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Abstract. We study the localization effect for the eigenfunctions of the Laplace-Dirichlet
problem in a thin three-dimensional plate with curved non-smooth bases. We show that
the eigenfunctions are localized at the thickest region, or the longest traverse axis, of the
plate and that the magnitude of the eigenfunctions decays exponentially as a function of
the distance to this axis. We consider some extensions like mixed boundary value prob-
lems in thin domains. The obtained asymptotic formulas for eigenfunctions prove the
existence of gaps in the essential spectrum of the Dirichlet Laplacian in an unbounded
double-periodic curved piecewise smooth thin layer.

1. Introduction

1.1. Formulation of the problem. Our aim is to study the asymptotic behavior of
the Laplace-Dirichlet eigenvalues and eigenfunctions in thin three dimensional plates with
non-smooth bases, when the thickness of the plate is proportional to a small parameter ε→
0+. We will study various aspects of the phenomenon of localization of the eigenfunctions.
Our results (cf. Theorems 3.1, 5.2, 5.3) state that the eigenfunctions are localized at
the thickest region, or the longest traverse axis, of the plate and that the magnitude of
the eigenfunctions decays exponentially as a function of the distance to this axis. This
behavior differs completely from the evenly distributed eigenfunctions of the Dirichlet-
Laplacian, when the domain is a cylindrical plate with constant thickness. Our approach
consists, among other things, of asymptotic analysis and a study of the eigenvalues and
eigenfunctions of a spectral limit problem (Section 2). At the end of the paper we give
generalizations and applications for example by proving the existence of a large number
of spectral gaps for the Laplace-Dirichlet problem in an unbounded double-periodic thin
domain (Section 6.4).

The main results are presented in detail in Sections 1.2 and 1.3, but we start by describ-
ing the geometric setting of the problem and some elementary facts on its spectrum and
eigenfunctions. Let ω be a domain in the plane R

2 bounded by a simple closed Lipschitz
contour ∂ω and let H± be smooth profile functions in ω = ω ∪ ∂ω such that

H(y) := H+(y) +H−(y) > 0, y = (y1, y2) ∈ ω.(1.1)

We assume that the origin y = 0 is contained in ω and that it is the unique global strict
maximum point of the function H, moreover,

H(y) < H(0) =: h ∈ R+ = (0,+∞) for y ∈ ω \ {0},
H±(y) = l± − r2H±(ϕ) +O(r3),∣∣∇y

(
H±(y) + r2H±(ϕ)

)∣∣ ≤ cr2 for a.e. y ∈ ω.(1.2)
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effect, spectral gaps.
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a) b)

Figure 1.1. Thin plates with smooth and nonsmooth bases

Here l± are constants, l−+ l+ = H(0), (r, ϕ) ∈ R+× S
1 are polar coordinates in the plane

R
2 ∋ y, R+ = (0,+∞), and S

1 is the unit circle,

H± ∈ H1,∞(S1), H(ϕ) = H+(ϕ) +H−(ϕ) ≥ H0 > 0 for ϕ ∈ S
1.(1.3)

All these assumption are readily satisfied, if for example

H(y) = h− a11y
2
1 − 2a12y1y2 − a22y

2
2 +O(r3) ,where

a11 > 0, a22 > 0, a11a22 > a212.(1.4)

Given a small parameter ε > 0, we introduce the thin plate (see Fig. 1.1. a,b )

Ωε = {x = (y, z) ∈ R
2 × R : y ∈ ω,−εH−(y) < z < εH+(y)}(1.5)

with gently sloping bases

Σε
± = {x : y ∈ ω, z = ±εH±(y)},(1.6)

which may in general be non-smooth. Let us consider the spectral Dirichlet problem for
the Laplace operator:

−∆xu
ε(x) = λεuε(x), x ∈ Ωε,(1.7)

uε(x) = 0, x ∈ ∂Ωε.(1.8)

In the case H± ∈ C2(ω) the thin plate (1.5) lays between smooth surfaces, cf. Fig. 1.1. a,
but we are mostly interested in the non-smooth bases (1.6) as depicted in Fig. 1.1. b and
described above in (1.2), (1.3).

The variational formulation of the problem (1.7), (1.8) reads as the integral identity
(see [23])

(∇xu
ε,∇xv

ε)Ωε = λε(uε, vε)Ωε ∀ vε ∈ H1
0 (Ω

ε),(1.9)

where ( , )Ωε stands for the natural scalar product in the Lebesgue space L2(Ωε) andH1
0 (Ω

ε)
is the Sobolev space of functions satisfying the Dirichlet condition (1.8). Furthermore, ∇x

is the gradient operator and ∆x = ∇x ·∇x the Laplacian in the variables x = (x1, x2, x3) =
(y, z). The spectrum of the problem (1.7), (1.8) consists of the eigenvalue sequence

0 < λε1 < λε2 ≤ λε3 ≤ . . . ≤ λεk ≤ . . . → +∞(1.10)

with the standard convention on repeated multiple eigenvalues. As known, the first eigen-
value λε1 is simple and the corresponding eigenfunction uε1 can be taken positive in Ωε.
The eigenfunctions uε1, u

ε
2, u

ε
3, . . ., u

ε
k, . . . are subject to the orthogonality and normalization

conditions

(uεj , u
ε
k)Ωε = δj,k, j, k ∈ N := {1, 2, 3, . . . },(1.11)

where δj,k is the Kronecker symbol. The eigenfunctions are infinitely differentiable inside
the plate Ωε, but in general they do not belong to the Sobolev spaceH2(Ωε) due to possible
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singularities on the non-smooth bases (1.6) and the lateral side

Σε
0 = {x ∈ R

3 : y ∈ ∂ω,−εH−(y) < z < εH+(y)}.(1.12)

1.2. Localization effect. We now describe the general aim of the paper concerning
the localization, i.e., pointwise magnitude estimates, of the eigenfunctions uε. It turns out
that the behavior of uε is in this respect totally different from the case of a thin plate
with constant thickness. Indeed, if the functions H± are constant, e.g., equal to 1/2, and
ε is just the thickness of the cylindrical plate (1.5) with the straight bases (1.6), then
Ωε = ω × (−ε/2, ε/2) and it is possible to solve the spectral problem (1.7), (1.8) ”almost
explicitly” using separation of variables:

λεpq =
p2π2

ε2
+ βq, u

ε
pq(x) =

√
2

ε
sin

(
πp
(z
ε
+

1

2

))
ϕq(y).(1.13)

Notice that in (1.13) it is convenient to re-enumerate the eigenpairs {λεk, uεk} with the
double index (p, q) ∈ N

2. The numbers βq belong to the spectrum of the Dirichlet problem
in the longitudinal cross-section ω of the plate Ωε,

−∆yϕ(y) = βϕ(y), y ∈ ω, ϕ(y) = 0, x ∈ ∂ω,

and the eigenfunctions ϕq are subject to the orthogonality and normalization conditions

(ϕj , ϕk)ω = δj,k, j, k ∈ N.(1.14)

The variational formulation of this problem consists of the integral identity

(∇yϕ,∇yψ)ω = β(ϕ,ψ)ω ∀ ψ ∈ H1
0 (ω)

It is plain, cf. (1.13), that the eigenfunctions of the problem (1.9) in Ωε = ω×(−ε/2, ε/2)
are characterized by practically uniform distribution in the plate and do not become very
small inside any subdomain of a fixed positive measure.

The main goal of the paper is to show that, for small ε, the eigenfunctions uεk behave
in a different way, if the geometric condition (1.2) is assumed. Namely, we show that for
some εk > 0 and all ε ∈ (0, εk), the eigenfunction u

ε
k is localized in a c

√
ε-neighborhood of

the origin x = 0, i.e., in the vicinity of the longest interval in Ωε parallel to the z-axis. At
the same time, uεk(x) is of the exponentially small order O(exp(−ε−1bk)), bk > 0, outside
any fixed neighborhood of the origin. More precisely, we derive the asymptotic formula

uεk(x) ∼ ε−1αk(ε) sin

(
π
z + εH−(y)
εH(y)

)
wk(η),

where αk(ε) is normalization factor, η denotes the stretched variable

η = ε−1/2y.(1.15)

Moreover, wk is an eigenfunction associated with the kth eigenvalue of the limit spectral
differential equation

−∆ηw(η) +A(η)w(η) = µw(η), η ∈ R
2,(1.16)

where

A(η) = 2
π2ρ2

h3
H(ϕ) =: ρ2A(ϕ)(1.17)

and (ρ, ϕ) are the polar coordinates in the plane R
2 ∋ η with ρ = |η| and ρ = ε−1/2r (see

(1.15)).
The eigenvalues µk of the problem (1.16) appear in the asymptotic formula

λεk(x) ∼ ε−2π
2

h2
+ ε−1µk.(1.18)

Note that in the case h = 1 the right-hand side of (1.18) is nothing but a relatively small
perturbation of the eigenvalue λε1q in (1.13).
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1.3. Main results and structure of the paper. We now describe the results and
the contents of the paper in detail. Section 2 contains the analysis of the limit spectral
problem (1.16). We prove there that its spectrum is discrete and forms an unbounded
positive sequence {µk}, while the eigenfunctions belong to H2

loc(R
2) and decay as follows:

|wk(η)| ≤ ck exp(−bk|y|2), bk > 0.(1.19)

This estimate will be derived in Proposition 2.4, and it is preceded by a corresponding
integral estimate in Proposition 2.3.

Section 3 contains a proof of the following convergence result (Theorem 3.5) for the
eigenvalues:

ε(λεl (x)− π2ε−2h2) → µJ(l) as ε→ 0+.(1.20)

On the left of (1.20) we have the rescaled eigenvalue of the problem (1.9) and on the right
an eigenvalue of the limit equation (1.16). We emphasize that at this stage we cannot yet
establish the equality J(l) = l (contrary to the conclusions of Theorem 4.2). The way to
verify (1.20) is quite standard: using uεk we construct an appropriate function η 7→W ε

k (η)
(cf. (3.16), (3.24), (3.43)) and then pass to the limit ε→ 0+ in the integral identity (1.9)
with a properly chosen test function. However, due to the unboundedness of the domain,
the embedding H1(R2) ⊂ L2(R2) is not compact, hence, this limit procedure needs an
additional supporting argument, and we thus prove in Theorem 3.1 integral estimates
for ∇xu

ε and uε with the exponentially large weight function (3.3). On one hand, this
weighted estimate helps to overcome the difficulty of the above mentioned absence of the
compact embedding, and, on the other hand, it contains our first result on the localization
of eigenfunctions. However, this result will be improved in Section 5.3 by proving pointwise
estimates with exponential weights.

In Section 4 we establish the convergence rate O(ε1/2) in formula (1.20) (see Theorem
4.2). This conclusion is based on Lemma 4.1 about “near eigenvalues and eigenvectors”
and the weighted estimates in Section 3. In parallel we will show that, for some Cp > 0,
the interval (

π2ε−2h−2 + ε−1µp − Cpε
−1/2, π2ε−2h−2 + ε−1µp + Cpε

−1/2
)

includes at least one entry of the eigenvalue sequence (1.10). The statement of Theorem
4.2 includes the fact that J(l) = l in (1.20), but as regards the proof, the case of possible
multiple eigenvalues λεl and µp is only treated in Section 5.1 (see Remark 5.1).

In Theorem 5.3 we state one of the main results of the paper, the localization estimate
for the eigenfunctions uεk, which implies a pointwise bound for the function

exp(ε−1b|y|2)|uεk(x)| ≤ Cε−3/2(1.21)

for some constant b > 0. The estimate (1.21) is valid, roughly, in the interior of Ωε and
means that the eigenfunctions decay exponentially, when the distance (in y-variable) to
the maximum thickness point 0 ∈ R

2 of the plate increases.
In Section 6 we discuss various related results, in particular we comment on stable

asymptotic forms of eigenvalues in the high-frequency range of the spectrum. This ob-
servation allows to discover similar localization effects in the spectral Neumann problem
under the symmetry assumption H− = H+.

Moreover, with the help of the obtained asymptotic formulas for eigenvalues we detect
gaps in the spectrum of the Dirichlet Laplacian in the double-periodic layer

Πε =
{
(y, z) : y ∈ R

2,−εH−(y) < z < εH+(y)
}
,

of variable thickness, where the profile functions H± are li-periodic in yi, li > 0, i = 1, 2,
and their restrictions on the rectangle ω = {y = (y1, y2) : yi ∈ [0, li], i = 1, 2} possess all
properties mentioned above.
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1.4. Literature review. Using an analysis of the resolvent, localization of the eigen-
functions of the Dirichlet Laplacian was proved in [16] (see also [5]) in the case of a thin
curved two-dimensional trapezoid

Ωε = {(y, z) ∈ R
2 : |y| < 1, 0 < z < εH(y)},(1.22)

where the smooth profile function H has just one strict global maximum at y = 0. Al-
though we deal here with the three-dimensional thin domain (1.6), these phenomena are
of a similar nature.

Other types of localized eigenfunctions are found in [7]. Namely, assume that Q is a
semi-infinite cylinder

Q = {ξ = (η, ζ) ∈ R
n−1 × R : η ∈ ω, ζ > F(η)} , n ≥ 2,

where the cross-section ω is a domain in R
n−1 with a smooth boundary, and F ∈ C2(ω);

also denote T = {ξ : η ∈ ω, ζ = F(η)}. Posing Dirichlet conditions on the lateral side and
Neumann conditions on the end part leads to the problem

−∆ξW(ξ) = ΛW(ξ), ξ ∈ Q,
∂νW(ξ) = 0, ξ ∈ T ,(1.23)

W(ξ) = 0, ξ ∈ ∂Q \ T .
Here, ∂ν stands for the normal derivative in T . The results of [7] are based on the
approach of [11], and they contain the description of the boundary layer phenomenon
of the problem (1.23). Also, [7] provides a simple condition for the function F , which
ensures that the operator of the problem (1.23) has discrete spectrum situated below
the continuous spectrum [β†,+∞); here β1 = β† is the first eigenvalue of the Dirichlet
Laplacian in ω, cf. (1.14). For example in the case ∆ηF(η) > 0, η ∈ ω there appears a so
called trapped mode (cf. [25]), which is an eigenvalue Λ1 ∈ (0,Λ†) of (1.23) (here Λ† > 0
comes from β†) with the corresponding eigenfunction W1 ∈ H1(Q). However, the primary
object of investigation in [7] is the Laplace equation with mixed boundary conditions in a
thin, bounded, straight cylinder Qε (denoted by Ωh in the reference) with two distorted
ends. As shown in [7], each of the eigenvalues Λk ∈ (0,Λ†) gives rise to an eigenvalue

λεk ∼ ε−2Λk +O(1)

of the spectral problem in the thin cylinder Qε, and the corresponding eigenfunction uεk
concentrates in the vicinity of the ends of Qε. Each of the ends of the thin cylinder
generates a problem of type (1.23) and, if at least one of them has non-empty discrete
spectrum, the first eigenfunction uε1 is localized, possibly at both ends simultaneously.

