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Abstract. We investigate eigenfunctions of the Neumann Laplacian in a bounded
domain Ω ⊂ Rd, where a cuspidal singularity is caused by a cavity consisting of
two touching balls, or discs in the planar case. We prove that the eigenfunc-
tions with all of their derivatives are bounded in Ω, if the dimension d equals 2,
but in dimension d ≥ 3 their gradients have a strong singularity O(|x − O|−α),

α ∈ (0, 2 −
√

2] at the point of tangency O. Our study is based on dimension
reduction and other asymptotic procedures, as well as the Kondratiev theory ap-
plied to the limit differential equation in the punctured hyperplane Rd−1 \O. We
also discuss other shapes producing thinning gaps between touching cavities.

1. Introduction.

1.1. Prelude. Eigenfunctions of the Dirichlet and Neumann problems for the Laplace
operator in a domain Ω ⊂ Rd with smooth boundary ∂Ω are infinitely differentiable
in the closure Ω = Ω∪∂Ω. However, if the boundary is irregular, for example, it has
a corner or conical point, an eigenfunction may, and usually does, behave ”badly”
so that it only belongs to the Sobolev space H1(Ω) instead of H2(Ω). Singularities
of solutions of elliptic boundary value problems in domains having irregular sub-
manifolds on the boundary play an important role in applications. We recall the
theory of brittle fractures [5] with square-root singularities of stresses in a plate at
the crack tip; high voltage electrostatics with Wiener criterion [26] on continuity
of harmonics, which is mythically linked with Saint Elmo’s fires; black holes for
vibrations at cuspidal irregularities of the boundary, which are caused by oscillatory
behaviour of the solutions [19] and which enable wave process in tapering elastic
bodies, a phenomenon with engineering applications as dampers in acoustic and
elastic waves.

The Kondratiev theory [9] of weighted Sobolev spaces, see also [6, 22, 10] and
others, provides the tools for studying elliptic boundary problems in domains with
corner and conical points, edges and polyhedral submanifolds. Moreover, a domain
with a cuspidal peak can be transformed using an appropriate change of variables
into a conical and eventually a cylindrical shape so that the Kondratiev theory
applies again. However, the resulting differential operators are ”strongly” perturbed
and their treatment requires improved techniques [17], see also [11, 2] for asymptotic
formulas for solutions at cuspidal peak tops in the linearized elasticity system and
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a) b)

Figure 1.1. Exterior domain of two kissing balls a) in d = 3, b) in
d = 2.

[7, 8, 14] for the linear water-wave equation in domains with cuspidal points and
edges.

There are several types of naturally occurring boundary irregularities which have
not yet been studied and which require novel modifications to the multi-step proce-
dures including Kondratiev’s techniques. One example of such an isolated singularity
consists of the point of tangency O of two ”kissing” balls in the exterior domain
of the balls, see Fig. 1.1. In this paper we investigate the spectral Neumann prob-
lem for the Laplace operator and prove that in dimension d ≥ 3 the gradients of the
eigenfunctions have a rather strong singularity O(|x|−α), α ∈ (0, 2−

√
2] at the point

O (the most singular case being α =
√

2− 2 ≈ −0.586 for d = 3). On the contrary,
in dimension d = 2, where the discs in Fig. 1.1.b) form two cusps with a common
top O, any eigenfunction and all its derivatives are bounded in the domain but may
have a discontinuity at O. These statements are direct consequences of our main
result, Theorem 3.7, which gives an asymptotic representation of the eigenfunctions.

In the analogous Dirichlet problem all eigenfunctions decay exponentially as x→
O and hence they are infinitely smooth in the closure of the domain, cf. Section
1.3. In the geometric situation1 of Fig. 1.2, a) and b), the Steklov spectral problem
describes the propagation of surface waves over a heavy ideal liquid, cf. [12], and it
has oscillatory solutions in both natural dimensions d = 3 and d = 2, see [24] and
[7], respectively. We thus see that the Neumann problem is exceptional because its
eigenfunctions have absolutely different behaviour, as they are smooth in separated
closed cusps in d = 2, but for d ≥ 3 they get much stronger singularities than even
those in the mechanics of cracks, see Sections 2.5 and 2.2, respectively.

1.2. Problem setting. Two balls

B± = {x = (y, z) ∈ Rd−1 × R : |y|2 + |z ∓R±|2 < R2
±}(1.1)

touch each other at the origin O = {0} of the Cartesian coordinate system x =
(x1, . . . , xd) of the Euclidean space Rd, d ≥ 2. We assume that R− ≥ R+ > 0 and
set R = R+. Let Ω◦ ⊂ Rd be a bounded domain which contains both balls (1.1)
and has a smooth (for simplicity, C∞) boundary Γ◦. We introduce the domain in
Fig. 1.1,

Ω = Ω◦ \
(
B+ ∪B−

)
(1.2)

with the boundary ∂Ω = Γ◦∪Γ+∪Γ−, where Γ± = ∂B± are spheres andO = Γ+∩Γ−.

1For the Navier-Stokes equation, the singularity of the velocity field and pressure in a viscous
fluid around a ball on the planar bottom were examined in [21]
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a) b)

Figure 1.2. Geometry for the corresponding Steklov problem a) in
d = 3, b) in d = 2.

We consider the Neumann problem in the domain (1.2),

−∆xu(x) = λu(x) , x ∈ Ω,(1.3)

∂νu(x) = 0 , x ∈ Γ \ O ,(1.4)

where ∆x = ∇x ·∇x, ∇x is the gradient, the central dot stands for the scalar product,
∂ν is the outward normal derivative and λ is the spectral parameter. The variational
formulation of this problem reads as

(∇xu,∇xv)Ω = λ(u, v)Ω ∀ v ∈ H1(Ω).(1.5)

Here, ( , )Ω is the natural inner product in the Lebesgue space L2(Ω) and H1(Ω)
is the Sobolev space. According to [15, Sec. 1.4.6], the embedding H1(Ω) ↪→ L2(Ω)
is compact, and the spectrum of the problem (1.5) is discrete and consists of the
eigenvalue sequence

0 < λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn ≤ . . .→ +∞.
The corresponding eigenfunctions un ∈ H1(Ω) are infinitely differentiable in Ω \ O
and therefore satisfy the differential problem (1.3)–(1.4).

In Section 4 we will discuss possible generalizations, in particular the case R− < 0,
Fig. 4.1.a) and b), which corresponds to nested kissing balls. Our analysis applies of
course to the geometry in Fig. 1.2.a) and b), when formally R+ = −∞ but R− > 0
is finite.

1.3. Remarks on the Dirichlet problem. Let us replace for a while the Neumann
condition (1.4) by

u(x) = 0 , x ∈ Γ \ O.(1.6)

The variational formulation of the problem (1.3), (1.6) takes the form (1.5) but the
Sobolev space H1(Ω) is replaced by its subspace

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

Since the thickness H(y) = H+(y) +H−(y) of the ”gap”

Π =
{
x : r = |y| < R , z ∈

(
−H−(y), H+(y)

)}
(1.7)

between the balls B+ and B− decays at the rate O(r2) as x → O, the Dirichlet
condition yields the weighted Friedrichs inequality∫

Π

H(y)−2|u(x)|2dx ≤ 1

π2

∫
Π

∣∣∣∂u
∂z

(x)
∣∣∣2dx.(1.8)
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One can use (1.8) and the same argument as in [18, 23, 4] to derive the following
estimate for a weighted norm of eigenfunctions; we give a sketch of the proof and
further references for the convenience of the reader. The eigenfunctions un are
denoted in the same way as for the Neumann problem.

Proposition 1.1. There exists β > 0 such that the weighted norm
∥∥|x|−2eβ/|x|un;

L2(Ω)
∥∥ is finite for all eigenfunctions un ∈ H1

0 (Ω) of the problem (1.3), (1.6).

Proof. We insert into the integral identity (1.3) (corresponding to the problem
(1.3), (1.6)) the test function v = Un ∈ H1

0 (Ω), where Un = R%un and the weight
function R% is equal to eβ/R in Ω \ Π but

(1.9) R%(x) =

{
eβ/r for R > |y| > %
eβ/% for |y| < %

in Π.

