. Hence, taking into account (2.33), we
can estimate the expression (2.56) by

|I(f, v)| 6 c
∑
j∈Z

‖F j;V(Rd \ Ωj)
∗‖αδj‖(1 + r−κj )v;L2(Π ∩ BdR(P j))‖
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6 ‖f ;H(Π)∗‖
(∑

j∈Z

α2δ
j ‖(1 + r−κj )v;L2(Π ∩ BdR(P j))‖

)1/2

. (2.64)

Furthermore, the Hölder inequality and the Hardy inequality (2.12) with κ ∈ (0, 1/2)
yield

‖(1 + r−κj )v;L2(Π ∩ BdR(P j))‖2 6 2‖v;L2(Π ∩ BdR(P j))‖

+2

( ∫
Π∩BdR(P j)

|v(x)|2dx
)κ( ∫

Π∩BdR(P j)

r−2
j |v(x)|2dx

)1−κ

6 ‖v;L2(Π ∩ BdR(P j))‖κ ‖v;H1(Π ∩ BdR(P j))‖1−κ.

For the final step of the proof we still define the auxiliary function space Hα(Π), which
consists of functions f on the domain

ΩR := Π ∩
⋃
j∈Z

BdR(P j)

satisfying

‖f ; Hα(Π)‖2 :=
∑
j∈Z

‖(1 + r−κj )f ;L2(Π ∩ BdR(P j))‖2 <∞.

The following properties hold true: (i) H(Π) is contained in Hα(Π); (ii) the embedding
H(Π) ⊂ Hα(Π) is compact; (iii) expression (2.56) is a continuous linear functional in
Hα(Π) 3 v. This claim follows from the factors α2δ

j and ‖v;L2(Π ∩ BdR(P j))‖κ in the
bound of (2.64), together with facts that {αj}j∈Z is an infinitesimal sequence and the
embedding L2(Π ∩ BdR(P j)) ⊂ H1($j ∪$j−1) is compact.

The equality

I(f, v) = −(1 + λ)(〈(M − (1 + λ)−1)R(λ)f , v〉 − 〈f , v〉)

follows from (2.54)–(2.55) and (1.17), (1.18), and we thus deduce from (i)–(iii) the com-
pactness of the mapping (2.21), which completes our proof of Theorem 2.1.

§3. Possible generalizations.

3.1. Eigenvalues with infinite multiplicity. The essential spectrum of prob-
lem (1.11), (1.12) is characterized by Theorem 2.1 as ℘es = Σ, and thus there are two
possibilities for each entry Λm of the eigenvalue sequence (2.4):

1◦. Λm is an eigenvalue with infinite multiplicity for the problem (1.11), (1.12) in Π;

2◦. the discrete spectrum ℘di of the problem (1.11), (1.12) contains a sequence
{λ(mk)}k∈N such that

λ(mk) → Λm as m → ∞.
At the moment we are unfortunately not able to disprove the case 1◦, not even for

scalar problems, although this hypothesis is very probably true. However, here we present
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a simple, elementary argument to find a concentration of eigenvalues around a point Λm

in (2.4).
Let dEM(t) be the spectral measure of the positive self-adjoint operator M defined

in Section 2.1 and let dµU,U(t) be the corresponding real scalar measure generated by
U ∈ H(Π), see, e.g., [2, Ch. 6], [28, Th. 12.23]. Given an interval

Υm(δ) = [(1 + Λm)−1 − δ, (1 + Λm)−1 + δ]

with δ > 0, we define the orthogonal projection Pm(δ) =
∫

Υm(δ)
dEM(t) in H(Π). Let the

vector function um(j), normalized in H(Π), be as in (2.8).

Lemma 3.6. There exists cm such that, for any δ > 0 and j ∈ Z,

‖um(j) − Pm(δ)um(j);H(Π)‖ 6 cmδ
−1 min{αj, αj+1}. (3.1)

Proof. We have

‖um(j) − Pm(δ)um(j);H(Π)‖2 =

∫
R\Υm(δ)

dµum
(j)
,um

(j)
(t)

6
1

δ2

∫
R\Υm(δ)

(t− (1 + Λm)−1)2dµum
(j)
,um

(j)
(t) 6

1

δ2
‖Mum(j) − (1 + Λm)−1um(j);H(Π)‖2.

It suffices to recall the estimate (2.18) with the constant cm. �

Since suppum(j) ∩ suppum(k) = ∅ for j 6= k, the test vector functions {um(j)}j∈Z are

orthonormal in H(Π). Hence, estimate (3.1) and the assumption α±m → +0 as m→ +∞
prove that the subspace P (δ)H(Π) cannot be finite-dimensional for any δ.