Both types of localization effects were investigated for the first time in [10] (see also
[33]). The object was a spectral mixed boundary value problem in a thin cylindrical plate
in R

3 with a distorted lateral side Γε, and it was shown that under a simple geometric
condition the first eigenfunction is concentrated in the vicinity of either the whole lateral
side, or a single point x0 ∈ Γε. Moreover, at some distance from x0, the eigenfunction
becomes of order exp(−δΓε−1/2) near Γε and of order exp(−δΩε−1) inside the plate; here
δΓ, δΩ > 0. Other localization effects are discussed in [10] as well.

Results of [16] for the two-dimensional trapezoid (1.22) have been generalized in [6] to
the case R

d, d ≥ 3, for thin domains such that the profile functions H± are C∞-smooth
and

H(y) = h− P2m(y) +O(|y|2m+1),(1.24)

where P2m is a homogeneous positive polynomial of degree 2m ≥ 2 in the variable y ∈
R
d−1 \ {0}. A rather elaborate and complete formal asymptotic analysis of eigenvalues

and eigenfunctions of the problem (1.7), (1.8) is performed in [6], but the justification of
the asymptotic formulas for the eigenvalues and eigenfunctions remains incomplete: in [6]
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a) b)

Figure 1.2. Other types of non-smooth thin plates

the authors refer to the papers [16] and [5], where the limit problem in the case m = 1 is
the ordinary differential equation of the harmonic oscillator,

−d
2w

dη2
(η) +Aη2w(η) = µw(η), η ∈ R, A > 0 constant.(1.25)

The eigenvalues (and the corresponding eigenfunctions) are known exactly, and they are
simple, cf. [24]. Thus, the convergence theorem in [16] is useful to justify the asymp-
totics of simple eigenvalues, but in the higher dimensional case d ≥ 3 the limit problem
becomes (1.16) with many multiple eigenvalues. This case is not treated in [16], and it
requires additional arguments and computations. Known results on the eigenfunctions of
the spectral problem (1.16) in R

d−1, are contained in [3, Sect. 3]. These include a proof
for the exponential decay under strong enough smoothness hypothesis of the potential.
Obviously, our results in Propositions 2.2 and 2.4 and Remark 2.5 are more general.

In our paper the main attention is paid to the justification scheme. We modify the
approach from the papers [10, 7] and also [36, 35], where similar localization effects were
found for other types of thin domains (see Fig. 1.2, a and b). The present approach is
based on weighted a priori estimates, which immediately reveal the localization effect (in
contrast to [16, 15, 5, 6]) and require only mild assumptions on the smoothness properties
of the profile functions H±. Furthermore, the method provides pointwise estimates in the
case of smooth data.

The approach also works for other than quadratic decay rates in (1.2), cf. also (6.28).
However, the technical details would be quite different for the profile function with H(y)−
H(0) = O(|y|κ), κ ∈ (0, 1) or κ > 1. (The case κ = 1 has already been considered in [35].)
We choose to treat here only the exponent κ = 2, since this case is still general enough
and it on the other hand avoids inessential technical complications.

A similar specific behavior of eigenfunctions was found and studied in [1, 8] for some
problems in homogenization theory and in [21] in domains with thin bands.

The papers [16] and [5] contain studies on a planar domain Ωε with the Dirichlet con-
dition on the entire boundary. As for the corresponding Neumann problem on Ωε, we
mention that localized eigenfunctions associated with the middle frequencies can be ob-
tained by computations, which are simplified from those in [21]. In the same way, by
methods of [21] one can show that the low frequencies are of the order O(1) and they give
rise to longitudinal vibrations. The limit problem is a Neumann problem in dimension
one and it contains coefficients with information on the shape of the domain Ωε. For the
eigenvalues of order O(ε−2) it is possible to construct the so-called quasimodes or almost
eigenfunctions, which are approximations of certain linear combinations of eigenfunctions
associated with eigenvalues in small intervals. The length of these intervals, and estimates
for the difference between quasimodes and eigenfunctions, provide useful information for
describing the behavior of standing waves, which are solutions of the corresponding time-
dependent problems; their long-time asymptotic limits can be constructed explicitly from
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the quasimodes. From the localization point of view, the supports of the standing waves
are asymptotically concentrated near the point of global maxima, and they obey the same
spatial decay as described in this paper. We refer to [39] and [40] for the time dependent
problems.

The paper [21] contains a study of the asymptotics of eigenfunctions of reinforcement
problems. The problem concerns a second order differential operators with piecewise
constants coefficients in a domain Ωε = Ω ∪ ∂Ω ∪ ωε ⊂ R

2. The subdomain ωε is a thin
heavy stiff band of a variable width O(ε) surrounding the fixed domain Ω. The paper
highlights the localization phenomena for the eigenfunctions associated with the middle
frequencies, and we refer to [21] for precise rates of convergence, and for the asymptotic
behavior of the whole spectrum and the associated eigenfunctions. We mention that
several different scales are involved in the problem: the size O(1) of Ω, the width O(ε)
of ωε, the density and stiffness O(1) of Ω, the density O(ε−1) and stiffness O(ε−m) (with
m > 2) of ωε, and finally the intermediate scale O(

√
ε) which allows to describe the

localized eigenfunctions in neighborhoods of points where the “height function” defining
∂Ωε has the local maxima (see comments above (1.15)). As the references [21], [20], [19]
and [22] show, the relation between density and stiffness in reinforcement problems and
asymptotics for eigenpairs may vary very much depending on the situation.

Heterogeneities of masses, in particular the so-called concentrated masses may cause
other kinds of localization phenomena for the supports of eigenfunctions. If the density is
of a very big order O(ε−m), m > 2, in a small region of diameter O(ε), the eigenfunctions
associated with the low frequency eigenvalues (order O(εm−2)) give rise to vibrations
with supports localized at the points of the concentrated masses (cf. [39]). Also the
Dirichlet condition plays an important role in these localization phenomena: we refer
to [28] for a general bibliography on this subject. We emphasize that the decay rate of
eigenfunctions in the case of concentrated masses is polynomial (or logarithmic, depending
on the dimension of the space) in all directions. This is different from the the exponential
decay in the direction perpendicular to the boundary, which is the behavior described in
this paper and in the other above mentioned results for thin domains.

2. Formal asymptotics and spectrum of the limit problem

2.1. Preliminary asymptotic analysis. We introduce the standard asymptotic
ansätze

λε = ε−2π
2

h2
+ ε−1µ+ . . . ,(2.1)

uε(x) = sin

(
π
z + εH−(y)
εH(y)

)
w(η) + . . . ,(2.2)

where the number µ and the function w are to be determined and η is the rapid variable
(1.15). We insert the ansätze into the equation (1.7), perform formal differentiation (recall

that H± belong to H1,∞
loc (R2) only) and obtain

∆xu
ε(x) + λεuε(x)

= sin

(
π
z + εH−(y)
εH(y)

)(
ε−1∆ηw(η) −

π2

ε2H(y)2
w(η) + . . .

+
π2

ε2h2
w(η) + ε−1µw(η) + . . .

)

=
1

ε
sin

(
π
z + εH−(y)
εH(y)

)(
∆ηw(η) + µw(η)

+
π2

εh2

(
1− 1

(1− εh−1|η|2H(ϕ) + . . .)2

)
w(η) + . . .

)
+ . . .
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=
1

ε
sin

(
π
z + εH−(y)
εH(y)

){
∆ηw(η) + µw(η) −A(η)w(η)

}
+ . . .,(2.3)

where the coefficient A(η) is given in (1.17) and dots stand for higher-order terms, which
are inessential for the following analysis; we have used that z+εH−(y) < εH(y). Observing
that the Dirichlet conditions (1.8) on the plate bases (1.6) are fulfilled because of the factor
sin(...) in (2.2), we see that the original problem (1.7), (1.8) is satisfied asymptotically,
if and only if the expression in the curly brackets vanishes. In this way we come across
the limit differential equation (1.16) for the first time in this paper. We emphasize, that
since the solutions (eigenfunctions) of this equation decay exponentially (see Proposition
2.3 below), the right-hand side of (2.2) satisfies approximately the Dirichlet condition on
the lateral side Σε

0 of Ωε, too.

2.2. Studying the limit equation. If A(η) is a quadratic polynomial in η, cf. (1.4),
the solutions of the equation (1.16) can be found almost explicitly (see [16, 5] and [6]
as well as references therein). However, a general A(η), (1.17), requires a more careful
analysis of the spectrum of the limit equation.

Let H denote the Hilbert space obtained as the completion of the linear set C∞
c (R2)

(infinitely differentiable functions with compact supports) with respect to the weighted
norm

‖w;H‖ =
(
‖∇ηw;L

2(R2)‖2 + ‖(1 + ρ)w;L2(R2)‖2
)1/2

.(2.4)

Then, the variational formulation of the problem (1.16) amounts to finding a number µ
and a nontrivial function w ∈ H such that

(∇ηw,∇ηv)R2 + (Aw, v)R2 = µ(w, v)R2 ∀ v ∈ H.(2.5)

Proposition 2.1. The spectrum of the problem (2.5) is discrete and forms the eigenvalue
sequence

0 < µ1 < µ2 ≤ µ3 ≤ . . . ≤ µk ≤ . . . ≤ . . .→ +∞,(2.6)

The corresponding eigenfunctions w1, w2, w3, . . ., wk, . . . in H can be subject to the nor-
malization and orthogonality conditions

(wj , wk)R2 = δj,k, j, k ∈ N.(2.7)

The first eigenvalue µ1 is simple and the eigenfunction w1 can be chosen positive.

Proof. We use the following variant of Poincare’s inequality,

‖v;L2(BR)‖2 ≤ cR(‖∇ηv;L
2(B2R)‖2 + ‖v;L2(B2R \ BR)‖2) ≤ CR‖v;H‖2,

where BR = {η : ρ = |η| < R} is a disk of radius R > 0. This and (1.17) imply that
the left-hand side of (2.5) is a scalar product in H, denoted by 〈w, v〉 in the sequel. Let
K : H → H be the operator defined by the equation

〈Kw, v〉 = (w, v)R2 ∀ w, v ∈ H.(2.8)

Clearly, K is positive, symmetric, and continuous, therefore, self-adjoint. Moreover, it is
compact since the embeddingH ⊂ L2(R2) is compact due to the following observation: the
embedding operator is the sum of a small operator with norm of magnitude O(R−1) (out-
side the disk BR) and a compact operator (inside the disk BR). Thus, by [4, Thm. 10.1.5,
10.2.2], the discrete spectrum of K consists of the positive, monotone decreasing sequence

κ1 ≥ κ2 ≥ κ3 ≥ . . . ≥ κk ≥ . . .→ 0+(2.9)

together with the point κ = 0, which is the only element of the essential spectrum. In
view of (2.8), the abstract equation

Kw = κw in H
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with the new spectral parameter κ = µ−1 is equivalent to the variational problem (2.5),
and hence the eigenvalue sequence (2.9) turns into (2.6) by inversion. The normalization
and orthogonality conditions (2.7) are standard and straightforward to prove. The strong
maximum principle yields the simpleness of µ1 and the positivity of w1. ⊠

In the following B denotes any function such that

B(η) = ρ2B(ϕ),(2.10)

for some function B ∈ H1,∞(S1) having the properties

B(ϕ) ≥ B0 and |∇ηB(η)|2 ≤ (1− β)A(η) ∀ η ∈ R
2(2.11)

with constants B0 > 0, 0 < β < 1. We also define the weight function

eB(η) = exp(B(η)).(2.12)

Remark 2.2. One can take for example

B(η) = b1η
2
1 + b2η

2
2(2.13)

so that |∇ηB(η)|2 = 4η21b
2
1+4η22b

2
2. We have, by (1.2), A(η) ≥ a1η

2
1+a2η

2
2 for some am > 0,

hence, to satisfy the second relation in (2.11) it suffices to verify 4b2m ∈ (0, am(1 − β)],
m = 1, 2. If (1.4) holds, we may take any bm with bm < 1

2

√
am and then a suitable β > 0.

The next assertion proves the exponential decay of eigenfunctions of the problem (2.5).

Proposition 2.3. Let j ∈ N and {µj , wj} ∈ R+ × H be an eigenpair of the problem
(2.5), as in Proposition 2.1. The inclusion eBwj ∈ H holds true for all B satisfying
(2.10)–(2.11), and there exists a constant CjB such that

‖eB∇ηwj ;L
2(R2)‖+ ‖eB(1 + ρ)wj ;L

2(R2)‖ ≤ CjB.(2.14)

Proof. Let ER = ER(B) := {η : B(η) < R2} be domains exhausting the plane R
2

when R→ +∞. We introduce the weight function

(2.15) R(η) =

{
eB(η), η ∈ ER,
exp(R2), η ∈ R

2 \ ER,

which is positive, belongs to H1,∞(R2) and satisfies

|R(η)−1∇ηR(η)|2 ≤
{
(1− β)A(η), η ∈ ER,
0, η ∈ R

2 \ ER,

see (2.10). Since (2.15) equals a constant near infinity, we can consider the integral identity
(2.5) with the test function v = RWj = R2wj ∈ H and the eigenpair {µj , wj}. A simple
calculation shows that

µj‖Wj ;L
2(R2)‖2

= (∇ηwj,R∇ηWj)R2 + (∇ηwj ,Wj∇ηR)R2 + (AWj ,Wj)R2

= ‖∇ηWj;L
2(R2)‖2 − (wj∇ηR,∇ηWj)R2 + (∇ηWj, wj∇ηR)R2

− ‖WjR−1∇ηR;L2(R2)‖2 + (AWj ,Wj)R2

= ‖∇ηWj;L
2(R2)‖2 + (AWj ,Wj)R2 − ‖WjR−1∇ηR;L2(R2)‖2

≥ ‖∇ηWj;L
2(R2)‖2 + β(AWj ,Wj)R2 .(2.16)

Furthermore, there exists rj(β) > 0 such that

µj <
β

2
A(η) for η ∈ R

2 \ Erj(β).

We clearly also have the estimate

µj‖Wj ;L
2(Erj(β))‖2 ≤ µj exp(2rj(β))‖wj ;L

2(Erj(β))‖2 ≤
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≤ µj exp(2rj(β))‖wj ;L
2(R2)‖2 = µj exp(2rj(β)).

Hence, the following bound holds uniformly for R ≥ 1:

‖∇ηWj ;L
2(R2)‖2 + β

2
(AWj ,Wj)R2

≤ ‖∇ηWj ;L
2(R2)‖2 + β(AWj ,Wj)R2 − µj‖Wj ;L

2(Erj(β))‖2

≤ µj exp(2rj(β)).(2.17)

Since the weight function (2.15) is monotone, passing to the limit R→ +∞ proves that

‖∇η(eBwj);L
2(R2)‖2 + β

2
‖A1/2eBwj;L

2(R2)‖2 ≤ µj exp(2rj(β)).