The parameter % > 0 is small and will be sent to 0. Notice that ∇xR% = 0 in Ω \Π
and |∇xR%(x)| ≤ βr−2R%(x) for x ∈ Π. Simple transformations and inequality (1.8)
show that

λ‖Un;L2(Ω)‖2 = ‖∇xUn;L2(Ω)‖2 − ‖UnR−1
% ∇xR%;L

2(Π)‖2

≥ π−2‖H−1Un;L2(Π)‖2 − β2‖r−2Un;L2(Π)‖2.(1.10)

According to (1.1) we have

H±(y) = R2
± −

√
R2
± − |y|2 =

|y|2

2R±
+O(|y|4).(1.11)

Therefore we can fix β > 0 such that the norm ‖r−2R%Un;L2(Π)‖ becomes uniformly
bounded in % ∈ (0, R). Moreover, the weight (1.9) is monotone increasing as %→ +0,
and this limit passage completes the proof. �

In Section 3.4 we will explain how to convert the estimate of the weighted L2-norm
in Proposition 1.1 into an estimate of an exponentially weighted Hölder norm and
conclude that un ∈ C∞(Ω) in the Dirichlet problem (1.3), (1.6).

Remark 1.2. If the domain Ω is symmetric with respect to the hyperplane {x :
z = 0} and in particular R+ = R−, then some eigenfunctions of the problem (1.3),
(1.4) are odd in z and hence the inequality (1.8) and Proposition 1.1 are still valid
for them. Thus, the smoothness of certain Neumann eigenfunctions can be verified
in a simple way.

We finally mention the paper [3], where it was observed that the solution of the
Dirichlet problem for the Poisson equation −∆u = f in a two-dimensional cuspidal
domain inherits the infinite differentiability of the right-hand side, if f is infinitely
differentiable in Ω.

1.4. Structure of the paper. In Section 2 we will present the dimension reduc-
tion and related asymptotic procedures as well as examine the solutions of the limit
degenerate differential equation in Rd−1

• = Rd−1 \ O, especially in dimension d = 2.
Section 3 is devoted to the justification of the constructed formal asymptotic ex-
pansions, in particular by applying the basic tools of Kondratiev theory [9]. The
results, the weighted Sobolev and Hölder norm estimates of the asymptotic remain-
ders, allow us to conclude the smoothness properties of the eigenfunctions of (1.3),
(1.4) and to distinguish between the cases d ≥ 3 and d = 2. Finally, in Section
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4 we briefly discuss some variations of the shapes, including contacts of ellipsoids,
paraboloids and torii, cf. Fig. 4.2.

2. Formal asymptotic analysis.

In this section we perform preparatory work and propose formal asymptotic series
which leave in the equation (1.3) and in the boundary condition (1.4) discrepancies
decaying at any given order O(|x|α) as x→ O. The main conclusions of our analysis
are formulated in Section 2.2 and 2.5 in dimensions d ≥ 3 and d = 2, respectively.
The desired theorems on asymptotics will be derived in the next section, after jus-
tifying the asymptotic forms obtained in Section 2.

2.1. Asymptotic ansätze. Since the thickness of the gap Π, (1.7), decreases when
x approaches 0 and vanishes at the limit, see (1.11) and Fig. 1.1, it can be considered
as a thin domain near the coordinate origin and we can apply a standard asymptotic
procedure, cf. [16, Ch. 13], which is rather simple as the equation is scalar valued.
However, compared with the traditional application of dimension reduction in the
theory of plates, there is a crucial difference, namely, the limit problem is posed
in the punctured hyperplane Rd−1 \ O and it is not uniquely solvable in any sense.
Hence, the formal asymptotics will involve unknown coefficients, the determination
of which will be postponed to Section 3 and will be based on a completely different
argument.

To perform the formal dimension reduction in the problem (1.3), (1.4), we assume
that the main asymptotic term of the mean value function

u(y) =
1

H(y)

H+(y)∫
−H−(y)

u(y, z)dz , y ∈ B := {y ∈ Rd−1 : r = |y| < R},(2.1)

is a power-law solution centred at the coordinate origin

U0(y) = rΛΦ0(θ).(2.2)

Here, (r, θ) ∈ R+ × Sd−2 are the spherical coordinates, while the number Λ and the
function Φ0 on the unit sphere Sd−2 ⊂ Rd−1 are to be determined. The difference

u⊥(y, z) = u(y, z)− u(y)(2.3)

satisfies the orthogonality condition

H+(y)∫
−H−(y)

u⊥(y, z)dz = 0 , y ∈ B,(2.4)

and therefore the Poincaré inequality

1

H(y)2

H+(y)∫
−H−(y)

∣∣u⊥(y, z)
∣∣2dz ≤ 1

π2

H+(y)∫
−H−(y)

∣∣∂zu⊥(y, z)
∣∣2dz =

1

π2

H+(y)∫
−H−(y)

∣∣∂zu(y, z)
∣∣2dz.(2.5)

The left integral in (2.5) has the factor H(y)−2 = O(r−4) appearing also in (1.8),
and this suggests the form

U1(y, ζ) = rΛ+2Φ1(θ, ζ)(2.6)
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for the correction term in the asymptotic ansatz for an eigenfunction,

u(x) = U0(y) + U1(y, ζ) + . . . .(2.7)

Here, the function Φ1 of the variables (θ, ζ) ∈ Sd−2 × Υ is to be found, and ζ is a
stretched coordinate,

ζ = H(y)−1(z − h(y)) ∈ Υ = (−1/2, 1/2) ,(2.8)

h(y) =
1

2

(
H+(y)−H−(y)

)
.(2.9)

We insert the asymptotic ansatz (2.7) into the restriction of (1.3) to Π, take into
account that

∇yU
1
(
y,H(y)−1(z − h(y))

)
= ∇yU

1(y, ζ)−H(y)−1
(
ζ∇yH(y) +∇yh(y)

)
∂ζU

1(y, ζ) ,

∂zU
1
(
y,H(y)−1(z − h(y))

)
= H(y)−1∂ζU

1(y, ζ) ,(2.10)

and collect terms of order rΛ−2. Owing to (1.11), (2.10) and (2.2), (2.6), we obtain
the equation

−∂2
ζU

1(y, ζ) = H0(y)2∆yU
0(y) , ζ ∈ Υ,(2.11)

where we put

H0(y) =
1

2

(
R−1

+ +R−1
−
)
|y|2 =: A0r2 ,

h0(y) =
1

4

(
R−1

+ −R−1
−
)
|y|2 =: a0r2,(2.12)

and changed the thickness function H(y) to its principal term H0(y) according to
(1.11). The normal derivatives ∂ν± on the lateral sides $± = {x : y ∈ B, z =
±H±(y)} have the form

∂ν± = J±(y)−1
(
± ∂z −∇yH±(y) · ∇y

)
, J±(y) =

(
1 + |∇yH±(y)|2

)1/2
.(2.13)

Hence, in view of (2.13), (2.2), (2.6), the boundary condition (1.4) restricted to $±
turns after the replacement H±(y) 7→ H0

±(y) = A0
±|y|2 into

±∂ζU1(y,±1/2) = H0(y)∇yH
0
±(y) · ∇yU

0(y).(2.14)

In the Neumann problem (2.11), (2.14), y ∈ B is considered as a parameter, and
its compatibility condition∫

Υ

H0(y)2∆yU
0(y)dζ +H0(y)

∑
±

∇yH
0
±(y) · ∇yU

0(y) = 0(2.15)

is converted into the limit differential equation

−∇y ·
(
H0(y)∇yU

0(y)
)

= 0 , y ∈ Rd−1
• = Rd−1 \ O.(2.16)

Finally, we write

U1
⊥(y, ζ) = rΛ+2Φ1

⊥(θ, ζ) = −
(ζ2

2
− 1

24

)
H0(y)2∆yU

0(y)

+ ζH0(y)
(
H0(y)∆yU

0(y) +∇yH
0
+(y) · ∇yU

0(y)
)
,(2.17) ∫

Υ

Φ1
⊥(θ, ζ)dζ = 0
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and remark that U1(y, ζ) = U1
⊥(y, ζ) + rΛ+2φ1

0(θ) still satisfies (2.11) and (2.14).

2.2. Power-law solutions in dimension d = 3. The differential operator on the
left hand side of (2.16) reads in spherical coordinates as

−A0r2−d∂rr
d∂r − A∆̃θ,

where ∆̃θ is the Laplace-Beltrami operator on the sphere Sd−2 3 θ. It is known, see
e.g. [25, Cor. 2.2], that its eigenvalue

µ̃k = k(k + d− 3) , k ∈ N0 = {0} ∪ N ,

has multiplicity κk with

κ0 = 1 , κp =
(p+ d− 4)!

p!(d− 3)!
(2p+ d− 3) , p ∈ N.(2.18)

The corresponding eigenfunctions are obtained by taking traces on Sd−2 of homoge-
neous kth degree harmonic polynomials in Rd−1 3 y.