3.2. The planar case d = 2. Our considerations in Section 2 do not require
essential changes for the Dirichlet problem (1.11) in dimension 2. Clearly, if τ = 0, the
Hardy inequality (2.14) includes a logarithmic factor and can be written as

1∫
0

r−1| ln r|−2|W (r)|2dr 6 4

1∫
0

r

∣∣∣∣dWdr (r)

∣∣∣∣2dr, W ∈ C1
c (0, 1], W (1) = 0,

so that neither (2.12) nor (2.13) can be deduced from it. However, inequality (2.12)
readily follows from the Friedrichs inequality on the arc (0, π) 3 φ

π∫
0

|W (φ)|2dφ 6 1

π2

π∫
0

∣∣∣∣dWdφ (φ)

∣∣∣∣2dφ, W ∈ H1(0, π], W (0) = W (π) = 0

by integrating in the radial variable r. Thus the material of Section 2 remains unchanged
for the Dirichlet problem in dimension 2.

In the case of the Neumann or mixed boundary value problem, several steps in our
proof fail, because problems (2.39) and (2.44) are no longer solvable in the energy space

20



H(Ξ). Moreover, the operators of these problems are no more isomorphisms in any Kon-
dratiev spaces V1

β(Ξ) with weight index β ∈ R (cf. (2.41) and [21, Ch. 2, 6]).
Asymptotic procedures, see [6, Ch. 3], [12, Ch. 2,5] and others, allow us to improve the

situation. Knowing these, it is no longer a hard job to adapt the whole Section 2 to di-
mension 2. However, due to the logarithmic terms of fundamental solutions and resolvent
kernels, all formulas must be modified and rewritten. For shortness, we only outline the
necessary modifications needed for two-dimensional Neumann and mixed boundary-value
problems.

First of all, the resolvent kernels T j(±), i.e., the solutions of the homogeneous problem

(2.36), (2.37) in R2
±, have logarithmic growth at infinity, see, e.g., [21, Ch. 6] and [16,

§ 2]. For Λ 6∈ Σ, also the problem (2.1), (2.2) in the cell $ has solutions with logarithmic
behavior near the points P q. These solutions compose the Green matrices G(x;P q) with
singularities at P q, q = 0, 1. Accordingly, we replace the solution U(j) ∈ H1($)n of the
limit problem problem (2.23) by the linear combination

U(j) +G(x;P j)bj +G(x;P j+1)bj+1 (3.2)

with coefficient columns bj, bj+1 ∈ Cn. The method of matched asymptotic expansions
(see [4, 6] and others) allows us to construct a global asymptotic approximation involving
inner and outer expansions and in particular to find the coefficients bj and bj+1. A simple
trick of [12, Ch. 2] helps to reorganize the obtained asymptotic stucture as the sum of
the expression (3.2) and the boundary layer terms of type (2.48) with decay rate O(|ξ|−1)
for |ξ| → +∞.

3.3. Similar shapes. Our approach applies for other geometric shapes, for example,
the cells can be deformed slightly and connected by thin and short ligaments, Fig. 2. Thus,
our results remain valid for the waveguide

Π̂ = Ω̂ ∪
⋃
j∈Z

$̂j,

where

Ω̂ = {(y, z) : α0(z)−1y ∈ ω, z ∈ R}, ω̂j = {(y, z) : α1(j)−1(y, z − j) ∈ $},

0 < αp ∈ C1(R), αp(z)→ +p as z → ±∞, p = 0, 1.

Another type of generalization is drawn in Fig. 3: the domain is composed of the cells

$ς = {(y, z) ∈ Rd−d0 × Rd0 : (y, z − ς) ∈ $} ⊂ Rd (3.3)

where d0 ∈ N, 1 6 d0 6 d, ς = (ς1, . . . , ςd0) ∈ Zd0 and $ is a bounded Lipschitz domain
in the prism {(y, z) : y ∈ Rd−d0 , zk ∈ (0, 1), k = 1, . . . , d0} such that the boundary ∂$
includes the planar parts Bd−d0R (0) × {P kq} with q = 0, 1, k = 1, . . . , d0 and P kq = qe(k);
e(k) ∈ Rd0 is the unit vector of the zk-axis, z = (z1, . . . , zd0). To describe the apertures
connecting cells (3.3), we define the rank of the prism Pς and the cell $ς to be rς =
max{|ς1|, . . . , |ςd0|}. We also define bounded Lipschitz domains ωk ⊂ Bd−d0R ⊂ Rd−d0 ,
k = 1, . . . , d0, and an infinitesimal sequence {αj}j∈N∪{0} ⊂ (0, 1). Assume that two cells
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Figure 3.2: Beads connected with this and short ligaments.

$ς1 and $ς2 have the common planar part Bd−d0R × {P kq} and that $ςp is of rank rp and
r = min{r1, r2}. Then the aperture between $ς1 and $ς2 is defined as

{(y, z) : α−1
r y ∈ ωk, z = P kq}. (3.4)

As a result, we obtain the domain Π, which is contained in the whole space (d0 = d) or in
a hyperplane (1 < d0 < d). The cells (3.3) connected by the converging zones (3.4) pave
the domain Π.