So, (1.17), (1.3), and (2.12) yield the inequality (2.14). ⊠

2.4. Pointwise estimates of the decay rate. In the following our aim is to describe
the behavior of wk at infinity by estimating its weighted norms with the weight eB given
by (2.12) and (2.13); see (1.19). More precisely, we derive weighted Sobolev and Hölder
(pointwise) estimates for the functions eBwk – Sobolev estimates will be provided in the
case of a general function H, see (1.3), and Hölder estimates in the case of a smooth H in
(1.2). The definitions of these norms are standard,

‖v;H l(R2)‖ =

( l∑

j=0

‖∇j
ηv;L

2(R2)‖2
)1/2

,

‖v;C l,α(R2)‖ =
l∑

j=0

sup
η∈R2

|∇j
ηv(η)|

+ sup
η∈R2

sup
ζ∈R2: |η−ζ|≤1

(
|η − ζ|−α|∇j

ηv(η)−∇j
ηv(ζ)|

)
,(2.18)

where l ∈ {0, 1, 2, . . . }, α ∈ (0, 1) and ∇j
ηv is the collection of all order j derivatives of the

function v.

Proposition 2.4. Let the weight eB be as in (2.12) with B given by (2.13).
1◦. If H ∈ H2,∞(S1), then eBwk ∈ H4(R2).
2◦. If H ∈ C1,α(S1), α ∈ (0, 1), then eBwk ∈ C3,α(R2).

Proof. The functions wk may lack smoothness in any disk B
2
R = {η : |η| < R}, a fact

which can be caused for example by the singularities O(|η|−1) of the third-order derivatives
of A at η = 0. Indeed, according to classical results in [12] and [30], see also [38, Ch.3],
the eigenfunctions have the representation

wk(η) = pk(η) + ρ2ψk(ϕ, ln ρ) + w̃k(η), η ∈ B
2
R,(2.19)

where pk is a polynomial of degree 3, ψk is a linear function in ln ρ with coefficients in
H4,∞(S1) or C3,α(S1), and the fast decaying remainder w̃k(η) is of order O(ρ2−δ) for ρ→ 0.
It is easy to see that the second term on the right in (2.19) does not belong to H5(S1) or
C4,α(S1), α ∈ (0, 1). In what follows we verify the desired inclusions 1◦ and 2◦ outside the
above-mentioned disk and consider the functions H ∈ H2,∞(S1) and H ∈ C1,α(S1).

Let us define the squares

Qm
pq = {η : |η1 − p| < (m+ 1)/2, |η2 − q| < (m+ 1)/2},

m = 0, 1, p, q ∈ Z := {0,±1,±2, . . . }.(2.20)

To treat the case 1◦, we write the equation (1.16) in the form

−∆ηwk(η) = fk(η) := µkwk(η)−A(η)wk(η), η ∈ Q1
pq,(2.21)
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and recall the standard local elliptic estimates for solutions of elliptic equations (cf. [2]),

‖wk;H
s+2(Q0

pq)‖2 ≤ c(‖fk;Hs(Q1
pq)‖2 + ‖wk;L

2(Q1
pq)‖2),(2.22)

which holds true for s = 0, 1, 2 due to the assumption of 1◦ on A and H. Also note that

Q0
pq ⊂ Q1

pq and that the squares Q0
pq fill the plane. The same constant c can be chosen in

(2.22) for all s = 0, 1, 2 and all p, q ∈ Z, because the measure of Qm
pq does not depend on

p and q.
Since |A(η)| ≤ c(p2 + q2) in Qs

pq, we get directly from (2.21)

‖fk;L2(Q1
pq)‖2 ≤ ck(1 + (p2 + q2)2)‖wk;L

2(Q1
pq)‖2.(2.23)

By (2.13), the weight function (2.12) satisfies the relations

c−B exp(−b−B(p2 + q2)−1/2)eB(p, q) ≤ eB(η)

≤ c+B exp(b+B(p
2 + q2)−1/2)eB(p, q), η ∈ Q1

pq,(2.24)

with some positive constants b±B and c±B independent of p and q. We now take s = 0 in
(2.22), multiply both (2.22) and (2.23) with eB(p, q) and use (2.24) to bring weights inside
the norms, and estimate the first term on the right hand side (2.22) by (2.23). This yields

2∑

j=0

‖(1 + ρ2)−1/2 exp
(
− 1

2
(b+B + b−B)ρ

)
eB∇j

ηwk;L
2(Q0

pq)‖2

≤ ck‖(1 + ρ)eBwk;L
2(Q1

pq)‖2.(2.25)

The weight on the left satisfies for any δ > 0 the bound

eB(η)(1 + ρ2)−1/2 exp
(
− 1

2
(b+B + b−B)ρ

)
≥ CδeB−δ(η)

where eB−δ is as in (2.12)–(2.13) with bm replaced by bm − δ, m = 1, 2.
We now sum up the inequalities (2.25) with respect to p, q ∈ Z. Since the square Q1

pq

intersects only 8 of the neighboring squares, we obtain

2∑

j=0

‖eB−δ∇j
ηwk;L

2(R2)‖2 ≤ 9ckC
−1
δ ‖(1 + ρ)eBwk;L

2(R2)‖2.(2.26)

Note that the right-hand side of (2.26) is finite due to Proposition 2.3. Furthermore, to

estimate the Sobolev-norm of eB−δwk one has to commute eB−δ and ∇j
η on the left-hand

side of (2.26). This produces additional powers of |η| = ρ, but these can be compensated
by replacing the weight eB−δ by eB−2δ . As a result we find that

‖eB−2δwk;H
2(R2)‖2 ≤ Ck‖eB(1 + ρ)wk;L

2(R2)‖2.(2.27)

We repeat this argument, replacing (2.23) by

‖fk;H2(Q1
pq)‖2 ≤ ck(1 + (p2 + q2)2)‖wk;H

2(Q1
pq)‖2(2.28)

(which also follows from (2.21)) and taking s = 2 in (2.22), and thus obtain

‖eB−4δwk;H
4(R2)‖2 ≤ Ck‖eB(1 + ρ)wk;L

2(R2)‖2.(2.29)

The proof of the statement 1◦ is completed by Proposition 2.3 and the remark that δ > 0
and B in Remark 2.2 are arbitrary and, thus, we could have considered from the very
beginning the function eB+2δ with a small δ > 0 instead of eB . This yields the above
estimates for eBwk in place of eB−2δwk.

In the case 2◦ we first observe that H ∈ H1,∞(S1) and, using the same argument as
above, derive the estimate

‖eB−4δwk;H
3(R2)‖2 ≤ Ck‖eB(1 + ρ)wk;L

2(R2)‖2.
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By the Sobolev embedding H3(R2) ⊂ C1,α(R2), we then have the inclusion eB−4δwk ∈
C1,α(R2). The proof is completed by employing the argument of the case 1◦ once more,
but instead of (2.23) and (2.22) we now use

‖fk;C1,α(Q1
pq)‖ ≤ ck(1 + p2 + q2)‖wk;C

1,α(Q1
pq)‖

and the local estimate (cf. [2])

‖wk;C
3,α(Q0

pq)‖ ≤ c(‖fk;C1,α(Q1
pq)‖+ ‖wk;L

2(Q1
pq)‖),

where the right hand side does not exceed Ck(1 + p2 + q2)‖wk;C
1,α(Q1

pq)‖. ⊠

We again emphasize that, of course, increasing the smoothness of the coefficient A
improves the smoothness of the eigenfunctions wk, but increasing the smoothness of the
angular part A in (1.17) is not in general helpful in this respect: the derivative ∇3

ηwk may

remain logarithmically singular at η = (0, 0). However, wk ∈ C∞(R2) holds true for a
polynomial A(η), cf. (1.4).

Remark 2.5. Assuming only that H satisfies (1.3), the above presented argument proves
the inclusion eBwk ∈ H3(R2). Since H1,∞(S1) ⊂ C0,α(S1) for all α ∈ (0, 1), we get in this
case eBwk ∈ C2,α(R2).

3. Convergence theorem

3.1. Weighted estimates for eigenfunctions. Our purpose is to prove in this section
the convergence result (1.20) for the eigenvalues of the problem (1.9). To this end we need
the following theorem, which also yields the localization effect for the eigenfunctions of
the problem (1.7), (1.8). The proof of the theorem is similar to that of Proposition 2.3.

Theorem 3.1. Let the function B be as in (2.10), (2.11), let k ∈ N, and assume that
the eigenvalue λεk of the problem (1.9) satisfies the bound

λεk ≤ ε−2π
2

h2
+ Λε−1,(3.1)

for small ε > 0 and a constant Λ > 0. Then there exist εk = εk(B,Λ) > 0 and ck =
ck(B,Λ) > 0 such that the corresponding eigenfunction uεk satisfies for ε ∈ (0, εk ] the
estimate∫

Ωε

EB(y)2
(
ε|∇yu

ε
k(x)|2 + ε2|∂zuεk(x)|2 + (1 + ε−1|y|2)|uεk(x)|2

)
dx ≤ ck(3.2)

where the normalization (1.11) holds,

(3.3) EB(y) =
{
eB(ε

−1/2y), y ∈ ER,

exp
(
1
2ε

−1R2
)
, y ∈ ω \ ER,

eB is the exponential weight function (2.12), the set ER is defined above formula (2.15),
and R is some positive number.

Proof. Since the weight function (3.3) is continuous, we have vε = EBU ε
k = E2

Bu
ε
k ∈

H1
0 (Ω

ε), and we insert vε as a test function into the integral equation (1.9) for the eigenpair
{λεk, uεk}. Repeating the calculation (2.16) with small modifications and commuting ∇y

and EB several times, we obtain

λεk‖U ε
k ;L

2(Ωε)‖2

= ‖∂zU ε
k ;L

2(Ωε)‖2 + (∇yu
ε
k, EB∇yU

ε
k)Ωε + (∇yu

ε
k, U

ε
k∇yEB)Ωε

= ‖∂zU ε
k ;L

2(Ωε)‖2 + ‖∇yU
ε
k ;L

2(Ωε)‖2 − ‖U ε
kE−1

B ∇yEB ;L2(Ωε)‖2;(3.4)
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here, ∂z = ∂/∂z. From (1.17), (3.3), (2.12), and (2.10) we obtain that A(ε−1/2y) =
ε−1A(y) and

(3.5) |∇yEB(y)|2 =

{
ε−2(1− β)A(y)|EB(y)|2, y ∈ ER,
0, y ∈ ω \ ER.

We now fix R > 0 such that the relation

(3.6)
π2

H(y)2
− π2

h2
≥
{
(1− β)A(y) + t|y|2, y ∈ ER,
T, y ∈ ω \ ER,

is valid for some positive constants t and T . This is possible by the following two facts,
which are based on the original assumptions in Section 1.1. First, the function y 7→ H(y)−2

has the global strict minimum h−2 at the point y = 0. Second, owing to the formulas (1.2),
(1.3) and (1.17), we have

π2

H(y)2
− π2

h2
= π2

h2 − (h− r2H(ϕ) +O(r3))2

h2H(y)2

= π2
2hr2H(ϕ) +O(r3)

h2(h+O(r2))2
= A(y) +O(r3).(3.7)

Integrating the Friedrichs inequality

εH+(y)∫

−εH
−
(y)

|∂zU ε
k(y, z)|2 dz ≥ π2

ε2H(y)2

εH+(y)∫

−εH
−
(y)

|U ε
k(y, z)|2 dz(3.8)

with respect to ω ∋ y yields

‖∂zU ε
k ;L

2(Ωε)‖2 ≥ π2ε−2‖H−1U ε
k ;L

2(Ωε)‖2.(3.9)

Taking into account (3.5), (3.6), and (3.8), we deduce from (3.4)

Λ

ε
‖U ε

k ;L
2(Ωε)‖2

≥ ‖∂zU ε
k ;L

2(Ωε)‖2 + ‖∇yU
ε
k ;L

2(Ωε)‖2 − ‖U ε
kE−1

B ∇yEB ;L2(Ωε)‖2

− ε−2 π
2

h2
‖U ε

k ;L
2(Ωε)‖2

≥ ‖∇yU
ε
k ;L

2(Ωε)‖2 + 1

ε2

∫

Ωε
R

(
π2

H(y)2
− π2

h2
− (1− β)A(y)

)
|U ε

k(y, z)|2dx

+
π2

ε2

∫

Ωε\Ωε
R

(
1

H(y)2
− 1

h2

)
|U ε

k(y, z)|2dx

≥ ‖∇yU
ε
k ;L

2(Ωε)‖2 + t

ε2

∫

Ωε
R

r2|U ε
k(y, z)|2dx+

T

ε2

∫

Ωε\Ωε
R

|U ε
k(y, z)|2dx(3.10)

where Ωε
R = {(y, z) ∈ Ωε : y ∈ ER} and r = |y|. The choice of εk > 0 is done at this point

as follows. We write ̺ =
√
2t−1Λ and then fix εk and a constant CB > 0 such that in the

case ε ∈ (0, εk ] the following inequalities hold:

(3.11)

2

ε
Λ ≤ 1

ε2
T,

2

ε
Λ ≤ t

ε2
r2 for r ≥

√
ε̺,

eB(ε
−1/2y)2 = exp(B(ε−1/2y)) ≤ CB for r ≥ √

ε̺.

The normalization condition ‖uεk;L2(Ωε)‖ = 1 and the latter estimate (3.11) yield

‖U ε
k ;L

2(Ω̃
√
ε

̺ )‖2 ≤ C2
B‖uεk;L2(Ω̃

√
ε

̺ )‖2 ≤ C2
B(3.12)
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where Ω̃
√
ε

̺ = {x ∈ Ωε : |y| < √
ε̺}. The inequalities (3.10), (3.11), and (3.12) give

C2
B

Λ

ε
≥ Λ

ε
‖U ε

k ;L
2(Ω̃

√
ε

̺ )‖2

=
Λ

ε

(
‖U ε

k ;L
2(Ωε)‖2 − ‖U ε

k ;L
2(Ωε \ Ω̃

√
ε

̺ )‖2
)

≥ ‖∇yU
ε
k ;L

2(Ωε)‖2 + t

ε2
‖rU ε

k ;L
2(Ωε

R)‖2 −
Λ

ε
‖U ε

k ;L
2(Ωε \ Ω̃

√
ε

̺ )‖2

+
T

ε2
‖U ε

k ;L
2(Ωε \ Ωε

R)‖2 −
Λ

ε
‖U ε

k ;L
2(Ωε \ Ωε

R)‖2

≥ ‖∇yU
ε
k ;L

2(Ωε)‖2 + t

2ε2
‖rU ε

k ;L
2(Ωε

R)‖2 +
T

2ε
‖U ε

k ;L
2(Ωε \ Ωε

R)‖2.(3.13)

Note that the sum of the last two terms is bigger than τε−2‖rU ε
k ;L

2(Ωε)‖2 for some
number τ > 0 independent of ε and k, hence,

‖EBuεk;L2(Ωε)‖2 = ‖EBuεk;L2(Ω̃
√
ε

̺ )‖2 + ‖EBuεk;L2(Ωε \ Ω̃
√
ε

̺ )‖2

≤ C2
B‖uεk;L2(Ω̃

√
ε

̺ )‖2 + ε−1̺−2‖rU ε
k ;L

2(Ωε \ Ω̃
√
ε

̺ )‖2 ≤ C2
B(1 + ̺−2τ−1Λ).(3.14)

We get the bound (3.2) – without the term ε2E2
B |∂zuεk|2 – by observing that

‖∇yU
ε
k ;L

2(Ωε)‖2 ≥ 1

2
‖EB∇yu

ε
k;L

2(Ωε)‖2 − c

ε2
‖rU ε

k ;L
2(Ωε)‖2

(see (3.5) and (1.17)) and by estimating the last term using (3.13) and (3.14).