Thus, power-law solutions (2.2) of the equation (2.16) have the following expo-
nents Λ0, 2

Λ±k (d) =
1

2

(
1− d±

√
(1− d)2 + 4k(k + d− 3)

)
, k ∈ N0.(2.19)

Clearly,

Λ+
0 (d) = 0 , Λ−0 (d) = 1− d < 0(2.20)

and

Λ±k (3) =
√
k2 + 1− 1 ∈ (k − 1, k)⇒

Λ+
1 (3) =

√
2− 1 ≈ 0, 414 , Λ+

2 (3) =
√

5− 1 ≈ 1, 236.(2.21)

Furhermore, the functions

[3,+∞) 3 d 7→ Λ+
k (d)

are monotone increasing and

lim
d→+∞

Λ+
k (d) = k.(2.22)

Thus, λ+
1 (d) ∈ (0, 1) and λ+

1+p(d) > 1 , p ∈ N, in all dimensions d ≥ 3. A direct
calculation of the Sobolev norms shows that the power-law solutions U0

+k(y) in (2.3)
with the exponents Λ+

k (d), k ∈ N0, belong to H2(Π) for any d ≥ 3, although ∇yU
0
+1

is unbounded in Π.
The exponents Λ−k , k ∈ N0, are negative and belong to (−∞, 1 − d], and conse-

quently the corresponding power-law solutions are not in the space H1(Π).

2For d = 2 this formula is used at k = 0 only.
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2.3. Formal infinite series. The power-law solution U0(y) with Λ > 0 satisfies
the main problem only approximatively, leaving small discrepancies in the equation
(1.3) in Π and in the Neumann condition (1.4) in $±. To compensate these we
construct the formal series

U0(y) +
∞∑
j=1

U j(y, ζ) = rΛΦ0(θ) +
∞∑
j=1

rΛ+2jΦj(θ, ζ)(2.23)

containing the already chosen main term (2.2) and the infinite asymptotic ”tail”.
We set

Φj(θ, ζ) = Φj
0(θ) + Φj

⊥(θ, ζ) ,

1/2∫
−1/2

Φj
⊥(θ, ζ)dζ = 0 ,

so that in particular Φ0
0 = Φ0, Φ0

⊥ = 0 and Φ1
⊥ is given in (2.17).

By virtue of (2.10), (1.11), (2.12), we obtain the decomposition

∆x + λ =
1

H(y)2

∂2

∂ζ2
+
(
∇y −

1

H(y)

(
ζ∇yH(y) +∇yh(y)

)
∂ζ

)2

=
1

H0(y)2

( ∂2

∂ζ2
+
∞∑
j=1

r2jLj
(
θ, ζ, r

∂

∂r
, ∇̃θ,

∂

∂ζ

))
(2.24)

where ∇̃θ is the spherical part of the gradient operator and the dependence of the
differential operators Lj, j ≥ 2, on the fixed parameter λ is not displayed. Moreover,
the normal derivatives (2.13) look as follows:

∂

∂ν±
= ± 1

H0(y)2

( ∂
∂ζ

+
∞∑
j=1

r2jN±j
(
θ, r

∂

∂r
, ∇̃θ,

∂

∂ζ

))
.(2.25)

We insert the formal series (2.23) and (2.24), (2.25) into the restriction of the
problem (1.3), (1.4) to the gap and extract terms of order rΛ+2j. We obtain an
iterative sequence of Neumann problems for ordinary differential equations

−∂2
ζU

j(y, ζ) = F j(y, ζ) , ζ ∈ Υ, ±∂ζU j(y,±1/2) = Gj
±(y) ,(2.26)

where

F j(y, ζ) =

j∑
n=1

r2nLn
(
θ, ζ, r

∂

∂r
, ∇̃θ,

∂

∂ζ

)
U j−n(y, ζ) ,

Gj
±(y, ζ) =

j∑
n=1

r2nN±n
(
θ, r

∂

∂r
, ∇̃θ,

∂

∂ζ

)
U j−n(y, ζ) .(2.27)

Noting that

r2L1

(
θ, ζ, r∂r, ∇̃θ, ∂ζ

)
= −H0(y)2

(
∇y −H0(y)−1

(
ζ∇yH

0(y) +∇yh
0(y)

)
∂ζ
)2
,

r2N±1
(
θ, r∂r, ∇̃θ, ∂ζ

)
= −H0(y)∇yH

0
±(y) ·

(
∇y −H0(y)−1

(1

2
∇yH

0(y) +∇yh
0(y)

)
∂ζ

)
(2.28)
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we rewrite the compatibility condition∫
Υ

F j(y, ζ)dζ +
∑
±

Gj
±(y) = 0(2.29)

of the problem (2.26) as the inhomogeneous differential equation

−∇y ·
(
H0(y)∇yU

j−1
0 (y)

)
= H0(y)−1F j

0 (y) , y ∈ Rd−1
• ,(2.30)

where

F j
0 = −

∫
Υ

(
r2L1U

j−1
⊥ +

j∑
n=2

r2nLnU
j−n)dζ

−
∑
±

(
r2N±1 U

j−1
⊥ +

j∑
n=2

r2nN±n U
j−n
)∣∣∣

ζ=±1/2
.(2.31)

The expression

−
∫
Υ

r2L1U
j−1
0 dζ −

∑
±

r2N±1 U
j−1
0

∣∣∣
ζ=±1/2

is a term of (2.29) that is missing in (2.31), and according to (2.28) it converts into∫
Υ

H0(y)2∆yU
j−1
0 (y)dζ +

∑
±

H0(y)∇yH
0
±(y) · ∇yU

j−1
0 (y)

= H0(y)∇y ·
(
H0(y)∇yU

j−1
0 (y)

)
,

which explains the formula (2.30). Notice that in the opening case j = 1 the sum
(2.31) is null because U0

⊥ = 0, hence, the equation (2.30) coincides with (2.26) and
is thus satisfied.

The next lemma [9], see also [22, Thm. 3.5.6, Lem 3.3.1], yields a solution of the
differential equation (2.30) in the general case.

Lemma 2.1. The equation (2.30) with the right hand side

F j
0 (y) = rΛ+2(j−1)Ψj

0(θ, ln r),(2.32)

where Ψj
0 is smooth in the variable θ ∈ Sd−1 and a polynomial of ln r, has a solution

U j−1
0 (y) = rΛ+2(j−1)Φj−1

0 (θ, ln r),(2.33)

where also Φj
0 has the above mentioned properties of Ψj

0. The solution (2.33) is
unique and deg Φj−1

0 = deg Ψj
0, if Λ + 2(j − 1) does not coincide with any of the

exponents (2.19). �

Remark 2.2. We remark that in the case

Λ + 2(j − 1) = Λ+
k(2.34)

we have deg Φj−1
0 = 1+deg Ψj

0 and a general solution of the equation (2.16) becomes

U j−1
0 (y) + cjr

Λ+
k Φ+

k (θ)(2.35)

with arbitrary cj; note that some terms explicitly depend on ln r. However, in the
next section we will prove an algebraic statement, Lemma 2.3, according to which
(2.34) never happens, when Λ is of the form (2.19) (with any number in place of k).
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The compatibility condition (2.30) is now satisfied and the component U j
⊥(y, ζ) =

rΛ+2jΦj
⊥(θ, ζ) of zero mean is determined uniquely from the problem (2.26). The

other component U j
0 (y, ζ) = rΛ+2jΦj

0(θ, ζ) is not found at the jth step, but Lemma
2.1 gives the component U j−1

0 (y) of the previous term U j−1(y, ζ) in (2.23), and in
this way we also find U j

0 (y) while solving the problem (2.26) on the next step with
j 7→ j + 1.

We emphasize that in our formal procedure we can choose cj = 0 in the general
solution (2.35), because we have at hand another formal series of type (2.23) with

the initiating power-law solution rΛ+
k Φ+

k (θ) for the compensation of this choice.
Summarizing the above considering and taking into account the proof of the next

section, we have shown that every power-law solution rΛΦ0(θ) of the equation (2.16)
gives rise to an infinite asymptotic tail in (2.23) whose coefficients do not explicitly
depend on ln r.