The geometric structure of the domain Π allows us to repeat word-by-word our consid-
eration in Section 2 and to derive formula (2.6) for the essential spectrum of the problem
(1.13) in Π. Since no new idea nor technicality is needed to make this conclusion, we skip
the reformulation of Theorem 2.1.

3.4. Steklov problem. Let us next focus on the applications listed in Section 1.4.
In the linear water-wave equation the spectral parameter is contained in the boundary
condition, see (1.22) and, e.g., [9]. The variational formulation of the problem can be
written as

(∇u,∇v)Π = λ(u, v)∂Π ∀v ∈ H1(Π). (3.5)

However, the scalar product

〈u, v〉 = (∇u,∇v)Π + (u, v)∂Π ∀u, v ∈ H1(Π),

and the new, self-adjoint, positive operator M : H1(Π)→ H1(Π),

〈Mu, v〉 = (u, v)∂Π ∀u, v ∈ H1(Π),

reduces problem (3.5) to the abstract equation (1.19) with the new spectral parameter
(1.20). In this way all of our results can be adapted to problem (1.22). This reduction of
(1.22) to the abstract equation (1.19) was proposed in [19], and it has become very useful
in various problems of the linear theory of water-waves.

3.5. Piezoelectric waveguides. As mentioned in Section 1.3, 3◦, the piezoelectricity
system defined by (1.11) and (1.27), (1.28), and supplied with the Dirichlet conditions
(1.29), (1.30), satisfies requirements (1.9), (1.15), and thus the results obtained in Sections
2 apply. Let us next show how to treat the other physically relevant case of the Neumann
conditions (1.31).

By HE(Π) we understand the function space obtained as the completion of C∞c (Π)
with respect to the Dirichlet norm(

‖∇uE;L2(Π)‖2 + ‖uE;L2($0)‖2
)1/2

,
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Figure 3.3: Double-periodic family of identical cells connected with ligaments converging
at infinity.

cf. (2.40). It is straightforward to see that HE(Π) contains constant functions. Hence,
the problem

(AEEDE(∇)uE, DE(∇)vE)Π = FE(vE) ∀vE ∈ HE(Π), (3.6)

where AEE is a real symmetric and positive definite 3× 3-matrix and DE(∇) = ∇, has a
solution uE ∈ HE(Π) if and only if FE(1) = 0. This is the case for the problem (3.6) with
the particular right-hand side

FE(vE) = −(AEMDM(∇)uM, DE(∇)vE)Π, DM(∇)uM ∈ L2(Π)6, (3.7)

where the notation of (1.27), (1.23) is used. This problem is obtained from the piezo-
electricity problem (1.13) by restricting to “electric” test functions v = (0, 0, 0, vE)> and
observing that the lowest line of the matrix M equals (0, 0, 0, 0), see (1.28).

Following [23], we introduce the continuous mapping

L2(Π)6 3 DM(∇)uM 7→ J(uM) = −DE(∇)uE ∈ L2(Π)3.

Notice that the solution uE ∈ HE(Π) is defined up to a constant addendum which of
course is annihilated by the operator J . Putting

−(AMEDE(∇)uE, DM(∇)vM)Π = (AMEJ(uE), DM(∇)vM)Π =: J (uM, vM), (3.8)

we rewrite the piezoelectricity problem (1.13) with the “mechanical” test function v =
((vM)>, 0)> in the form

(AMMDM(∇)uM, DM(∇)vM)Π + J (uM, vM) = λ(MMuM, vM)Π ∀vM ∈ HM(Π),

where MM(x) = ρM(x)I3 is the truncated matrix (1.28).

Lemma 3.7. The bilinear form (3.8) is symmetric and positive.
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Proof. Using formulas (3.6), (3.7) as such and then also by exchanging u ↔ v, we
conclude the desired properties from the equalities

J (uM, vM) = −(AMEDE(∇)uE, DM(∇)vM)Π = −(DE(∇)uE,AEMDM(∇)vM)Π =

= (AEEDE(∇)uE, DE(∇)vE)Π. �

We now introduce the specific scalar product

〈uM, vM〉 = (AMMDM(∇)uM, DM(∇)vM)Π + J (uM, vM) + (MMuM, vM)Π

and the self-adjoint operator MM in the space HM(Π) = H1(Π)3,

〈MMuM, vM〉 = (MMuM, vM)Π ∀uM, vM ∈ HM(Π). (3.9)

We have thus obtained the abstract equation (1.19) of Section 1.2 with the spectral
parameter (1.20). Since this equation is equivalent to the piezoelectricity problem (1.13)
with definitions (1.27) and (1.28), the spectrum of the operator MM in (3.9) is to be
regarded as the spectrum of the original problem. Moreover, our considerations in Section
2 yield the same conclusions on the essential spectrum.
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