The missing term is treated as follows. Since the norm ‖EB(1 + ε−1/2|y|)uεk;L2(Ωε)‖ is
bounded uniformly with respect to ε, the identity (3.4) yields

‖∂zU ε
k ;L

2(Ωε)‖2 = ‖EB∂zuεk;L2(Ωε)‖2 ≤ λεk‖EBuεk;L2(Ωε)‖2 + ‖uεk∇yEB;L2(Ωε)‖2 ≤
≤ ckε

−2‖EB(1 + |y|2)uεk;L2(Ωε)‖2 ≤ Ckε
−2.

which completes the proof. ⊠

The following assertion could be proven by a proper choice of test functions in the
max-min principle (see, e.g., [4, Theorem 10.2.2]). However, we will only prove it as a
consequence of the calculations in Section 5 (see Remark 5.1).

Lemma 3.2. The eigenvalues (1.10) can be estimated by

0 ≤ λεk −
π2

ε2h2
≤ Λk

ε
(3.15)

where the numbers Λk do not depend on ε, although Λk → +∞ as k → +∞.

3.2. Calculations with the eigenfunctions. The aim of this section is to present
weighted estimates for some averages of the eigenfunctions uεk. These functions will be
needed in the treatment of the problem (2.5) in Section 3.3. We assume in the following
that (3.1) holds for the eigenvalues λεk. Recalling the original ansatz (2.2), we set

uεk(y) =
2

εH(y)

εH+(y)∫

−εH
−
(y)

Sε(y, z)u
ε
k(y, z) dz, Sε(y, z) = sin

(
π
z + εH−(y)
εH(y)

)
,(3.16)

and also define ∇yuεk in the same way, replacing uεk by ∇yu
ε
k in (3.16). To clarify the role

of the denominator εH(y) in front of the integral in (3.16), we remark that

1

2
εH(y) =

εH+(y)∫

−εH
−
(y)

(
sin
(
π
z + εH−(y)
εH(y)

))2

dz.(3.17)

Let us consider the following estimates.
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Lemma 3.3. We have
∫

ω

EB(y)2
∣∣∇yuεk(y)−∇yuεk(y)

∣∣2 dy ≤ ck
ε
,

∫

ω

EB(y)2
∣∣∇yuεk(y)

∣∣2 dy ≤ ck
ε2
.(3.18)

Proof. The Cauchy-Schwartz-Bunyakowski inequality and the weighted estimate (3.2)
yield

∫

ω

EB(y)2r2
∣∣uεk(y)

∣∣2 dy

≤ 4

ε2

∫

ω

EB(y)2r2
( εH+(y)∫

−εH
−
(y)

Sε(y, z)
2 dz

)
1

H(y)2

εH+(y)∫

−εH
−
(y)

|uεk(y, z)|2dzdy

≤ 1

2εH0

∫

Ωε

EB(y)2r2|uεk(x)|2dx ≤ ck(3.19)

where H0 = min{H(y)
∣∣ y ∈ ω} > 0.

Furthermore, differentiating the first equality in (3.16) and using the boundary condition
(1.8), we obtain

∇yuεk(y) = ∇yuεk(y)− uεk(y)H(y)−1∇yH(y)

+
π

2ε2H(y)3

εH+(y)∫

−εH
−
(y)

(
εH(y)∇yH−(y)

−
(
z + εH−(y)

)
∇yH(y)

)
cos
(
π
z + εH−(y)
εH(y)

)
uεk(y, z)dz

=: ∇yu
ε
k(y)− uεk(y)H(y)−1∇yH(y) + Iεk(y).(3.20)

By (1.2) we have |∇yH(y)| ≤ CH |y| and H(y)−1 ≥ h−1 , hence, we can rewrite (3.19) as
∫

ω

EB(y)2
∣∣∣∇yH(y)

H(y)

∣∣∣
2 ∣∣uεk(y)

∣∣2 dy ≤ ck.(3.21)

We repeat the calculation (3.19) for ∇yuεk by omitting the factor r2 = |y|2, and use
Theorem 3.1, to get the estimate

∫

ω

EB(y)2
∣∣∇yuεk(y)

∣∣2 dy ≤ 1

2εH0

∫

Ωε

EB(y)2 |∇yu
ε
k(x)|2 dx ≤ ck

ε2
.(3.22)

Again by (3.2), the last term Iεk(y) in (3.20) satisfies the estimate

∫

ω

EB(y)2Iεk(y)2 dy ≤ c

ε4

∫

ω

EB(y)2ε2r2
( εH+(y)∫

−εH
−
(y)

|uεk(y, z)|dz
)2

≤ ck
ε
;(3.23)

here, the first factor of the integrand of Iεk(y, z) was bounded by cεr.

The first inequality (3.18) follows now by solving
∣∣∇yuεk(y) − ∇yuεk(y)

∣∣2 from (3.20),
multiplying by the weight, integrating, and using the bounds (3.21) and (3.23). The
second comes from the first and (3.22). ⊠
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Recalling now the choice of the rapid variables (1.15), we set

wε
k(η) = εαk(ε)u

ε
k(ε

1/2η)χ(ε1/2η),(3.24)

where αk(ε) is a normalization factor such that ‖wε
k;L

1(R2)‖ = 1 and χ is a smooth cut-off
function with support inside the domain ω such that

0 ≤ χ ≤ 1, χ(y) = 1 for r < R and χ(y) = 0 for r > 2R > 0.(3.25)

The functions (3.24) will appear in the construction of the eigenfunctions of the problem
(2.5) in Section 3.3. The rest of this section is devoted to showing that the normalization
factor αk(ε) is bounded and bounded away of 0 uniformly in ε.

Lemma 3.4. There are numbers α±
k > 0 such that

0 < α−
k ≤ αk(ε) ≤ α+

k ∀ ε ∈ (0, εk].(3.26)

Proof. We need additional estimates for the functions uεk(η), so we proceed by setting

uε⊥k (y, z) = uεk(y, z)− Sε(y, z)uεk(y).(3.27)

By (3.16) and (3.17), the orthogonality condition

εH+(y)∫

−εH
−
(y)

Sε(y, z)u
ε⊥
k (y, z) dz = 0(3.28)

holds true in the domain ω ∋ y. We write the minimum principle (see, e.g. [4, Thm
10.2.1])

4π2

ε2H(y)2
= min

‖∂zU ;L2(−εH−(y), εH+(y))‖2
‖U ;L2(−εH−(y), εH+(y))‖2

,(3.29)

where minimum is computed over all non-zero functions U ∈ H1
0 (−εH−(y), εH+(y)) satis-

fying to the orthogonality condition (3.28). We emphasize that 4π2ε−2H(y)−2 is nothing
but the second eigenvalue of the Dirichlet problem for the differential operator −∂2z in the
interval (−εH−(y), εH+(y)). The identity (3.29) yields

4π2

ε2
‖h−1uε⊥k ;L2(Ωε)‖2 ≤ ‖∂zuε⊥k ;L2(Ωε)‖2.

Furthermore,

λεk = ‖∇xu
ε
k;L

2(Ωε)‖2 = ‖∂zuε⊥k + uεk∂zSε;L
2(Ωε)‖2 + ‖∇yu

ε
k;L

2(Ωε)‖2 =

= ‖∂zuε⊥k ;L2(Ωε)‖2 + ‖uεk∂zSε;L2(Ωε)‖2 + ‖∇yu
ε
k;L

2(Ωε)‖2 + 2Iεk.

Since EB(y) ≥ 1 in (3.2), we deduce that

‖∇yu
ε
k;L

2(Ωε)‖2 ≤ ckε
−1.

The orthogonality condition (3.28) and the estimate (3.19), again with B = 0, yield

Iεk =

∫

Ωε

uεk(y)∂zSε(x)∂zu
ε⊥
k (x) dx = −

∫

Ωε

uεk(y)u
ε⊥
k (x)∂2zSε(x) dx

=
π2

ε2

∫

Ωε

1

H(y)2
uεk(y)u

ε⊥
k (x)Sε(x) dx

=
π2

ε2

∫

Ωε

( 1

H(y)2
− 1

h2

)
uεk(y)u

ε⊥
k (x)Sε(x) dx

≤ cε−2‖ruεk;L2(Ωε)‖ ‖uε⊥k ;L2(Ωε)‖ ≤ ckε
−1‖uε⊥k ;L2(Ωε)‖.(3.30)
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We have used here that the integral of h−2uεk(y)u
ε⊥
k (x)Sε(x) over Ω

ε vanishes. Moreover,

‖uεk∂zSε;L2(Ωε)‖2

=
π2

ε2

∫

ω

1

H(y)2
|uεk(y)|2

εH+(y)∫

−εH
−
(y)

(
cos
(
π
z + εH−(y)
εH(y)

))2

dzdy

= 2
π2

ε2

∫

ω

H(y)−1 |uεk(y)|2 dy =
π2

ε2

∫

Ωε

H(y)−2 |Sε(x)uεk(y)|2 dx

=
π2

ε2h2

∫

Ωε

|Sε(x)uεk(y)|2 dy +
π2

ε2

∫

Ωε

( 1

H(y)2
− 1

h2

)
|Sε(x)uεk(y)|2 dx.(3.31)

The last term does not exceed cε−1‖ruεk;L2(ω)‖2 ≤ ckε
−1 (see (1.2) and (3.19)).

Putting the above formulas together gives

3π2

ε2h2
‖uε⊥k ;L2(Ωε)‖2

≤ λεk −
π2

ε2h2

(
‖uε⊥k ;L2(Ωε)‖2 + ‖Sεuεk;L2(Ωε)‖2

)

+ ckε
−1(1 + ‖uε⊥k ;L2(Ωε)‖).(3.32)

Since uεk = uε⊥k +Sεuεk is normalized and the summands are mutually orthogonal in L2(Ωε),
we have

‖Sεuεk;L2(Ωε)‖2 + ‖uε⊥k ;L2(Ωε)‖2 = 1.(3.33)

We recall Lemma 3.2 and derive from (3.32) and (3.1) the estimate

‖uε⊥k ;L2(Ωε)‖2 ≤ ckε.(3.34)

Formulas (3.17), (1.2) and (3.28), (3.33) yield
∣∣∣∣‖Sεuεk;L

2(Ωε)‖2 − εh

2

∫

ω

|uεk(y)|2dy
∣∣∣∣

=
ε

2

∣∣∣∣
∫

ω

(H(y)− h) |uεk(y)|2dy
∣∣∣∣ ≤ Cε‖|y|uεk;L2(ω)‖2 ≤ ckε(3.35)

and, therefore,

εh

2
‖uεk;L2(ω)‖2 ≥ 1− ‖uε⊥k ;L2(Ωε)‖2 − ckε ≥ 1− Ckε.(3.36)

Notice that, by (3.19),
∫

ω

(1− χ(y)2) |uεk(y)|2dy

≤ ck sup
|y|>R

{
|y|−2EB(y)−2

} ∫

ω

|y|2EB(y)2 |uεk(y)|2dy

≤ ck exp(−bB/ε) with bB > 0(3.37)

and ∫

ω

χ(y)2 |uεk(y)|2dy ≤ 2

ε

∫

Ωε

H(y)−1χ(y)2 |uεk(x)|2dx

≤ c

ε

∫

Ωε

|uεk(x)|2dx =
c

ε
.(3.38)
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By definitions, the normalization factor αk(ε) satisfies

1 =

∫

R2

|wε
k(η)|2dη = αk(ε)

2ε

∫

ω

χ(y)2 |uεk(y)|2dy,

hence, (3.26) follows from (3.36), (3.37) and (3.38). ⊠

3.3. Deriving the limit equation once more. In this section we will derive the
limit equation (2.5) from the original integral identity (1.9) by putting the eigenfunction
uεk and a partially specified test function (3.39) into (1.9) and passing to the limit ε→ +0.
Combining this process with the estimates of the previous section yields the eigenvalues
and eigenfunctions of the limit problem, which will be denoted by M0

k and W 0
k in the

sequel.
We fix an arbitrary infinitely differentiable and compactly supported function V ∈

C∞
c (R2), and set

vε(x) = Sε(y, z)V (ε−1/2y)χ(y)(3.39)

where χ ∈ C∞
c (ω) is the cut-off function (3.25). Writing the integral identity (1.9) for the

eigenpair {λεk, uεk} and using the test function (3.39), we have

λεk(u
ε
k, v

ε)Ωε − (∂zu
ε
k, ∂zv

ε)Ωε = (∇yu
ε
k,∇yv

ε)Ωε .(3.40)

We rewrite the left-hand side Iεl of (3.40) by using the definition (3.16) and integrating
by parts in z:

Iεl := λεk

∫

ω

χ(y)V (ε−1/2y)

εH+(y)∫

−εH
−
(y)

Sε(y, z)u
ε
k(y, z)dzdy

− π2

ε2

∫

ω

χ(y)V (ε−1/2y)H(y)−2

εH+(y)∫

−εH
−
(y)

Sε(y, z)u
ε
k(y, z)dzdy

=
ε

2

∫

ω

V (ε−1/2y)
(
λεkH(y)− π2

ε2
H(y)−1

)
χ(y)uεk(y)dy.(3.41)

The right-hand side Iεr of (3.40) equals

Iεr = (Sε∇y(χu
ε
k),∇yV )Ωε + (∇yu

ε
k, χV∇ySε)Ωε

+
(
(∇yu

ε
k, SεV∇yχ)Ωε − (uεk∇yχ, Sε∇yV )Ωε

)
=: Iε1r + Iε2r + Iε3r .(3.42)

Aiming to pass to the limit ε→ 0+ in (3.40), we set

M ε
k = ε

(
λεk −

π2

ε2h2

)
, W ε

k (η) = εχ(ε1/2η)uεk(ε
1/2η).(3.43)

From (3.15), (3.18), (3.24), (3.26), and (3.38) we derive the formulas

0 ≤M ε
k ≤ Λk,

‖W ε
k ;H‖2 = ‖∇ηW

ε
k ;L

2(R2)‖2 + ‖(1 + |η|)W ε
k ;L

2(R2)‖2

=

∫

ω

(
ε2
∣∣∇y(χuεk)

∣∣2 + (ε+ ε2r2)
∣∣χuεk

∣∣2
)
dy ≤ Ck.(3.44)

By weak completeness of the space H, we thus find number M0
k , a function W 0

k ∈ H and
a positive null sequence {εq}q∈N such that

M
εq
k →M0

k , W
εq
k →W 0

k weakly in H ;(3.45)
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consequently, the sequence {W εq
k } convergences toW 0

k strongly in L2(R2).Moreover, since

W ε
k = αk(ε)

−1wε
k, the normalization of wε

k in L2(R2), see (3.24), and (3.26) yield

‖W ε
k ;L

2(R2)‖ ≥ ck > 0, ‖W 0
k ;L

2(R2)‖ ≥ ck.(3.46)

Let us now write the expression (3.41) as follows:

Iεl :=
ε

2

∫

R2

V (η)W ε
k (η)H(ε1/2η)

(
π2

ε2h2
+
M ε

k

ε
− π2

ε2
H(ε1/2η)−2

)
dη

=: −h
2

(
Iε0l + Iε1l

)
,(3.47)

Iε0l =

∫

R2

V (η)W ε
k (η)

(
M ε

k −A(η)
)
dη,

Iε1l :=
1

h

∫

R2

V (η)W ε
k (η)

(
π2

εh2
+M ε

k − π2

ε
H(ε1/2η)−2

)(
H(ε1/2η)− h

)
dη

+
π2

ε

∫

R2

V (η)W ε
k (η)

(
1

h2
− 1

H(ε1/2η)2
− ε

π2
A(η)

)
dη.(3.48)

Clearly, by virtue of (3.45),

I
εq0
k →M0

k (W
0
k , V )R2 − (AW 0

k , V )R2 .