2.4. Non-existence of power-logarithmic solutions. We complete the study
of the case dimension d ≥ 3 by showing that in our case terms with polynomial
dependence on ln r do not exist, although in general the Kondratiev theory contains
that possibility. This is a consequence of the following algebraic observation.

Lemma 2.3. For d ≥ 3, the equation

4p+
√

(d− 1 + 2k)2 − 8k =
√

(d− 1 + 2q)2 − 8q(2.36)

does not have a solution with p, k, q ∈ N = {1, 2, 3, . . .}.

By taking a suitable p , this implies that (2.34) does not have a solution, since

2Λ = 1− d+
√

(d− 1)2 + 4q(q + d− 3) = 1− d+
√

(d− 1 + 2q)2 − 8q

for some q.
Proof. Let us denote in the following d′ = d−1. We first claim that the expression

(d′ + 2k)2 − 8k cannot be a square of a positive integer. To prove this we suppose
the contrary, so we have

(d′ + 2k)2 − 8k = (d′ + 2k −m)2(2.37)

for some m ∈ N (if m ≤ 0, then (d′ + 2k −m)2 > (d′ + 2k)2 − 8k). Cancelling the
same terms on both sides, (2.37) is equivalent to

m2 − 4km− 2d′m = −8k(2.38)

so that m must be even, m = 2t for some positive integer t, and (2.38) is equivalent
to

t2 − 2kt− d′t = −2k ⇔ t = 2k + d′ − 2k

t
.(2.39)

It is easy to see that no t ∈ N can solve this. First, if t ≥ k, then the term 2k/t
can be integer only in the cases t = 2k or t = k, but none of these solves (2.39) for
k, d ∈ N, d ≥ 3. If t < k, t ∈ N, is a solution of (2.39), then we must have nt = 2k
for some n ∈ N in order to make 2k/t into an integer. But then (2.39) becomes
equivalent with

t = nt+ d′ − n ⇔ t =
n− d′

n− 1

which does not have a solution t, n, d′ ∈ N, d′ ≥ 2. This proves our first claim.
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Let us still denote a = (d − 1 + 2k)2 − 8k and b = (d − 1 + 2q)2 − 8q. Then, by
squaring, (2.36) is equivalent with

2
√
ab = a+ b− 16p2.(2.40)

Writing b = a`2 for some real number ` > 0, we have `2 = b/q ∈ Q, the set of
rational numbers. Moreover, (2.40) is equivalent with

2a` = a(1 + `2)− 16p2 ⇔ ` =
1

2a

(
a(1 + `2)− 16p2

)
where the right hand side is rational, hence ` ∈ Q. Finally,

2a` = a(1 + `2)− 16p2 ⇔ a(`2 − 2`+ 1) = 16p2 ⇔ a =
16p2

(`− 1)2
=: w2.

where w ∈ Q. Writing w as the quotient with prime numbers pj and qj different
from each other, we get

w =
p1 . . . pn
q1 . . . qm

⇒ a =
p2

1 . . . p
2
n

q2
1 . . . q

2
m

We see that all the factors qj in the denominator must be equal to one, since a is
an integer. But a = (p1 . . . pn)2 contradicts with the claim proven in the beginning.
�

2.5. The planar case. In dimension d = 2 the gap Π in (1.7) disintegrates into
two cuspidal domains Π± = {x = (y, z) ∈ Π : ±y > 0}, and accordingly, the limit
equation (2.16) is posed on the separated semi-axes R±. In the sequel we deal with
the right cusp Π+ (shaded in Fig. 1.1.b) ) and the Euler type ordinary differential
equation

−A0 d

dy
y2 d

dy
U0(y) = 0 , y ∈ R+ = (0,+∞) .(2.41)

As for its solutions,

U0
+(y) = 1 for Λ0

+ = 0 and U0
−(y) = y−1 for Λ0

− = −1,(2.42)

the second one does not belong to H1(Π+). The first, the constant function C0,
satisfies the Neumann condition but leaves the discrepancy λC0 in the Helmholtz
equation. To compensate it, we construct the asymptotic tail in

C0 +
∞∑
k=1

Uk(y, ζ) = C0 +
∞∑
k=1

y2kΦk(ζ).(2.43)

To compensate the above mentioned discrepancy, we set

U1(y, ζ) =
1

2
C1y

2(2.44)

and specify the Neumann problem (2.26) with j = 2 as follows:

− ∂2

∂ζ2
U2(y, ζ) = H0(y)2(λC0 + C1

1) , ζ ∈
(
− 1

2
,
1

2

)
,

− ∂

∂ζ
U2
(
y,±1

2

)
= H0(y)∂yH

0
±(y)C1y .(2.45)
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The compatibility condition for this problem is simply obtained from the Newton-
Leibnitz-formula

1/2∫
−1/2

∂2

∂ζ2
U2(y, ζ)dζ =

∂U2

∂ζ
(y,

1

2
)− ∂U2

∂ζ
(y,−1

2
),

and taking into account (2.12) it reduces to the relation

C1 = −1

3
λC0 .

Hence, the solution of (2.45) reads as

U2(y, ζ) = −1

3
H0(y)λC0

(
H0(y)ζ2 + 2h0(y)ζ

)
+ C2y

4 ,(2.46)

where the coefficient C2 is not fixed yet. In view of (2.8), (1.11), and (2.12), the
function (2.46) is quadratic in z and smooth in y ≥ 0, i.e., it belongs to C∞

(
Π+

)
.

In the next lemma we will prove that Φk is a polynomial of degree ≤ k in ζ,

Φk(ζ) = bkζ
k + ϕk(ζ)(2.47)

with degϕk ≤ k − 1. This implies that each term of the tail in (2.43) belongs to
C∞
(
Π+

)
so that after the justification of asymptotic formulas for eigenfunctions

un of the problem (1.3), (1.4) in Section 3, we may conclude that un ∈ C∞
(
Π±
)
.

However, the limit values un(±0, 0), of course, can differ from each other due to the
disconnectedness of the gap Π ⊂ R2. Thus, the eigenfunction un is not differentiable
at the point O ⊂ Ω: un and its derivatives can have jumps as x approaches O
from the right and left in the domain Ω. However, Remark 1.2 shows that some
eigenfunctions belong to C∞(Ω), and also by the considerations of this section, the
equality un(O) = 0 implies that un ∈ C∞(Ω), since C0 = 0 and all terms in (2.43)
vanish.

Lemma 2.4. Formula (2.47) is valid for all k ∈ N.

Proof. Proceeding by induction, the cases k = 1, 2 follow from (2.44) and (2.46).
Let us assume that (2.47) holds for k ≤ j − 1. According to (2.10), the differential
operators Lp in (2.24) are at most quadratic in ∂ζ and ζ∂ζ , and hence, considering
polynomials of the variable ζ, we have

degLnU
j−n ≤ deg Φj−n , n = 1, . . . , j.

The right hand side F j, (2.27), of the differential equation (2.26) satisfies

F j = y2L1U
j−1 + f j , deg f j ≤ j − 2.(2.48)

Moreover, in dimension d = 2 the first formula (2.28) reads as

r2L1(ζ, y∂y, ∂ζ) = −y4
(
A0∂y − 2

1

y
(A0ζ + a0)∂ζ

)2
,

where A0 and a0 are taken from (2.12). Then, we write

r2L1(ζ, y∂y, ∂ζ)

= −y4
(
A0∂y − 2

1

y
(A0ζ + a0)∂ζ

)(
2(j − 1)A0ζ − 2(j − 1)(A0ζ + a0)

)
y2j−3ζj−2

= 2(j − 1)a0y4
(
A0∂y − 2

1

y
(A0ζ + a0)∂ζ

)
y2j−3ζj−2
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and notice that the degree of this polynomial of ζ is nothing but j − 2. Thus,
degF j ≤ j − 2 in (2.48) and formula (2.47) follows easily .

3. Justification of asymptotic expansions.

The justification scheme presented here consists of several steps. First, we formu-
late the Kondratiev theorem on asymptotics, related to the equation (2.16). Second,
we use a novel approach, which is much more simple than in [20, 24], to reduce the
original problem in Π to the limit problem in Rd−1

• and derive the one-term asymp-
totic formula for eigenfunctions. Then, we iterate this result, and in combination
with the formal procedure of Section 2 obtain expansions with remainders of any
prescribed power-law decay rate as x → O. Finally, we produce weighted Hölder
estimates and make the desired conclusions on the smoothness properties of eigen-
functions in dimensions 2 and 3.