Notice that by (1.2) and (1.17),

|H(y)− h| ≤ cr2, |H(y)−2 − h−2| ≤ cr2, |h−2 −H(y)−2 − π−2A(y)| ≤ cr3.

Hence, we can apply the weighted estimate (3.19) with the exponential multiplier (3.3)
and obtain

∣∣Iε1l
∣∣ ≤ c‖V ;L2(R2)‖ sup

y∈ω

{
EB(y)−1

(
(1 + ε−1r2)r + ε−1r2

)}
ε1/2‖rEBuεk;L2(ω)‖

≤ Ck(V )ε1/2.(3.49)

Note that the supremum is of the order O(ε0) and that the factor ε1/2 comes from the

coordinate compression η 7→ y = ηε1/2.
We take into account ∇yχ(y) = 0 for |y| > R and the exponential weight

eB(ε
−1/2y)−1 ≤ exp(−ε−1bBr

2)

in the estimate (3.2), and thus obtain
∣∣Iε3r | ≤ c exp(−ε−1bBR)ε

1/2
(
‖∇ηV ;L2(R2)‖ ‖EBuεk;L2(Ωε)‖

+ ε1/2‖V ;L2(R2)‖ ‖EB∇yu
ε
k;L

2(Ωε)‖
)
≤ ck(V )ε1/2 exp(−ε−1bBR).

Moreover, the estimate (3.2) with the weight EB(y) ≥ 1 implies the inequality

‖∇yu
ε
k;L

2(Ωε)‖ ≤ ckε
−1/2,

so, this and the two simple formulas

|∇ySε(x)| ≤ cS , ‖χV ;L2(Ωε)‖ ≤ cε‖V ;L2(R2)‖(3.50)

yield ∣∣Iε2r | ≤ ‖∇yu
ε
k;L

2(Ωε)‖ ‖χV ;L2(Ωε)‖ ≤ Ck(V )ε1/2.

We finally write the term Iε1r in (3.42) as follows:

Iε1r = Iε0r + Iε4r + Iε5r ,

Iε0r =
εh

2
(∇y(χuεk),∇yV )ω =

h

2
(∇ηW

ε
k ,∇ηV )R2 ,
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Iε4r =
ε

2
((H − h)∇yχu

ε
k,∇yV )ω, Iε5r =

εh

2
(∇yχu

ε
k −∇y(χu

ε
k),∇yV )ω.(3.51)

Applying the estimates (3.22), (3.18) and taking into account that ‖∇yV ;L2(ω)‖ ≤
‖∇ηV ;L2(R2)‖, we obtain

|Iε4r | ≤ ckε sup
y∈ω

(r2EB(y)−1)‖EB∇yχuεk;L
2(ω)‖ ‖∇ηV ;L2(R2)‖ ≤ Ck(V )ε,

|Iε5r | ≤ ckε‖∇yχuεk −∇y(χuεk);L
2(ω)‖ ‖∇yV ;L2(ω)‖ ≤ Ck(V )ε1/2.

Collecting the above presented information on the terms of (3.40), we see that only Iε0l
and Iε0r have nontrivial limits when ε = εq → 0+; all other terms Iεjl , Iεjr vanish in the
limit. Although the bounds Ck(V ) in the above estimates depend on the test function
V ∈ C∞

c (R2), we can pass to the limit εq → 0+ by using (3.45). As a consequence of
(3.48) and (3.51) we get the integral identity

(∇ηW
0
k ,∇ηV )R2 + (AW 0

k , V )R2 =M0
k (W

0
k , V )R2 .(3.52)

By a completion argument, (3.52) holds true for all V ∈ H. Hence, M0
k is an eigenvalue of

the problem (2.5) and W 0
k is a corresponding eigenfunction, since is not zero, see (3.46).

3.4. First result on asymptotics of eigenvalues. In the following result we prove
the asymptotics (1.20) of the eigenvalues λεl . Information on the relation of the order of
the eigenvalues in the original and limit problems will be clarified only in later sections.

Theorem 3.5. The eigenvalues λεl , (1.10), of the problem (1.9) have the asymptotic
behavior (1.20), i.e., for all indices l

ε(λεl (x)− π2ε−2h2) → µJ(l) as ε→ 0+,

where J(l) ≥ l and µJ(l) is an eigenvalue of the limit problem (2.5).

Notice that (3.15) was used in (3.44), hence, the following proof assumes Lemma 3.2 to
be proven.

Proof. Let l ∈ N be given, and consider the eigenvalues λε1, . . . , λ
ε
l and the correspond-

ing eigenfunctions uε1, . . . , u
ε
l ∈ H1

0 (Ω
ε), cf. (1.10), (1.11). We select the null sequence {εq}

such that the convergence (3.45) occurs for any k = 1, . . . , l, and consider the numbers
M0

1 , . . . ,M
0
l and the functions W 0

1 , . . . ,W
0
l ∈ H defined by (3.45). We have

(W 0
j ,W

0
k )R2 = ε

∫

ω

χ(y)2 uεj(y)u
ε
k(y) dy

= 2

∫

Ωε

H(y)−1Sε(y, z)
2 uεj(y)u

ε
k(y)χ(y)

2 dx = Jε1
jk + Jε2

jk(3.53)

where

Jε1
jk =

2

h

∫

Ωε

Sε(y, z)
2 uεj(y)u

ε
k(y) dx =

2

h

∫

Ωε

(uεj(x)− uε⊥j (x))(uεk(x)− uε⊥k (x)) dx

=
2

h

∫

Ωε

uεj(x)u
ε
k(x) dx+ Jε3

jk =
2

h
δj,k + Jε3

jk

and the functions uε⊥j are as in (3.41). To estimate the integrals

Jε2
jk = 2

∫

Ωε

Sε(y, z)
2uεj(y)u

ε
k(y)(H(y)−1χ(y)2 − h−1) dx

=

∫

ω

(uεj(y)u
ε
k(y)(χ(y)

2 − h−1H(y)) dy,
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Jε3
jk =

2

h

∫

Ωε

(
uε⊥j (x)uε⊥k (x)− uε⊥j (x)uεk(x)− uεj(x)u

ε⊥
k (x)

)
dx,

we apply the inequalities (3.19), (3.34) and obtain

|Jε2
jk | ≤ cε sup

y∈ω

(
r−2|χ(y)2 − h−1H(y)|

)
‖|y|uεj ;L2(ω)‖ ‖|y|uεk;L2(ω)‖ ≤ cε,

|Jε3
jk | ≤ c

(
‖uε⊥j ;L2(Ωε)‖+ ‖uε⊥k ;L2(Ωε)‖

)(
1 + ‖uεj ;L2(Ωε)‖+ ‖uεk;L2(Ωε)‖

)
≤ cε1/2.

Hence, by (3.45), taking the limit ε = εq → 0+ turns the equality (3.53) into

(W 0
j ,W

0
k )R2 =

2

h
δj,k, j, k = 1, . . . , l.

This means that the limit eigenfunctions W 0
1 , . . . ,W

0
l are linearly independent in H, and

thus they correspond to l limit eigenvalues M0
1 , . . . ,M

0
l in the spectrum (2.6) of the prob-

lem (2.5). This proves the theorem modulo Lemma 3.2. ⊠

4. Asymptotics of eigenvalues.

4.1. Abstract formulation of the problem in Ωε. Our main result of the asymp-
totics of the eigenvalues λεk will be presented in Theorem 4.2. To prepare the proof we
give in this section the abstract operator theoretic formulation of the problem (1.9) and
cite a basic result from general spectral theory.

In the same way as in Section 2.2 we introduce the Hilbert space Hε = H1
0 (Ω

ε) with
the scalar product

〈uε, vε〉ε = (∇xu
ε,∇xv

ε)Ωε +
1

ε

(
1− π2

εh2

)
(uε, vε)Ωε(4.1)

and the operator T ε : Hε → Hε,

〈T εuε, vε〉ε = (uε, vε)Ωε , uε, vε ∈ Hε.

As a consequence of the Friedrichs inequality (3.9) and the first formula in (1.2), the
properties of the bilinear form (4.1) imply that the operator T ε is continuous, positive,
self-adjoint and compact, hence, its spectrum is discrete. Problem (1.9) is equivalent to
the abstract spectral equation

T εϕε = τ εϕε.(4.2)

Eigenvalues of T ε are

τ εk =
(
λεk − π2ε−2h−2 + ε−1

)−1
,(4.3)

and form a positive null sequence. The corresponding eigenfunctions ϕε
k = (τ εk)

1/2uεk
satisfy (cf. (1.11))

〈ϕε
j , ϕ

ε
k〉ε = (τ εj )

1/2(τ εk)
1/2

(
(∇xu

ε
j ,∇xu

ε
k)Ωε +

1

ε

(
1− π2

εh2

)
(uεj , u

ε
k)Ωε

)

= (uεj , u
ε
k)Ωε = δj,k.(4.4)

The following basic assertion is known as the lemma on “near eigenvalues and eigen-
vectors”. A proof can be found in [43] (see also [4, Chapter 6]).

Lemma 4.1. Let the function Φε ∈ Hε and the positive number T ε be such that

‖Φε;Hε‖ = 1, ‖T εΦε − T εΦε;Hε‖ = t ∈ (0, T ε).(4.5)
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Then the segment [T ε − t, T ε + t] contains an eigenvalue of the operator T ε. Moreover,
for any t1 ∈ (t, T ε) there exist coefficients aJ(ε), . . . , aJ+K−1(ε) such that

‖Φε −
J+K−1∑

j=J

aj(ε)ϕ
ε
j ;H

ε‖ ≤ 2
t

t1
,

J+K−1∑

j=J

|aj(ε)|2 = 1(4.6)

where τ εJ(ε), . . . , τ
ε
J+K−1 are all of the eigenvalues of T ε contained in the segment [T ε −

t1, T
ε + t1] and ϕ

ε
J , . . . , ϕ

ε
J+K−1 are the corresponding eigenvectors normalized by

〈ϕε
j , ϕ

ε
k〉ε = δj,k.

4.2. Approximate solutions of the abstract equation and asymptotics of

eigenvalues. We construct approximate eigenfunctions related to the equation (4.2) from
the eigenfunctions wp, and use these functions and Lemma 4.1. to derive the asymptotic
formula (4.24).

Let µk be an eigenvalue of the problem (2.5) of multiplicity κk, so that

µk−1 < µk = · · · = µk+κk−1 < µk+κk
;(4.7)

the case κk = 1 is not excluded. We set T ε = ε(1 + µk)
−1. Using the eigenfunctions

wk, . . . , wk+κk−1, we construct κk approximate solutions for the equation (4.2) by

Φε
p(x) = ‖Ψε

p;H
ε‖−1Ψε

p(x), p = k, . . . , k + κk − 1,(4.8)

where χ is the cut-off function (3.25) and

Ψε
p(x) = χ(y)wp(ε

−1/2y) sin
(
π
z + εH−(y)
εH(y)

)
.(4.9)

We proceed by calculating the scalar products 〈Ψε
p,Ψ

ε
q〉ε and computing the numbers

t := tp in (4.5). The exponentially decaying estimates of Proposition 2.3 make this task
quite easy, since we obtain

∫

Ωε

|y|2t|wp(ε
−1/2y)|2dx ≤ cmax

r∈R+

{
r2t

exp(−2B(ε−1/2r)

(1 + ε1/2r)2

}
×

×
∫

Ωε

(1 + ε1/2r)2 exp(2B(ε−1/2r))|wp(ε
−1/2y)|2dx ≤ cεt+2, t ≥ 0,

∫

Ωε

(1− χ(y)2)|wp(ε
−1/2y)|2dx+

∫

Ωε

|∇χ(y)|2|wp(ε
−1/2y)|2dx

≤ c exp(−δχε−1/2)(4.10)

for some constant δχ > 0. Moreover,

|∇xΨ
ε
p(x)− χ(y)Sε(x)ε

−1/2∇ηwp(ε
−1/2y)| ≤ c(1 + |∇yχ((y)|)|wp(ε

−1/2y)|,

∂zΨ
ε
p(x) = χ(y)

πCε(x)

εH(y)
wp(ε

−1/2y), Cε(x) = cos
(
π
z + εH−(y)
εH(y)

)
.