3.1. Basics of the Kondratiev theory. Let V 1
β (Rd−1) be the weighted Sobolev

space defined as the completion of C∞0 (Rd−1
• ) (the space of infinitely differentiable

and compactly supported functions) with respect to the norm

‖u;V 1
β (Rd−1)‖ =

(
‖rβ∇yu;L2(Rd−1)‖2 + ‖rβ−1u;L2(Rd−1)‖2

)1/2

,

where β ∈ R is a weight index. The relations

u ∈ V 1
β (Rd−1) , ũ ∈ V 1

γ (Rd−1) , β > γ(3.1)

imply lower singularity or faster decay for the function ũ(y) than for u(y) as r → +0.
We reformulate the inhomogeneous equation (2.16) for the function u ∈ V 1

1+β(Rd−1)
as the integral identity

(H0∇yu,∇yv)Rd−1 = f(v) ∀ v ∈ V 1
1−β(Rd−1) ,(3.2)

where f ∈ V 1
1−β(Rd−1)∗ is a linear functional in V 1

1−β(Rd−1),

f(v) = (f0,v)Rd−1 −
d−1∑
n=1

(
fn,

∂v

∂yn

)
Rd−1 , f0 ∈ L2

β(Rd−1), fn ∈ L2
β−1(Rd−1),(3.3)

where the norm of the weighted Lebesgue space L2
β(Rd−1) equals ‖rβf0;L2(Rd−1)‖.

Note that the inner product ( , )Rd−1 of L2(Rd−1) is extended to the dual pairing
of appropriate weighted Lebesgue spaces so that all terms in (3.2) and (3.3) are
properly defined. The integral identity is obtained by writing the equation (2.30)
for the unknown function u and the right hand side

F = f0 +
d−1∑
n=1

∂fn
∂yn

,

and, as usual, multiplying it by a test function v and integrating by parts, cf. [13].
The following assertion originates in [9] and can also be found in [16, Thm. 3.5.6],

[10, Thm. 8.3.3]. It contains uncommon restrictions for the weight indices which
happen to be very convenient for our purposes. In the sequel we will need the
indices

β < (d− 3)/2(3.4)

which will exclude power-law solutions with negative exponents (2.19); however, we
do not yet pose the restriction (3.4) in this section.
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Theorem 3.1. Let β and γ be as in (3.1) and let u ∈ V1+β(Rd−1) be a solution of
the problem (3.2) with the right hand side

f ∈ V 1
1−β(Rd−1) ∩ V 1

1−γ(Rd−1).

We also assume that the endpoints of the interval

υ =
(1

2
(1− d)− β, 1

2
(1− d)− γ

)
(3.5)

do not coincide with any of the exponents (2.19).3

1◦. If there are no exponents (2.19) in the interval (3.5), then u ∈ V 1
1−γ(Rd−1) ∩

V 1
1−β(Rd−1).
2◦. Assuming that υ contains only one of the exponents in (2.19), we denote it

by Λ and obtain the other solution

ũ = u−
κ∑
p=1

bpr
ΛΦp(θ) ∈ V 1

1+γ(Rd)(3.6)

for the problem (3.2) with the new weight index γ. In (3.6), the functions rΛΦ1, . . . ,
rΛΦκ form a basis of the linear space of power-law solutions with the exponent Λ,
cf. (2.2), and its dimension κ is given by (2.18). The coefficients b1, . . . , bκ depend
on u, f and satisfy the estimate

|b1|+ . . .+ |bκ| ≤ cβγ
(
‖f ;V 1

1−β(Rd−1)∗‖+ ‖f ;V 1
1−γ(Rd−1)∗‖

)
. �

Formula (3.6) can be regarded as the asymptotics of the solution u with the
remainder ũ.

3.2. First result on asymptotics in Ω. We denote by V1
β(Π) the weighted Sobolev

space in the gap Π, endowed with the norm

‖u;V1
β(Π)‖ =

(
‖∇xu;L2

β(Π)‖2 + ‖u;L2
β−1(Π)‖2

)1/2
,

where L2
β(Π) is the weighted Lebesgue space with norm ‖f ;L2

β(Π)‖ = ‖rβf ;L2(Π)‖.
Let u ∈ V1

β(Π) be either the eigenfunction un or the remainder ũn in its asymptotic
representation multiplied by a proper cut-off-function, and assume that it is smooth
in Π \ O, vanishes for |y| > R and satisfies the problem

−∆xu(x)− λu(x) = f(x), x ∈ Π , ∂ν±u(x) = g±(y), x ∈ $±(3.7)

with the right hand sides

f ∈ L2
β+1−δ(Π) , g± ∈ L2

β−δ($±) , δ > 0.(3.8)

The problem (3.7) corresponds to the integral identity [13]

(∇xu,∇xv)Π − λ(u, v)π = (f, v)Π +
∑
±

(g±, v)$± ,(3.9)

where test functions belong to the space C∞c (Π \O); by a completion argument, we
can take any v ∈ V1

−β(Π). However, we choose v(y, z) = v(y) to be independent of
z.

Let us show that the functions u and u⊥ introduced in (2.1) and (2.3) have the
desired properties.

3For d = 2, only the exponent Λ0
+ = 0 can be in question.
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Lemma 3.2. The function u belongs to V 1
1+β(B) and

‖u;V 1
1+β(B)‖ ≤ c‖u;V1

β(Π)‖.

Proof. First of all, we have

‖rβu;L2(B)‖2 =

∫
B

r2βH(y)−2
∣∣∣ H+(y)∫
−H−(y)

u(y, z)dz
∣∣∣2dy

≤
∫
Π

r2βH(y)−1|u(x)|2dx ≤ cH

∫
Π

r2(β−1)|u(x)|2dx ≤ c‖u;V1
β(Π)‖2.(3.10)

Furthermore, according to definition (2.1)

∇yu(y) = −∇yH(y)

H(y)
u(y)

+
1

H(y)

H+(y)∫
−H−(y)

∇yu(y, z)dz +
∑
±

∇yH(y)

H(y)
u±(y),(3.11)

where u± = u
∣∣
$±

. The relation (3.10) with obvious changes proves that the first

two terms on the right hand side of (3.11) belong to L2
1+β(B) with the correspond-

ing norm estimates. The inequality |∇yH±(y)|H(y)−1 ≤ cHr
−1 and the following

calculation finish the proof:

∑
±

∫
B

r2β|u±(y)|2dy = 2

∫
B

r2β

H+(y)∫
−H−(y)

∂

∂z

(
ζu(y, z)2

)
dzdy

≤ c

∫
Π

r2β
( 1

H(y)
|u(x)|+ |∂zu(x)|

)
|u(x)|dx

≤
∫
Π

r2β
(
r−2|u(x)|2 + |∂zu(x)|2

)
dx ≤ c‖u;V1

β(Π)‖2. �(3.12)

Lemma 3.3. We have u⊥ ∈ L2
β−2(Π) and u±⊥ = u⊥|$± ∈ L2

β−1($±), and there
holds the estimate

‖u⊥;L2
β−2(Π)‖+ ‖u±⊥;L2

β−1($±)‖ ≤ c‖u;V1
β(Π)‖.

Proof. The orthogonality condition (2.4) and the Poincaré inequality yield∫
Π

r2βH(y)−2|u⊥(y, z)|2dydz ≤ 1

π2

∫
r2β
∣∣∣∂u
∂z

(x)
∣∣∣2dx ≤ 1

π2
‖u;V1

β(Π)‖2.

Using the calculation (3.12), the Newton-Leibnitz formula, and the definition (2.8)
of ζ, we complete the proof by

∑
±

∫
B

r2β−2|u±⊥(y)|2dy = 2

∫
B

r2β−2

H+(y)∫
−H−(y)

∂

∂z

(
ζu⊥(y, z)2

)
dzdy



16 SERGEY A. NAZAROV AND JARI TASKINEN

≤ c

∫
Π

r2β
( 1

H(y)
|u⊥(x)|+ |∂zu⊥(x)|

)
|u(x)|dx

≤ c

∫
Π

r2β
(
r−4|u⊥(x)|2 + |∂zu(x)|2

)
dx. �

We observe that

∇y

H+(y)∫
−H−(y)

u(y, z)dz =

H+(y)∫
−H−(y)

∇yu(y, z)dz +
∑
±

u
(
y,±H±(y)

)
∇yH±(y)

and therefore
H+(y)∫

−H−(y)

∇yu(y, z)dz = ∇y

(
H(y)u(y)

)
− u(y)∇yH(y)−

∑
±

u±⊥(y)∇yH±(y).