We also recall the integral in (3.17) and note that replacing the integrand by Cε(x) does
not change it. Then we use the relations (2.5), (2.7), (3.7), and (3.50) to obtain

〈Ψε
p,Ψ

ε
q〉ε =

∫

Ωε

∇yΨ
ε
p(y, z) · ∇yΨ

ε
q(y, z) dydz +

∫

Ωε

∂zΨ
ε
p(y, z) · ∂zΨε

q(y, z) dydz

+
1

ε

(
1− π2

εh2

)∫

Ωε

Ψε
p(y, z)Ψ

ε
q(y, z) dydz
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=
1

2

∫

R2

χ(y)2H(y)∇ηwp(η) · ∇ηwq(η) dy +
π2

2ε

∫

R2

χ(y)2
1

H(y)
wp(η)wq(η) dy

+
1

2

(
1− π2

εh2

) ∫

R2

χ(y)2H(y)wp(η)wq(η) dy

+ O(exp(−δχε−1/2) +O(ε2)

= ε
h

2
((∇ηwp,∇ηwq)R2 + (wp, wq)R2 + (Awp, wq)R2) +O(ε3/2)

= ε
h

2
(1 + µk)δp,q +O(ε3/2),(4.11)

where p, q = k, . . . , k + κk − 1. In particular, this formula shows that for small ε > 0,

‖Ψε
p;H

ε‖ ≥ 1

2
ε1/2h1/2(1 + µk)

1/2 ,
∣∣〈Φε

p,Φ
ε
q〉ε − δp,q

∣∣ ≤ Ckε
1/2.(4.12)

Now we write

δp = ‖T εΦε
p − T ε

kΦ
ε
p;H

ε‖ = ‖Ψε
p;H

ε‖−1T ε
k‖Ψε

p − (T ε
k )

−1T εΨε
p;H

ε‖

= ‖Ψε
p;H

ε‖−1 ε

1 + µk
sup

∣∣∣(∇xΨ
ε
p,∇xv

ε)Ωε

+
(1
ε
− π2

ε2h2

)
(Ψε

p, v
ε)Ωε − 1

ε
(1 + µk)(Ψ

ε
p, v

ε)Ωε

∣∣∣

= ‖Ψε
p;H

ε‖−1 ε

1 + µk
sup

∣∣∣∣(∇xΨ
ε
p,∇xv

ε)Ωε −
( π2

ε2h2
+
µk
ε

)
(Ψε

p, v
ε)Ωε

∣∣∣∣

= ‖Ψε
p;H

ε‖−1 ε

1 + µk
sup

∣∣∣µk
ε
(Ψε

p, v
ε)Ωε +

( π2

ε2h2
Ψε

p

+ ∂2zΨ
ε
p, v

ε
)
Ωε

− (∇yΨ
ε
p,∇yv

ε)Ωε

∣∣∣,(4.13)

where the supremum is computed over all vε ∈ Hε such that ‖vε;Hε‖ = 1. This normal-
ization condition and inequalities (3.8), (3.19) provide the estimate

ε−1‖rvε;L2(ω)‖2 + ‖vε;L2(ω)‖2

≤ c(ε−2‖rvε;L2(Ωε)‖2 + ε−1‖vε;L2(Ωε)‖2) ≤ C‖vε;Hε‖2 = C.(4.14)

The first scalar product Iε1 on the right-hand side of (4.13) can be written as

Iε1 =
µk
ε

∫

ω

wp(η)χ(y)

+εH+(y)∫

−εH
−
(y)

Sε(y, z)v
ε(y, z)dzdy

=
µk
ε

∫

ω

wp(η)
H(y)

h
V ε(η)dy.(4.15)

Here, η is the fast variable (1.15) and

V ε(η) =
h

2
εχ(ε1/2η)vε(ε1/2η),

cf.(3.24). Hence, in view of (1.2) and (4.14),

|Iε1 − µk(wp, V
ε)R2 | ≤ cε−1

∫

ω

r2|wp(η)| |V ε(η)|dy

≤ cε−1‖χ|y|wp;L
2(ω)‖ ε ‖rvε;L2(ω)‖ ≤ cε3/2‖|η|wp;L

2(R2)‖ = cpε
3/2.(4.16)
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For the second scalar product Iε2 in (4.13), we use (3.7) and write

Iε2 =
π2

ε2h2

∫

ω

H(y)

h

(
1− h2

H(y)2

)
wp(η)V

ε(η)dy,

|Iε2 + (Awp, V
ε)R2 | ≤ cε−2

∫

ω

r3|wp(η)| |V ε(η)|dy

≤ cε‖ρ2wp;L
2(R2)‖ = cpε.(4.17)

The last scalar product Iε3 in (4.13) requires a quite involved argument using all the
tricks introduced above. Indeed, we claim that the formula

|Iε3 + (∇ywp,∇yV
ε)R2 | = |Iε3 − (∆ywp, V

ε)R2 | ≤ cpε(4.18)

holds true for Iε3 . To see this we start by calculating ∇yΨ
ε
p with the help of (4.9) and get

three terms, out of which the one with the derivative of wp equals

(χSε∆ywp, v
ε)Ωε =

1

ε

∫

ω

H(y)

h
V ε(η)∆ηwp(η)dy,(4.19)

after integration by parts. The additional terms with derivatives of the factors χ(y) and
Sε(y, z) are of small order O(ε) as a consequence of the following: the integral with
|∇yχ(y)| has been estimated in (4.10), and the uniform estimate (3.50) holds for the
gradient ∇ySε(y, z), cf. (3.20). Finally, the term (4.19) can be processed in the same way
as in (4.15)–(4.17), and it turns into (∆ywp, V

ε)R2 (the subtrahend in (4.18)) plus terms
of order O(ε). This yields (4.18).

Since the eigenpairs {µk, wp}, p = k, . . . , k+κk−1, satisfy the equation (1.16), we have

−µk(wp, V
ε)R2 + (Awp, V

ε)R2 − (∆ywp, V
ε)R2 = 0.

Hence, the estimates (4.16), (4.17) and (4.18) together with the bound (4.12) yield for
(4.13)

δp = ‖Ψε
p;H

ε‖−1 ε

1 + µk
sup
vε

(
Iε1 + Iε2 + Iε3

)
≤ ckε

3/2.(4.20)

By Lemma 4.1, the operator T ε has the eigenvalues τ εJε(p), p = k, . . . , k+κk−1, such that
∣∣∣∣τ

ε
Jε(p) −

ε

1 + µk

∣∣∣∣ ≤ ckε
3/2.(4.21)

Combining this estimate with (4.3), we get for ε ≤ εk := (2ck(1 + µk))
−2

∣∣∣∣λ
ε
Jε(p) −

π2

ε2h2
− µk

ε

∣∣∣∣ ≤ ck(1 + µk)ε
1/2

(
λεJε(p) −

π2

ε2h2
+

1

ε

)

⇒ λεJε(p) −
π2

ε2h2
+

1

ε
≤ ck(1 + µk)ε

1/2

(
λεJε(p) −

π2

ε2h2
+

1

ε

)
+

1

ε
+
µk
ε

⇒ λεJε(p) −
π2

ε2h2
+

1

ε
≤ 2

1 + µk
ε

(4.22)

and thus ∣∣∣∣λ
ε
Jε(p) −

π2

ε2h2
− µk

ε

∣∣∣∣ ≤ 2ck(1 + µk)
2ε−1/2.(4.23)

Let us formulate a theorem based on the above considerations.

Theorem 4.2. For all k ∈ N there exist positive numbers εk and Ck such that the estimate
∣∣∣∣λ

ε
k −

π2

ε2h2
− µk

ε

∣∣∣∣ ≤
Ck√
ε

(4.24)
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holds for the eigenvalues λεk and µk (cf. (1.10), (2.6)) of the problems (1.9) and (2.5),
respectively, and for all ε ∈ (0, εk].

In the case all eigenvalues of the limit problem are simple, the proof is given by the
arguments in this section (formula (4.23)) and Section 3.3.. However, in the general case,
the subindex Jε(p) of λεJε(p) is not yet shown to be equal to k. This gap will be removed

and the proof thus completed in the next section, see Remark 5.1.

5. Asymptotics and localization of eigenfunctions.

5.1. Treating multiple eigenvalues. We first complete the proof of the previous
theorem by additional remarks on possible multiple eigenvalues of the limit problem. Thus,
we assume first that µk is as in (4.7) an eigenvalue of multiplicity κk ≥ 1 and prove that
there exist a least κk eigenvalues τ εJε(k), . . . , τ

ε
Jε(k)+κk−1 of the operator T ε satisfying the

estimate ∣∣∣∣τ
ε
p − ε

1 + µk

∣∣∣∣ ≤ Ckε
3/2(5.1)

for some constant Ck, which may be large but still independent of ε . To this end we
apply the second part of Lemma 4.1 with t1 = Ckε

3/2 and get the coefficient vector

aε(p) = (aεp,Jε(k), . . . , a
ε
p,Jε(k)+Kε(k)−1) ∈ R

Kε(k), p = k, . . . , k + κk − 1,(5.2)

such that

‖Φε
p − Sε

p;H
ε‖ ≤ 2δp

Ckε3/2
≤ 2ck

Ck
,(5.3)

Sε
p =

Jε(k)+Kε(k)−1∑

j=Jε(k)

aεp,jϕ
ε
j , |aε(p)| = 1.(5.4)

Here, τ εJε(k), . . . , τ
ε
Jε(k)+K(k)ε−1 are all of the eigenvalues of the operator T ε in the segment

[ε(1 + µk)
−1 −Ckε

3/2, ε(1 + µk)
−1 +Ckε

3/2],(5.5)

and at the end of the inequality (5.3) we used the estimate (4.20). Now (5.3), (4.12) imply,
for p, q = k, . . . , k + κk − 1,

∣∣∣(aε(p), aε(q))RKε(k) − δp,q

∣∣∣ =
∣∣〈Sε

p,S
ε
q〉ε − δp,q

∣∣

=
∣∣〈Sε

p,S
ε
q − Φε

q〉ε + 〈Sε
p − Φε

p,Φ
ε
q〉ε + 〈Φε

p,Φ
ε
q〉ε − δp,q

∣∣ ≤ 4ck
Ck

+ Ckε
1/2.(5.6)

Thus, in the case of a small enough ε and a large enough Ck the vectors (5.2) are mutually
“almost orthogonal” and thus at least linearly independent (cf. (4.6) for the normalization

in R
Kε(k)). This is possible only, if Kε(k) ≥ κk.

Remark 5.1. Combining (5.1) and (4.3) shows that every eigenvalue (1.10) of the prob-
lem (1.9) is in a Ckε

−1/2-neighborhood of some point π2ε−2h−2 + ε−1µk. This proves
Lemma 3.2.

The relation Jε(k) ≥ k and Theorem 3.5 imply the equality Jε(k) = k, hence, the proof
of Theorem 4.2 is completed, too.

5.2. Asymptotics of eigenfunctions. In this section we formulate a result on the
asymptotic behavior of the eigenfunctions ϕε

p = (τ εk)
1/2uεk, see (4.4). Recall that the

functions Ψε
p are localized and satisfy exponential decay estimates as a consequence of

(4.9) and Proposition 2.4.
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Theorem 5.2. Let µk be an eigenvalue of the problem (2.5) with multiplicity κk ≥ 1,
cf. (2.4), (4.7). There exist positive numbers εk, ck and an orthonormal sequence of
vectors {bεk, . . . , bεk+κk−1} ⊂ R

κk , such that the eigenfunctions ϕε
k, . . . , ϕ

ε
k+κk−1 admit the

estimates

∥∥∥ϕε
p −

2√
hε

(1 + µk)
−1/2

k+κk−1∑

q=k

bε(q)Ψ
ε
p;H

ε
∥∥∥ ≤ ck

√
ε ∀ ε ∈ (0, εk].(5.7)

Here, p ∈ {k, . . . , k + κk − 1}, the norm of Hε is as in (4.1), the eigenfunctions ϕε
p

are orthonormalized in Hε, the functions Ψε
p are defined in (4.9) and wk, . . . , wk+κk−1

denote the eigenfunctions of the limit equation (1.16) subject to the orthogonality and
normalization conditions (2.7).

Proof. In view of the proof in Section 5.1. and Theorem 3.5, we can choose for every
k the number t1 = ckε in Lemma 4.1 such that the segment

[ε(1 + µk)
−1 − ckε, ε(1 + µk)

−1 + ckε],(5.8)

contains the interval (5.5) and the eigenvalues τ εk , . . . , τ
ε
k+κk−1 but no other eigenvalues of

the operator T ε. In this way we obtain Jε(k) = k and Kε(k) = κk in (5.4), while the
estimates (5.3) and (5.6) now take the form

‖Φε
p − Sε

p;H
ε‖ ≤ 2

ck
ck

√
ε(5.9)

and ∣∣∣(aε(p), aε(q))Rκk − δp,q

∣∣∣ ≤ Ck

√
ε,(5.10)

hence, these bounds vanish as ε→ 0+. We now use them to estimate the remainder terms
in the asymptotic presentation of eigenfunctions, below.

First, by (4.8), (4.9) and (4.11), we can rewrite (5.9) as
∥∥∥ 2√

hε
(1 + µk)

−1/2Ψε
p − Sε

p;H
ε
∥∥∥ ≤ 2

ck
ck

√
ε.(5.11)

Second, the definition (4.1), (3.7), and the Friedrichs inequality (3.9) yield for the function
(4.9)

‖∇yΨ
ε
p;L

2(Ωε)‖2 + ε‖∂zΨε
p;L

2(Ωε)‖2

+
1

ε
‖Ψε

p;L
2(Ωε)‖2 +

1

ε2
‖rΨε

p;L
2(Ωε)‖2 ≤ c‖Ψε

p;H
ε‖2.(5.12)

Third, direct calculations together with (4.9) and the exponential decay of wp(η) as ρ →
+∞ show that each term on the left-hand side of (5.12) is of order ε. We also remark that

‖Sε
p;H

ε‖ = O(1)(5.13)

due to (4.4) and (5.4). Finally, we observe that the κk × κk-matrix

aε =
(
aε(k), . . . , a

ε
(k+κk−1)

)

is “almost orthogonal” due to (5.10), and thus there exists an orthogonal matrix bε such
that bεaε differs from the unit κk×κk-matrix by O(

√
ε) in the standard matrix norm (see,

e.g., [37, Sect. 7.1] and [26, Lemma 1.5]). Taking for bε(q) the columns of bε and putting

together (5.4), (5.9)–(5.13) yields (5.7). ⊠

5.3. Localization effect revisited. Theorem 5.2 can be written for the eigenfunctions
uεk, (1.11), by using the estimate (5.12). However, although the estimate (5.7) is in a sense
even asymptotically sharp, it does not yet prove the desired localization effect: recall that
we expect the eigenfunctions uεk to be exponentially small as a function of the distance to
the maximum thickness point. The bound (5.7) would only tell that the difference of uεk
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from a function with such a decay property would be small in some norm. This kind of
result is already contained in Theorem 3.1 because of the exponentially growing weight on
the left-hand side of (3.2).

In the next theorem we assume that the profile functions H± are smooth and derive
estimates for the eigenfunctions in a weighted parameter-dependent Hölder norm

‖u;C l,α
ε (Ωε)‖ =

l∑

j=0

εj sup
x∈Ωε

|∇j
xu(x)|

+ εl+α sup
x∈Ωε

sup
x∈Ωε: |x−x|≤ε

(
|x− x|−α|∇j

xu(x)−∇j
x
u(x)|

)
,(5.14)

cf. (2.18). Since the edges υ± = {x : y ∈ ∂ω, z = ±εH±(y)} of the plate (1.5) still cause
boundary irregularities, we will give the estimates only in a subset of Ωε not including the
the edge ∂ω × {0}. We mention that weighted Hölder estimates were extended up to the
edges of an elastic cylindrical plate in the paper [34], but for simplicity we do not repeat
that consideration here.

Theorem 5.3. Assume that the profile functions H± are C∞-smooth. For any l ∈ N,
α ∈ (0, 1) and d > 0, there exist positive numbers εk and ck such that for all ε ∈ (0, εk]
the eigenfunction uεk, (1.11), satisfies

‖ exp(ε−1br2)uεk;C
l+1,α
ε (Ωε(d))‖ ≤ ckε

−3/2.(5.15)

Here b is a positive constant, Ωε(d) := {x ∈ Ωε : y ∈ ωεd} and ωεd := {y ∈ ω :
dist (y, ∂ω) > εd}.

Proof. We fix a point y0 ∈ ωεd and the discs Bp = {y : |y − y0| < pεd/2}, p = 1, 2.
The change of variables

x 7→ (η, ζ) = (ε−1(y − y0), ε−1z)

transforms the small cells Ξp
ε = {x ∈ Ωε : y ∈ Bp} ⊂ Ωε into the cells of unit size

Ξ̂p
ε = {(η, ζ) : |η| ≤ pd,−H−(y

0 + εη) < ζ < H+(y
0 + εη)}, p = 1, 2.

Furthermore, the function

Ξ̂2
1 ∋ (η, ζ) 7→ U ε

k(η, ζ) = uεk(y
0 + εη, εζ)

vanishes at the surfaces ξ̂ 2±ε (y0) = {(η, ζ) : |η| ≤ 2εd, ζ = ±H±(y0+ εη)} and satisfies the
equation

∆(η,ζ)U
ε
k(η, ζ) + ε2λεkU

ε
k(η, ζ) = F ε

k (η, ζ) := 0, (η, ζ) ∈ Ξ̂2
ε.