As a result, the identity (3.9) with v(y, z) = v(y) becomes(
H∇yu,∇yv

)
B
− λ(Hu,v)B

=
( H+∫
H−

fdz,v
)
B

+
∑
±

(
J±g±,v

)
B

+
∑
±

(
J±u

±
⊥∇yH±,∇yv

)
B
,(3.13)

where ds± = J±(y)dy, see (2.13), is the area element of $±.
Since u was assumed to vanish near the vertical side {x ∈ ∂Π : |y| = R} of the gap

(1.7), the mean value function (2.1) does the same near the circle ∂B. Thus, we can
interprete (3.13) as the integral identity (3.2) with any test function v ∈ C∞c (Rd−1

• )
and the right hand side (3.2) with

f0(y) =

H+(y)∫
−H−(y)

f(y, z)dz + λH(y)u(y)−
∑
±

J±(y)g±(y) ,

fn(y) =
(
H0(y)−H(y)

) ∂u

∂yn
(y)

+
∑
±

J±(y)u±⊥(y)
∂H±
∂yn

(y) , n = 1, . . . , d− 1.

Moreover, f0, fn vanish outside the disc B and

f0 ∈ L2
γ(B) , fn ∈ L2

γ−1(B) for all γ ≥ max{β − δ, β − 2}.(3.14)

To get this restriction on the new weight index γ, we took into account the inequal-
ities |H(y) −H0(y)| ≤ cr4 and |∇yH±(y)| ≤ cr2, y ∈ B, the inclusions in Lemmas
3.2 and 3.3 as well as H−1

∫
fdz ∈ Lβ+2−δ(B) following from the assumption (3.8)

and a modified estimate (3.10).
Fixing γ ≥ β − min{1, δ}, cf. (3.14), and assuming that β and γ satisfy the

hypothesis in Theorem 3.1, we obtain the representation (3.6), rewritten in the form

u(y) = χ(r)
κ∑
p=1

bpr
ΛΦp(θ) + ũ(y),(3.15)
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where χ is a smooth cut-off function such that 0 ≤ χ ≤ 1 and

χ(r) = 0 for r ≥ 2R/3 , χ(r) = 1 for r ≤ R/3.(3.16)

Notice that the remainder ũ belongs to V 1
1+γ(B) and that the sum of the power

solutions U0
p (y) = rΛΦp(θ) is defined as zero, if the interval (3.5) does not contain

any exponent Λ in (2.19).
With the same convention on the summation, we set

u(x) = U(x) + ũ(x) , U(x) = χ(x)
κ∑
p=1

bp
(
U0
p (y) + U1

p⊥(y, ζ)
)
,(3.17)

where U1
p⊥ is constructed from U0

p according to (2.17) and b1, . . . , bκ come from

(3.15). Since u⊥ ∈ L2
β−2(Π) ⊂ L2

γ−1(Π) (recall that γ ≥ β− 1) and χU1
p⊥ ∈ L2

γ−1(Π)

(Λ ∈ υ and the exponent Λ+2 in (2.17) is bigger than 1
2
(1−d)−γ), the representation

with ũ ∈ L2
γ−1(Π) yields

ũ ∈ L2
γ−1(Π) and moreover ũ± = ũ|$± ∈ L2

γ($±).(3.18)

The last inclusions are derived by a similar argument using Lemmas 3.2 and 3.3.
However, we cannot conclude at the moment that ũ ∈ V1

γ(Π) because of insufficient
information on the gradient ∇xu⊥.

Remark 3.4. At the first glance the functions U1
p⊥ seem to be ”surplus” terms in

(3.17), because

γ ≥ β − 1, Λ ∈ υ ⇒ Λ >
1

2
(1− d)− β ≥ 1

2
(1− d)− γ − 1 ,

∇yU
1
p⊥(y, ζ) = O(rΛ+1), ∂zU

1
p⊥(y, ζ) = O(rΛ)⇒ ∇xU

1
p⊥ ∈ L2

γ(Π).

However, ∂2
zU

1
p⊥(y, ζ) = O(rΛ−2), ∆yU

0
p (y) = O(rΛ−2) and thus we would not be able

to obtain ”good” properties for the right hand sides in the problem for ũ without
having U1

p⊥ in (3.17).

Theorem 3.5. Assuming the above mentioned conditions, the representation (3.17)
holds true with ũ ∈ V1

γ(Π).

Proof. Recalling the asymptotic procedure in Section 2.3, we see that ∆xU ∈
L2
γ+1(Π) and ∂ν±U ∈ L2

γ($±). We compose the following problem for ũ ∈ V1
β(Π):

−∆xũ+ tr−2ũ = f̃ := f + λu+ (∆x + λ)U + tr−2ũ ∈ L0
γ+1(Π),

∂ν±ũ = g̃± := g± − ∂ν±U ∈ L0
γ($±),(3.19)

where t > 0 will be fixed later. Because of the cut-off function (3.16) in (3.17), the
function ũ vanishes near the surface {x ∈ Π : |y| = R} (this property of u has been
assumed) and, therefore, we obtain the integral identity

(∇x,∇xv)Π + t(r−2ũ, v)Π = (f̃ , v)Π +
∑
±

(g̃±, v)$± ∀ v ∈ V1
−β(Π),(3.20)

cf. (3.14). Aiming to show that ũ ∈ V1
γ(Π), we proceed in the same way as in the

proof of Proposition 1.1 but with the following weight function instead of (1.9):

(3.21) R%(x) =

{
rγ for R > |y| > %,
%γ−βrβ for |y| < %.
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Noting that, for any % ∈ (0, R), U = R%ũ ∈ V1
0 (Π) and v = R%U ∈ V1

−β(Π), we
insert the latter into (3.20) and obtain similarly to (1.10)

‖∇xU ;L2(Π)‖2 − ‖UR−1
% ∇xR%;L

2(Π)‖2 + t‖r−1U ;L2(Π)‖2

= (R%f̃ ,R%ũ)Π +
∑
±

(R%g̃±,R%ũ)$± .(3.22)

In view of the inclusions (3.18), (3.19) and the inequality |R%(x)| ≤ rγ (following
from (3.21) and γ < β) we conclude that the right hand side of (3.22) is uniformly
bounded with respect to % ∈ (0, R). Since |∇xR%(x)| ≤ max{|γ|, |β|}r−1R%(x),
choosing t such that t > 1 + 2 max{β2, γ2} makes the left hand side of (3.22) to
exceed

‖∇x(R%ũ);L2(Π)‖2 + (1 + max{|βl,Γ2})‖r−1R%ũ;L2(Π)‖2

≥ ‖R%∇xũ;L2(Π)‖2 + ‖r−1R%ũ;L2(Π)‖2.

Since R%(x) is monotone increasing when % → +0, the limit of the last, bounded,
expression exists and equals ‖ũ;V1

γ(Π)‖2. �

3.3. Asymptotics in weighted Sobolev space. Let un ∈ H1(Ω)∩C∞(Ω\O) be
an eigenfunction of the problem (1.3)–(1.4). We multiply it by the cut-off function
(3.16) and obtain, for the function u = χun, the inhomogeneous problem (3.7) with
smooth right hand sides f and g±, which vanish, if r /∈ [R/3, 2R/3].