Local elliptic estimates [2] for solutions of boundary-value problems in domains with
smooth boundaries show that

‖U ε;C l+1,α(Ξ̂1
ε(y

0))‖ ≤ C
(
‖F ε;C l−1,α(Ξ̂2

ε(y
0))‖ + ‖U ε;L2(Ξ̂2

ε(y
0))‖

)

= C‖U ε;L2(Ξ̂2
ε(y

0))‖.(5.16)

The constant C in (5.16) can be chosen independently of λεk, ε and y0, because ε2λεk > 0

is bounded, see (3.15), and the bases ξ̂ 2±ε (y0) of the cell Ξ̂2
ε(y

0) are gently sloping and
dependent smoothly on y0. Defining the weight function

Eε
B(η) = exp(ε−1b|y0 + εη|2)

as in Remark 2.2 with b = b1 = b2, its derivatives are uniformly bounded for all η ∈ Ξ̂ 2
ε (y

0)
and ε ∈ (0, εk]. This weight can thus be inserted into all norms in the estimate (5.16),
and we obtain

‖Eε
BU

ε;C l+1,α(Ξ̂1
ε)‖ ≤ CB‖Eε

BU
ε;L2(Ξ̂2

ε)‖.(5.17)
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It suffices to change back to the original coordinates x = (y0 + εη, εζ) and observe the
following facts. First, this coordinate change turns the standard Hölder norms in (5.17)
into the ε-dependent Hölder norm of (5.14). Second, applying the inequality (3.2) with
the weight function (3.3) and B(y) = b|y|2 yields

‖Eε
BU

ε;L2(Ξ̂2
ε)‖ ≤ ε−3/2‖EBuε;L2(Ξ2

ε)‖ ≤ ckε
−3/2,

where the coefficient ε−3/2 comes from the coordinate dilation. ⊠

The exponential factor exp(ε−1br2) in (5.15) shows that the eigenfunction uεk(x) is ex-
ponentially small outside any neighborhood of the coordinate origin. The large coefficient
ε−3/2 on the right hand side in (5.15) is caused by the L2(Ωε)-normalization. Derivatives
of jth order gain the additional large factor ε−j (cf. (5.14)) as a consequence of scaling,
or, the use of the intrinsic stretched coordinates.

6. Generalizations and open questions

6.1. Mixed boundary value problem. In this section we consider a problem related
to (1.7), (1.8) but having different, namely, mixed boundary conditions, see (6.1)–(6.3).
The asymptotic behavior of the eigenvalues differs very much from the problem (1.7)–(1.8),
as shown by Theorem 6.1. In addition, the case of a mirror symmetric plate is considered in
Theorem 6.2 with the help of an auxiliary spectral problem (6.13) with artificial boundary
conditions. We include a discussion on the results and the existing literature in Remark
6.3.

So, we consider in the thin domain (1.5) the problem

−∆xu
ε(x) = λεuε(x), x ∈ Ωε,(6.1)

∂νu
ε(x) = 0, x ∈ Σε

±,(6.2)

uε(x) = 0, x ∈ Σε
0 := ∂Ωε \ (Σε

− ∪ Σε
+),(6.3)

where Σε
± denotes the plate bases (1.6), Σε

0 = ∂Ωε \ (Σε
− ∪ Σε

+) the lateral sides of the
plate (1.12), and ∂ν is the directional derivative along the outward normal on Σε

±. The
variational formulation of the problem (6.1)–(6.3) reads as

(∇xu
ε,∇xv

ε)Ωε = λε(uε, vε)Ωε ∀ vε ∈ H1
0 (Ω

ε; Σε
0),(6.4)

where H1
0 (Ω

ε; Σε
0) is a subspace of functions in the Sobolev space H1(Ωε) which satisfy the

Dirichlet condition (6.3) on Σε
0. We use in this section the notation λεk, k = 1, 2, . . . , also for

the eigenvalues of the problem (6.4); they form a positive monotone unbounded sequence
as in (1.10). The corresponding eigenfunctions, still denoted by uεk, can be subject to the
same normalization and orthogonality conditions as in (1.11).

It is well known that the eigenvalues convergence,

λεk → βk as ε→ 0,

where βk is the kth eigenvalue in the spectrum

0 < β1 < β2 ≤ β3 ≤ . . . ≤ βk ≤ . . . ≤→ +∞(6.5)

of the two-dimensional Dirichlet limit problem

−∇y ·H(y)∇yϕ(y) = βH(y)ϕ(y), y ∈ ω, w(y) = 0, y ∈ ∂ω.

Notice that the variational form of this problem is

(H∇yϕ,∇yψ)ω = β(Hϕ,ψ)ω ∀ ψ ∈ H1
0 (ω; ∂ω).

The normalization and orthogonality conditions for the eigenfunctions are

(Hϕj , ϕk)ω = δj,k, j, k ∈ N.

Let us formulate the following theorem from [37, Ch. 7], the proof of which uses the
procedures of direct and inverse reduction. The proof given in [37] requires smoothness
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of the profiles H±, but only minor modifications are needed to cover the case of piecewise
smooth, continuous H± in (1.2), (1.3). (For more details, see also [36, 35].) This result
gives estimates for the asymptotic remainders in the expansions of the eigenvalues λεk and
the eigenfunctions uεk. The dependence on the eigenvalue βk, its multiplicity κk and other
attributes of the limit spectrum (6.5) is explicitly presented in these estimates. We also
mention the papers [32, 26, 20], where this procedure has been applied to other singularly
perturbed problems.

If βk is an eigenvalue of multiplicity κk, i.e.,

βk−1 < βk = . . . = βk+κk−1 < βk+κk
,(6.6)

then the relative distance dk to other eigenvalues is defined by

dk = min

{
βk
βk−1

− 1, 1− βk
βk+κk

}
.

Theorem 6.1. There exist positive numbers ε0 and c0, C0 depending only on ω and H
such that the following statements hold true for the eigenvalue sequence {λεp}∞p=1 of the

problem (6.4).
Let us consider a k ∈ N and the corresponding eigenvalue βk.
1) If ε satisfies

0 < ε ≤ ε0κ
−1
k β−1

k ,(6.7)

then there are elements λεj, . . . , λ
ε
j+κk−1 such that

|λεp − βk| ≤ c0ε
1/2

κkβ
3/2
k , p = j, . . . , j + κk − 1.(6.8)

2) If ε is so small that

0 < ε ≤ ε0κ
−2
k

(
1 +

1

dk

)−2

β−1
k ,(6.9)

then the interval
[
βk − c0ε

1/2β
3/2
k , βk + c0ε

1/2β
3/2
k

]
(6.10)

contains the eigenvalues λεk, . . . , λ
ε
k+κk−1 and no other eigenvalues. Hence, j = k in (6.8).

3) If the slightly stronger assumption

0 < ε ≤ ε0κ
−2
k

(
1 +

1

dk

)−2

(βk + βk+κk
)−1,(6.11)

holds, then the interval
[
1

2
(βk + βk−1),

1

2
(βk + βk+κk

)

]
(6.12)

does not include any eigenvalue λεp with p < k or p ≥ k + κk either.

4) If (6.11) holds, then there exist an orthonormal sequence
(
bj(ε)

)k+κk−1

j=k
of vectors in

R
κk , bj(ε) = (bjk(ε), . . . , b

j
k+κk−1(ε)), such that the following estimates are valid:

∥∥∥∥u
ε
j − ε−1/2

k+κk−1∑

p=k

bjp(ε)ϕp;H
1(Ωε)

∥∥∥∥

≤ C0ε
1/2

κk

(
1 +

1

dk

)
βk, j = k, . . . , k + κk − 1.
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We comment this result in Remark 6.3, below.
We next consider the eigenvalues of the problem (6.1)–(6.3) in the special case of a plate

Ωε which is mirror symmetric with respect to the plane {z = 0}, that is, H+ = H− in
(1.5). In this case it is natural to pose artificial boundary conditions, [9], on the central
cross-section Γε

0 = {x ∈ Ωε : z = 0}, and we are thus led to the auxiliary spectral problem

−∆xu
ε
∧(x) = λε∧u

ε
∧(x), x ∈ Ωε

∧,

∂νu
ε
∧(x) = 0, x ∈ Σε

+,(6.13)

uε∧(x) = 0, x ∈ Σε
∧ ∪ Γε

0,

where Ωε
∧ = {x ∈ Ωε : z > 0} and Σε

∧ = {x ∈ Σε
0 : z > 0}. Since every function

v∧ ∈ H1
0 (Ω

ε
∧; Σ

ε
∧ ∪ Γε

0) vanishes on the central plane, one can extend such a v∧ as an odd
function v♦ in z to the entire plate Ωε, and as a consequence v♦ ∈ H1

0 (Ω
ε; Σε

0). Thus, any
eigenpair {λε∧, uε∧} of the problem (6.13) gives rise to an eigenpair {λε∧, uε♦} of the problem
(6.1)–(6.3).

The mixed boundary value problem (6.13) has all the properties of the Dirichlet problem
(1.7)–(1.8), which are necessary for the arguments and results in Sections 2–5, except for
some minor modification; we return to this in the next section, when treating a straight-
forward generalization of (6.13). So, the following result concerning the eigenvalues λεk of
the problem (6.1)–(6.3) can be proven in the same way as Theorem 4.2 (see also Remark
6.5).

Theorem 6.2. Assume that H+ = H− holds in (1.1) and that the thickness function
H = 2H+ satisfies the conditions (1.2) and (1.3). Then, for every k ∈ N there exists
εk > 0 such that for all ε ∈ (0, εk] the eigenvalue sequence

(
λεp
)∞
p=1

of the problem (6.1)–

(6.3) has entries λεK(ε), . . . , λ
ε
K(ε)+κk−1 satisfying the relationship

∣∣∣∣λ
ε
j −

π2

4ε2h2
−

√
2ε−1µk

∣∣∣∣ ≤ ckε
−1/2,(6.14)

where j = K(ε), . . . ,K(ε) + κk − 1, µk is an eigenvalue of problem (2.5) with multiplicity
κk and the factor ck > 0 is independent of ε ∈ (0, εk].

We emphasize that the eigenvalue index K(ε) in (6.14) in general depends on ε, because
the interval (0, 14π

2ε−2h2) contains indefinitely many eigenvalues βm when ε→ 0+. Also,
it is not possible to guarantee that the number of eigenvalues satisfying (6.14) equals κk.
Hence, part of the information on eigenfunctions in Theorem 5.2 is lost, when applied to
the eigenfunctions of the problem (6.4).

Remark 6.3. Let us return to Theorem 6.1. There, the weakest of the assumptions
for ε is the first one (6.7), however, the conclusion does not ensure that p = k in the
estimate (6.8), and, moreover, there may still be other eigenvalues satisfying (6.8). To
guarantee the localization and isolation of λεk, . . . , λ

ε
k+κk−1 into the segments (6.10) and

(6.12), respectively, one has to accept the much smaller bounds (6.9) and (6.11) for ε. In
the last case we also have the asymptotic description of the eigenfunctions uεk, . . . , u

ε
k+κk−1.

These observations suggest that the traditional asymptotic ansätze

λεk ∼ βk, uεk(x) ∼ ε−1/2αk(ε)ϕk(y)

for the eigenpairs of the mixed boundary value problem (6.1)–(6.3) only work for a wide
but certainly restricted range of the spectrum.

The above observed difference of the asymptotic behavior of lower and higher eigenvalues
actually defines the higher frequency range of the spectrum, and in spite of the failure of
the asymptotic expansions in the high-frequency range one may find eigenvalue sequences
with other types of stable asymptotics. This phenomenon is discussed in some special
cases in [41, 29, 37, 31, 32, 26, 27, 18].
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We still mention other types of problems, namely, models arising from reinforcement
problems, where the spectral parameter is related with the size of reinforced bands and the
physical properties of the materials such as stiffness or density. In [18] and [21], the low,
middle and high frequencies have been considered in very different situations. Depending
on the problem and the geometry of the band, the middle frequencies can give rise to
vibrations with energy localized along the interface between the media (cf. [18]), or they
can give rise to vibrations localized near points of local maxima of the function defining
the geometry of the reinforcing band. The latter type of localization is consider in [21],
and it is similar to the one appearing in the present paper: see Section 1.4. for more
details.

6.2. Another mixed boundary value problem. Let us extend the Dirichlet con-
ditions over the lower base Σε

− and consider the problem

−∆xu
ε(x) = λεuε(x), x ∈ Ωε,(6.15)

∂νu
ε(x) = 0, x ∈ Σε

+,(6.16)

uε(x) = 0, x ∈ Σε
⊔ := Σε

0 ∪ Σε
−,(6.17)

with the variational formulation

(∇xu
ε,∇xv

ε)Ωε = λε(uε, vε)Ωε ∀ vε ∈ H1
0 (Ω

ε; Σε
⊔).

Then the asymptotic ansätze (2.1), (2.2) are replaced by

λε = ε−2 π
2

4h2
+ ε−1µ+ . . . , uε(x) = sin

(
π

2

z + εH−(y)
εH(y)

)
w(η) + . . .(6.18)

Remark 6.4. Note that sin(. . .) in (2.2) vanishes both for z = εH+(y) and z = −εH−(y),
whereas sin(. . .) in (6.18) vanishes only for z = −εH−(y) and ∂z sin(. . .) = 0 for z =
εH+(y). The last fact imitates the Neumann boundary conditions (6.16), which, in view
of (1.6), can be written in the form

(
1 + ε|∇yH+(y)|2

)−1/2 (
∂zu

ε(y, z)

−ε∇yH+(y) · ∇yu
ε(y, z)

)∣∣
z=εH+(y)

= 0.(6.19)

Since the stretching coefficient in (1.15) is equal to ε−1/2, the subtrahend in (6.19) is of
higher order than the derivative ∂zu

ε(y, εH+(y)) in local variables. ⊠

Repeating the calculations leading to (1.16) with minor modifications and using the
notation (1.17), yields the following limit differential equation

−∆ηw(η) +
1

4
A(η)w(η) = µw(η), η ∈ R

2.(6.20)

The coordinate dilation η 7→ 2−1/2η and the parameter change µ 7→ 2µ reduce (6.20) to
the spectral equation (1.16). Then we use the eigenvalue sequence (2.6) to obtain the
eigenvalue sequence of the spectral problem (6.20),

0 <
1

2
µ1 <

1

2
µ2 ≤

1

2
µ3 ≤ . . . ≤ 1

2
µk ≤ . . . ≤ . . .→ +∞.

Remark 6.5. In the artificial problem (6.13) we also need to replace h by h∧ = h/2.
Hence, the second term on the left of (6.20) becomes 2A(η)w(η). This explains the factor√
2 in (6.14). ⊠

Asymptotics of eigenvalues and eigenfunctions of problem (6.15)–(6.17) can now be
formulated as in Theorems 4.2 and 5.2 with obvious modifications.