First of all, we deal with the case d = 2. Observing that u = χun ∈ H1(Π) ⊂
V1

1 (Π), we first set β = 1, γ = 0 and find the negative exponent Λ0
− = −1 in

the interval υ = (−3/2,−1/2), see (2.42) and (3.5). However, c±|y|−1 belongs
neither to H1(Π±) nor to L2

−1(Π±), and thus it does not appear in the asymptotics
of u ∈ H1(Π±). Hence, u ∈ V1

0 (Π), and we may take β = 0, γ = −1. The
corresponding interval υ = (−1/2, 1/2) includes the second exponent Λ0

+ = 0 in
(2.42). Theorem 3.5 yields the formula

u−
∑
±

χ±(C±0 + U1±
⊥ ) ∈ V1

−1(Π±) ,(3.23)

and in particular determines the constants C±0 = u(±0, 0), which are the first terms
in the asymptotic tails (2.43). (Recall that in Section 2.5 we only considered the
right half Π+, Fig. 1.1.b), of the gap Π, but (3.23) makes sense due to the signs ±
and the cut-off functions χ±.) Using the entire series (2.43), we fix some N ∈ N and
set

ũ = u−
∑
±

χ±

(
u(±0, 0) +

N∑
p=1

Up± + UN±
⊥

)
,(3.24)

although at the moment we only know that ũ ∈ V1
−1(Π). However, the asymptotic

procedure in Section 2.3 shows that in the problem (3.7) for ũ, the right hand sides

f̃ and g̃± satisfy

f̃ ∈ L2
γ+1(Π) , g̃± ∈ L2

γ($±) for all γ ≥ −2N − 1/2 .(3.25)

Since the limit equation (2.41) does not have power solutions (2.2) with positive
exponents Λ, we apply Theorem 3.5 N − 1 times: at each step we diminish the
weight index β in the relation ũ ∈ V1

β(Π) by 1, so that we finally obtain ũ ∈ V1
−N(Π).
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Finally, we choose some γ ∈ (−N − 1/2,−N) so that (3.25) and Theorem 3.6 yield
the following assertion.

Theorem 3.6. For all eigenfunctions un, n ∈ N, of the problem (1.3), (1.4), the
asymptotic formula (3.24) holds with the above constructed sum (2.43) and with
ũ ∈ V1

γ(Ω), where γ ∈ (−N − 1/2,−N) is arbitrary.

The same scheme applies in dimension d ≥ 3, although it becomes somewhat
cumbersome. We again take some N ∈ N and derive an asymptotic form for the
eigenfunction un with remainder

ũNn ∈ V1
σ(Ω) with σ = −2N − δ + (1− d)/2 < 0 and a small δ > 0.(3.26)

Notice that by the calculations (2.21)–(2.22), the power-law solutions with exponents
Λ+
k , k = 0, . . . , N , see (2.19), do not belong to V1

0 (Π) but with Λ+
k , k > N , they do.

First of all, we have u = χun ∈ H1(Ω) ⊂ V1
1+δ(Π) where δ ∈ (0, 1/2) is such that

the interval υ =
(

1
2
(1− d)− 1− δ, 1

2
(1− d)− δ

)
contains the exponent Λ−0 (3) = −2

for d = 3 and no exponent (2.19) for d > 3. Since rΛ−
0 /∈ H1(Π), see (2.20), Theorem

3.5 shows that u ∈ V1
δ (Π). Applying this theorem several times we diminish the

weight index and arrive at the inclusion u ∈ V1
1−δ0+(1−d)/2(Π) with a small δ0 > 0,

e.g. δ0 = 1/4. Then the interval (3.5) with β = 1−δ0 +(1−d)/2, γ = β−1, includes
the exponent Λ+

0 = 0 but no exponent Λ+
k (d), k ≥ 1, see Section 2.2. Finally, the

representation (3.17) is valid with U = C0 = u(O). We set

ũ0 = u− χC0

(
1 +

N∑
p=1

Up0 + UN+1,0
⊥

)
,(3.27)

and get the inclusion ũ0 ∈ V1
−δ0+(1−d)/2(Π). IfN = 0, the goal is achieved. Otherwise,

we observe that the right hand sides f̃ 0 and g̃0
± of the problem (3.7) for the function

(3.27) belong to L2
σ+1(Π) and L2

σ($±), respectively. Then, we again use Theorem
3.5 with β = β0, β = β1, and

βk = −k − δk + (1− d)/2 , 0 < δk < min{Λk(d)− k − 1,Λk+1(d)− k}

(the last minimum is positive due to the calculations (2.21)–(2.22)). Consequently,
ũ1 ∈ V1

β1
(Π), where

ũm = u− χ
m∑
k=0

Ck

(
U0k +

N−[k/2]∑
p=1

Upk + U
N+1−[k/2]k
⊥

)
,(3.28)

[k/2] denotes the integer part of k/2, and Upk = Upk
0 +Upk

⊥ are terms in the asymp-

totic tails (2.23) initiated by the power-law solution U0k(y) = Ckr
Λ+
k (d)Φ+

k (θ) and
constructed in Section 2.3.

Repeating the above consideration several times we conclude that the function
(3.28) with m = N belongs to V1

σ(Π) with σ = βN and δ = δN in (3.26).

Theorem 3.7. Let d ≥ 3. For any n,N ∈ N, the eigenfunction un of the problem
(1.3), (1.4) has the asymptotic form

un(x) = χ(x)
2N∑
k=0

ck

(
rΛ+

k (d)Φ+
k (θ) +

N−[k/2]∑
p=1

Upk(y, ζ)
)

+ ũNn (x) ,(3.29)
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where χ is the cut-off function (3.16), ck are some constants, the remainder ũNn
satisfies (3.26), and other expressions have been determined in Sections 2.2 and 2.3.

We summarize that by Section 2.2, Λ+
0 (d) = 0 and 0 < Λ+

1 (d) < 1 < Λ+
k (d) for

all d ≥ 3, k ≥ 2, so that the gradient of un(x) has the singularity of order rΛ+
1 (d)−1

claimed in the introduction, and in particular we have Λ+
1 (3)−1 =

√
2−2 ≈ −0.586

in dimension d = 3.
In comparison with (3.28), some terms were not included in (3.29), but we will

not need to pay attention to them in the final assertion Theorem 3.9.

3.4. Weighted pointwise estimates for the remainders. Since un ∈ C∞(Ω\O),
we only need to derive pointwise estimates in the gap Π. Moreover, all terms in
the series (2.23) are infinitely differentiable in the variables y ∈ B• = B \ O and
z ∈ [−H−(y), H+(y)], hence, it is sufficient to deal with the remainder ũN ∈ V1

σ(Π),

see (3.28). This is a solution of the problem (3.7) with the right hand sides f̃N and
g̃N± , which meet the estimates

|∇k
xf̃

N(x)| ≤ cNkr
2N−3−2k , x ∈ Π \ O ,

|∇k
y g̃

N
± (y)| ≤ cNkr

2N−1−2k , x ∈ $± , k ∈ N0,(3.30)

where ∇k
xv denotes the collection of all partial derivatives of order k of a function v

and cNk are some positive constants.

Remark 3.8. The estimates (3.30) are quite rough, although they are sufficient for
our purposes, since in this section we do not distinguish between the differentiation
in the longitudinal y− and transversal z−variables in the gap, cf. (2.10), and since
we have excluded the last terms of (3.28) in the sum (3.29). The crucial point is
that N is an arbitrary integer in Theorems 3.6 and 3.7, so that taking it large,
applying ”inaccurate” Hölder estimates and finally moving the ”extra” terms to the
remainder, we obtain ”precise” pointwise estimates. In this way, we do not need to
introduce weighted Hölder norms, instead write local estimates (3.33), which lose
information on the differentiability properties of the solution. Also the arbitrariness
of k ∈ N helps in this respect. �

Let y0 ∈ B be a point such that r0 = |y0| is small, in particular, 4r0 < R. We
introduce two cells θ1 ⊂ θ2,

θp = {x ∈ Π : |yn − y0
n| < p2r2

0, n = 1, . . . , d− 1} , p = 1, 2.(3.31)

Owing to (1.7) and (1.11), the coordinate change x 7→ X = (Y, Z) = r−2
0 (y − y0, z)

transforms the cells (3.31) into the sets Θp having volume of order 1 as r0 → 0 and
cubical cross-section �p = {Y : |Yn| ≤ p2, n = 1, . . . , d− 1} and ”almost flat” bases

Σ±p =
{
X : Y ∈ �p, Z = ±r−2

0 H±(y0 + r2
0Y ) = ± 1

2R±
+O(r2

0)
}
,∣∣∇k

Y

(
r−2

0 H±(y0 + r2
0Y )

)∣∣ ≤ ckr
2
0 , Y ∈ �p.

These imply that one can choose a constant cl independently of y0 in the weakened
local estimate [1]

l+2∑
j=0

sup
Θ1

∣∣∇j
XU(X)

∣∣ ≤ cl

(
r4

0

l+1∑
j=0

sup
Θ2

∣∣∇j
XF(X)

∣∣
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+ r2
0

∑
±

l+2∑
j=0

sup
Σ±

2

∣∣∇j
Y G±(X)

∣∣+ ‖U ;L2(Θ2)‖
)

with l ∈ N0.(3.32)

Here, the function U(X) = ũ(y0 + r2
0Y r

2
0Z) satisfies the problem

−∆xU − r4
0λU = r4

0F in Θ2 , ∂ν±(X)U = r2
0G± on Σ±2 ,

where F(X) and G±(Y ) are the functions f̃ and g̃± written in the stretched coor-
dinates. Returning to the original coordinates, (3.32) yields the inequality

l+2∑
j=0

rj0 sup
θ1

|∇j
xũ(x)| ≤ cl

( l+1∑
j=0

r4+j
0 sup

θ2

|∇j
xf̃(x)|

+
∑
±

l+2∑
j=0

r2+j
0 sup

ζ±2

|∇j
xg̃±(y)|+ r−d0 ‖ũ;L2(θ2)‖

)
.(3.33)

We emphasize that the local estimate (3.32) was weakened by not using the Hölder
seminorm for U on the right and by estimating the Hölder seminorms of F and G±
by higher-order derivatives on the right.

We remark that for some constants C > c > 0,

cr ≤ r0 < Cr for x ∈ θ2

so that we can replace r0 by r = |y| and thus obtain after multiplying by rσ−1+d
0 the

rough estimate

l+2∑
j=0

sup
θ1

|r2(σ−1+d+j)∇j
xũ(x)| ≤ c

( l+1∑
j=0

sup
θ2

|r2(σ+3+d−j)∇j
xf̃(x)|

+
∑
±

l+2∑
j=0

sup
ζ±2

|r2(σ+d−j)∇j
yg̃±(y)|+ ‖ũ;L2

σ−1(θ2)‖
)
.

The last weighted Lebesgue norm is bounded due to the results above, and the

boundedness of the weighted maxima of ∇j
xf̃ and ∇j

yg̃± can always be achieved
by taking into account sufficiently many terms in the asymptotic representations
constructed in Section 2.3. Recalling Remark 3.8 we formulate the final assertion of
our paper.

Theorem 3.9. The remainder ũNn in the expansion (3.24) (d = 2) and (3.29)
(d ≥ 3) for the eigenfunction un of the problem (1.3), (1.4), satisfies the estimate∣∣∇p

y∂
q
z ũ

N
n (x)

∣∣ ≤ cpqn|x|N+δn−p−2q , x ∈ Ω , p, q ∈ N0 ,

where δn > 0 and cpqm > 0 are some constants.

In view of Section 2.5, this theorem indeed proves that in dimension d = 2 all
eigenfuntions and their derivatives are bounded in the domain Ω.

In dimension d ≥ 3 the gradient ∇xu(x) includes the components (see Section
2.2)

∂run(x) = Λ+
1 (d)rΛ+

1 (d)−2

d−1∑
j=1

cjyj +O(rΛ+
2 (d)−1),
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r−1∇̃θun(x) = rΛ+
1 (d)−1

d−1∑
j=1

cj∇̃θ(r
−1yj) +O(rΛ+

2 (d)−1),

∂zun(x) = rΛ+
1 (d)+2H(y)−1

d−1∑
j=1

cj∂ζΦ
1j
⊥ (θ, ζ) +O(rΛ+

2 (d)),

where rΛ+
1 (d)+2Φ1j

⊥ (θ, ζ) is the function (2.17) constructed from the power-law solu-
tions rΛ1(d)Φ0j(θ) with Φ0j(θ) = r−1yj, the trace of the linear solution yj on the
sphere Sd−1. Thus, the vector function ∇xun is bounded in Ω, if and only if the
coefficients c1, . . . , cd−1 vanish. This may happen for eigenfunctions which are rota-
tionally symmetric with respect to the z-axis of the domain (2.14).

4. Other shapes.

4.1. Nested kissing balls. In the geometric situation of Fig. 4.1 we have R− < 0
and 0 < R+ < |R−|, and only minor changes are needed to treat this case. For
example, we have

±H±(y) = R2
± −

√
R2
± − |y|2 , A0 =

1

2

(
R−1

+ − |R−|−1
)
, a0 =

1

4

(
R−1

+ + |R−|−1
)

instead of the old formulas (1.11) and (2.12). All conclusions remain valid, literally.

4.2. Ellipsoids. Let us consider the case that the balls (1.1) are replaced by the
ellipsoidal cavities

E± =
{
x = (y, z) :

1

`2
d±

(z − `d±)2 +
d−1∑
n=1

y2
n

`2
n±

< 1
}
, `p± > 0,

in the definition (1.2) of the domain Ω, where the spectral Neumann problem is
posed. Then, the thickness function H(y) = H+(y) +H−(y) has the terms

H±(y) = `d±

(
1−

√
1− `−2

d±
(
`−2

1±y
2
1 + . . .+ `−2

d−1±y
2
d−1

)
,

and we note that neither H(y) nor the coefficient H0(y) = r2A0(θ) in the limit
differential operator in Rd−1

• depends on the angular variable θ ∈ Sd−2, if and only
if

`1± = . . . = `d−1±,(4.1)

i.e., the ellipsoids are rotationally symmetric with respect to the z-axis. In any
case the general scheme and main results remain the same as for the case of balls;
however, in the case d = 3, in order to keep the simplicity of the calculations of
Section 2.2, one certainly has to pose the algebraic restriction (4.1), otherwise it
is necessary to solve a second order differential equation with variable coefficients,
which cannot be done explicitly. Also, in dimension d = 2 the formula (4.1) loses its
meaning and the gap Π splits into two cuspidal peaks, Fig. 1.1.b), and θ ∈ S0 = {±1}
so that the material in Sections 2.5 and 3.3 remains unchanged.
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a) b)

Figure 4.1. Nested kissing balls a) in d = 3, b) in d = 2.

a) b)

Figure 4.2. a) Tangential ellipsoids, b) tangential tori.

4.3. Ball touching a paraboloid. Let us define the gap Π in the domain Ω,
Fig. 4.1, by

y ∈ B• , P |y|2 < z < R−
√
R2 − |y|2

where R > 0 and P ≤ (2R)−1. In the case P < (2R)−1 we have

H(y) =
(
(2R)−1 − P

)
|y|2 +O(|y|4) , |y| → 0 , .

and all calculations and conclusions of Sections 2 and 3 remain valid as such. How-
ever, if P = (2R)−1, the thickness function

H(y) = (4R3)−1|y|4 +O(|y|6)

decays faster as y → O. Our general scheme of asymptotic analysis for the eigen-
functions of the problem (1.3), (1.4) still works, but the detailed calculations should
be revised. In particular, the exponents of the power-law solutions of the limit
equation

−∇y ·
(
|y|4∇yU

0(y)
)

= 0 , y ∈ Rd−1
• ,

are given by

Λ±k (d) =
1

2

(
− 1− d±

√
(1 + d)2 + 4k(k + d− 3)

)
, k ∈ N0,

instead of (2.19). It is remarkable that in dimension d = 3 the singularity with
exponent Λ+

1 (3)− 1 =
√

5− 3 ≈ −0.764 is much stronger than
√

2− 2 ≈ −0.586 of
the case of kissing balls, see (2.21).
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4.4. Ellipsoid touching a paraboloid. Let d = 3 and

Π =
{
x = (y, z) : |y| < R, P |y|2 < z < `3

(
1−

√
`2

1y
2
1 + `2

2y
2
2

)
, `j > 0

}
,

where P = (2`2
1)−1`3 but P < (2`2

2)−1`3. Then, the dependence of the thickness
function

H(y) =
(
(2`2

2)−1`3 − P
)
y2

2 +O(|y|4)

on y2 and y1 is of different homogeneity orders. Thus, our techniques fail in this
case. The question on the asymptotics of the Neumann eigenfunctions at the points
of tangency of a symmetric paraboloid and an asymmetric ellipsoid remains open.

4.5. Two tori. Let d = 3 and let T± be the torus with the guide circle {x : z =
±R0, y

2
1y

2
2 = R2} and the generating circle {x : y1 = 0, |z−R0|2 + y2

2 = R2
0}, where

R > R0. Then, the gap

Π =
{
x : |z −R| < R0, |z| < R0 −

√
R2

0 − |r −R|2
}

of the domain Ω = Ω0 \
(
T+ ∪ T−

)
, Fig. 4.2, has a degeneration line {x : z =

0, |y| = r}, which divides Π into two subdomains with cuspidal edges. Such irregular
submanifolds for the Neumann problem have not been investigated yet, although our
calculations in Section 2.5 allow us to state the hypothesis that the eigenfunctions
of the problem (1.3), (1.4) together with their derivatives are bounded.
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