6.3. Concluding geometric remarks. (i) Continuity of the profile functions. Since
the eigenfunctions are localized near the maximum point 0 ∈ ω of H, the considerations



32 NAZAROV, PÉREZ, AND TASKINEN

a) b)

Figure 6.1. a) Thin domain permitting generalization, b) thin domain
not suitable for generalization

in Sections 3–5 require the inclusion H± ∈ H1,∞ only in some neighborhood of 0. Outside
this neighborhood the functions H± may have jumps as depicted in Fig. 6.1, a.

(ii) Local maxima. Let us return to the Dirichlet problem (1.7), (1.8) and assume that
the thickness function (1.1) has a local strict maximum at a point y♮ ∈ ω \ {0}, that is

H(y) = h♮ − r2♮H♮(ϕ♮) +O(r3♮ ), h♮ ∈ (0, h),

where (r♮, ϕ♮) ∈ R+ × S
1 is the polar coordinate system centered at y♮ and, as in (1.3),

H♮ ∈ H1,∞(S1), H♮ > 0. Using the same argument as in Section 2.1, one can perform the
formal asymptotic analysis and derive the following limit differential equation

−∆η♮w
♮(η♮) +A♮(η♮)w♮(η♮) = µ♮w♮(η♮), η♮ ∈ R

2,(6.21)

where, similarly to (1.17),

A♮(η♮) = 2π2h−3
♮ ρ2♮H♮(ϕ♮)

and η♮ = ε−1/2(y − y♮) are the stretched coordinates centered at y♮. By an appropriate
affine transform, equation (6.21) reduces to the differential equation (1.16). We write the
spectrum of (6.21) as

0 < µ♮1 < µ♮2 ≤ µ♮3 ≤ . . . ≤ µ♮k ≤ . . . ≤ . . .→ +∞.

Note that in the special case H♮ = c♮H the eigenvalue µ♮k is an explicit function of the

numbers µk, h♮, a
♮
pq and c♮. The eigenvalues have the expansions

λεK(ε) = ε−2h−2
♮ π2 + ε−1µ♮k + λ̃εK(ε),(6.22)

which look quite similar to (1.18), and they show that eigenvalue sequences have stable
asymptotics in the high-frequency range of the spectrum. The justification procedure from

Section 4 can be applied to derive the estimate |λ̃εK(ε)| ≤ ckε
3/2 for the remainder in (6.22),

and assertions similar to Theorems 4.2 and 6.2 can also be proven. We recall that other
eigenvalue sequences of this type have been discussed in Section 6.1.

(iii) Limit problem in the half-plane. The global maximum h of the function H may
occur at a point y0 ∈ ∂ω. To treat this case let us assume that H is smooth enough, for
example, of class H3,∞, and that y0 = 0 and the y1-axis is tangent to the contour ∂ω.
Moreover, the relations (1.2), (1.3) are supposed to hold, when the circle S1 is replaced by
the semi-circle S

1
+. The limit problem then reads as

−∆ηw(η) +A(η)w(η) = µw(η), η ∈ R
2
+ = (0,∞)× R,(6.23)

w(0, η2) = 0, η2 ∈ R,(6.24)

where the positive function A is still given by (1.17). Actually all eigenvalues of the prob-
lem (6.23), (6.24) have already been listed in Proposition 2.1, because the even extension
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of the function

R
2
+ ∋ η 7→ A(η)(6.25)

to the entire plane R
2 and the simultaneous odd extension of a solution w convert the

Dirichlet problem in R
2
+ into the single differential equation (1.16). In other words, the

spectrum of the problem (6.23), (6.24) is composed of those eigenvalues (2.6), which are
associated with eigenfunctions that are odd in η2.

The boundary condition (6.24) is inherited from the Dirichlet condition (1.8) on the
lateral side Γε of the plate Ωε. To treat the corresponding Neumann condition instead
of (6.24), one starts with the mixed boundary value problem composed of the differential
equation (1.7) and the boundary conditions

uε(x) = 0, x ∈ Σε
±, ∂νu

ε(x) = 0, x ∈ Σε
0.(6.26)

Then, the Neumann boundary condition in (6.26) gives rise to the Neumann condition

∂w

∂η1
(0, η2) = 0, η2 ∈ R,

to be combined with the equation (6.23). Again, we have already seen the spectrum
of this limit Neumann problem: by a consideration analogous to the one in the previ-
ous paragraph, it consists of those eigenvalues µk in (2.6) for which the corresponding
eigenfunctions are even in η2.

We emphasize that the curvature κ of the contour ∂ω has no effect on the asymptotic
and justification procedures in Sections 2–5. Indeed, the Laplace operator ∆y reads in the
curvilinear coordinates (n, s) as

(1 + nκ(s))−1 ∂

∂n
(1 + nκ(s))

∂

∂n
+ (1 + nκ(s))−1 ∂

∂n
(1 + nκ(s))−1 ∂

∂n
.(6.27)

Here, n is the oriented distance from the contour ∂ω, n > 0 inside ω, and s is the arc
length calculated from the point y0 = (0, 0) along ∂ω anticlockwise. After the change of
variables

(n, s) 7→ η = (η1, η2) = (ε−1/2n, ε−1/2s),

the main asymptotic part ε−1∆η of the differential operator (6.27) appears on the left-

hand side of the limit equation (1.16). Moreover, the next term ε−1/2κ(0)∂/∂η1 in the
asymptotic decomposition of (6.27) is small in comparison and thus does not exist in limit
problem. The eigenfunctions wk in Proposition 2.4 still have an exponential discrepancy

|(∆x − ε−1∆η)wk(η)| ≤ ckε
−1/2 exp(−ε−1(B

1/2
1 n2 +B

1/2
2 s2)),

which can be estimated along the scheme in Section 4.
If the boundary ∂ω is piecewise smooth and the maximum of H occurs at a corner

point, then a limit equation similar to (6.23) is to be posed in the corresponding unbounded
corner domain. However, this generalization is quite straightforward and we skip a detailed
discussion of it.

(iv) A different type of global maximum. Let

H(y) < H(0) =: h for y ∈ ω \ {0},
H(y) = h− rκH(ϕ) +O(rκ+1).(6.28)

Then, the coordinate dilation (1.15) has to be replaced by

y 7→ ε−αy with α =
2

2 + κ
.
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To study the eigenvalues λεk and the corresponding eigenfunctions uεk(x) of the problem
(1.9), we first notice that a calculation similar to that in Section 2.1 yields the limit
equation

−∆ηw(η) + 2π2h−3ρκH(ϕ)w(η) = µw(η), η ∈ R
2.

This can be used to determine the perturbation term in the expansion

λεk = ε−2π
2

h2
+ ε−4/(2+κ)µk + λ̃εk

and also the last multiplier wk(η) in the asymptotic ansatz (2.2) for uεk(x). We predict
the following estimate for the eigenvalues

∣∣∣λ̃εk
∣∣∣ ≤ ckε

−2/(2+κ),

yet, we refrain to formulate this as a rigorous result for the case (6.28), since the approach
of our paper would inevitably lead to many additional cumbersome formulas requiring
some further arguments. We also refer to papers [5, 6] containing the case (1.24) with a
positive homogeneous polynomial of degree κ = 2m.

(v) Open questions. We finally mention two cases where even the formal asymptotic
ansätze for the eigenpairs of the problem (1.7), (1.8) remain unclear.

In the first case we assume that

H(y) = h− a1y
2
1 − a2y

2m
2 +O(r2m+1) with a1, a2 > 0, m > 1.

In the formal asymptotic procedures in Section 2.1 the term a2y
2m
2 would be ignored, and

we would be lead to the following limit differential equation,

−∆ηw(η) + 4π2h−3a1η
2
1w(η) = µw(η), η ∈ R

2,(6.29)

which looks quite similar to (1.16). Thus, it would be natural to introduce the Hilbert
space H with the weighted norm

‖w;H|| = (‖∇ηw;L
2(R2)‖2 + ‖(1 + |η1|2)1/2w;L2(R2)‖2.

However, the spectrum of the operator of problem (6.29) cannot be discrete due to the
following observation: If χ ∈ C∞

c (R2) is a function with a support in the unit square
(−1/2, 1/2)2 , the functions η 7→ χq(η1, η2 − q), q ∈ N, have the properties

‖χq;L
2(R2)‖ = cχ 6= 0,(6.30)

‖χq;H‖ ≤ Cχ, suppχq ∩ suppχp = ∅ for q 6= p, q, p ∈ N.(6.31)

Using (6.31) one can find a subsequence {χqj} which converges to null weakly in H, but

this subsequence cannot converge to null in the norm of L2(R2), due to (6.30). In other
words, the embedding H ⊂ L2(R2) cannot be compact, and the spectrum is thus not
discrete (cf. [4, Theorem 10.5.1])

Second, let us assume that

H(y) < h for y ∈ ω \ γ,

H(y) = h− 1

2
a0 dist(y, γ)

2 +O(dist(y, γ)3), a0 > 0,

i.e. the maximum h is attained by the thickness function (1.1) along a simple smooth closed
contour γ inside the domain ω. It is quite probable that a modification of the ansätze
developed in [10, 33, 36] could be used to describe the asymptotic behavior (ε→ 0+) of the
eigenpairs of the spectral problem (1.7), (1.8), however, a much more elaborate analysis is
needed to confirm these hypothesis. We finally mention that asymptotic ansätze become
incomprehensible, if γ is a smooth open curve with ends in ∂ω, see Fig. 6.1, b, or even a
criss-cross curve.
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6.4. Spectral gaps for the Dirichlet problem in a thin infinite layer. Let ω be
the rectangle {y : −lm < ym < lm,m = 1, 2} with sides of length 2lm > 0. We assume
that the profile functions H± satisfy the requirements (1.1), (1.2) and (1.3) in ω, and in
addition that the periodic extensions of H± to the entire plane R

2 are continuous, for
simplicity (cf. Section 6.3 (i) and papers [36, 35]). We consider the spectral Dirichlet
problem

−∆U ε(x) = ΛεU ε(x), x ∈ Πε,(6.32)

U ε(x) = 0, x ∈ ∂Πε,(6.33)

in the thin layer

Πε =
{
(y, z) : y ∈ R

2,−εH−(y) < z < εH+(y)
}
.(6.34)

This problem is associated with a positive definite self-adjoint unbounded operator Aε,
see, e.g., [4, Ch. 10]. By e.g. [13, 42, 14] it is known that the spectrum σε = σ(Aε) of
problem (6.33) has the band-gap structure

σε =
⋃

k∈N
σεk, σεk = {Λ = λεk(ξ) : ξm ∈ [0, π/lm), m = 1, 2} ,(6.35)

where ξ = (ξ1, ξ2) denotes the dual variable of the Gelfand transform [17] and the numbers
λεk(ξ) are entries of the eigenvalue sequence

0 < λε1(ξ) ≤ λε2(ξ) ≤ · · · ≤ λεk(ξ) ≤ · · · → +∞(6.36)

of the following model problem in the periodicity cell, or, the curved prism Ωε, (1.5):

−∆uε(x; ξ) = λεuε(x; ξ), x ∈ Ωε,(6.37)

uε(y,±εH±(y); ξ) = 0, y ∈ ω = (−l1, l1)× (−l2, l2),(6.38)

uε(l1, y2, z; ξ) = e2iξ1l1uε(−l1, y2, z; ξ), y2 ∈ (−l2, l2),
uε(y1, l2, z; ξ) = e2iξ2l2uε(y1,−l2, z; ξ), y1 ∈ (−l1, l1),(6.39)

∂uε

∂y1
(l1, y2, z; ξ) = e2iξ1l1

∂uε

∂y1
(−l1, y2, z; ξ), y2 ∈ (−l2, l2),

∂uε

∂y2
(y1, l2, z; ξ) = e2iξ2l2

∂uε

∂y2
(y1,−l2, z; ξ), y1 ∈ (−l1, l1).(6.40)

The problem is formally self-adjoint due to the quasi-periodicity conditions (6.39), (6.40)
with the real parameters ξ1 and ξ2, and its variational formulation is

(∇uε(·; ξ),∇vε(·; ξ))Ωε = λε(uε(·; ξ), vε(·; ξ))Ωε ∀ vε(·; ξ) ∈ Hε(Ωε; ξ),(6.41)

where Hε(Ωε; ξ) is the subspace of functions vε(·; ξ) ∈ H1
0 (Ω

ε; Σε
±) satisfying the Dirich-

let conditions (6.38) and the stable quasi-periodicity conditions (6.39). The variational
problem (6.41) is associated with a positive definite operator Aε(ξ) in L2(Ωε). Since the
embedding H1(Ωε) ⊂ L2(Ωε) is compact, the spectrum of Aε(ξ) is discrete and forms the
eigenvalue sequence (6.37), where the eigenvalues are listed according to their multiplicities
(see, e.g., [4, Theorems 10.1.5 and 10.2.2]). Furthermore, each of the functions

[0, π/l1)× [0, π/l2) ∋ ξ 7→ λεk(ξ)

is evidently continuous and (π/lm)-periodic in ξm so that the spectral bands σεk in (6.35)
are closed connected bounded intervals.

The eigenvalues (6.36) of the problem (6.41) can be investigated in the same way as
the eigenvalues (1.10) of the problem (1.9). Replacing the Dirichlet condition by the
quasi-periodicity conditions (6.39), (6.40) on the lateral side Σε

0 of Ωε, (1.12), does not
have an effect on the formal asymptotic analysis (Sections 2 and 6.2) and the justification
scheme (Sections 3–5). Even more importantly, all bounds in the estimates of the previous
sections can be proven independently of ξ ∈ [0, π/l1) × [0, π/l2). We refrain to formulate
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an assertion on the asymptotics of the eigenvalues λεk(ξ) of the problem (6.41), but just
refer to the result (4.24), Theorem 4.2, which can easily be adapted to this case as well.

We emphasize that the asymptotic terms π2ε−2h−2 and µkε
−1 in (4.24) are independent

of ξ. Moreover, the quasi-periodicity conditions (6.39), (6.40) are imposed at a fixed
distance from the point y0, i.e., in a set where the eigenfunctions do not localize. Hence,
the parameter ξ has only a very small effect on the eigenvalues so that the inequalities

∣∣λεk(ξ)− λεk(ξ
′)
∣∣ ≤ ck exp(−ε−1δ),(6.42)

are valid for some δ > 0, for all ξ, ξ′ ∈ [0, π/l1) × [0, π/l2). The inequality (6.42) can be
proven from the estimates of this paper by a rather simple argument found e.g. in [36].
Due to (6.42) and (4.24), the length |σεk| of the spectral band σεk in (6.35) can be estimated

by ck exp(−ε−1/2δ), and the band on the other hand satisfies

σεk ⊂
(
π2

ε2h2
+
µk
ε

− ck√
ε
,
π2

ε2h2
+
µk
ε

+
ck√
ε

)
.(6.43)

These two observations together with the unboudedness and monotonicity of the eigenvalue
sequence (2.6) imply that the number of open spectral gaps grows to the infinity as ε→ 0+.
(By a spectral gap we mean an interval in R+ which is free of the spectrum σε, but has
endpoints in it.)

The above observation is based on the the original idea of [15], where the two-dimensional
periodic thin strip was considered and the sequence (2.6) consisted of the simple eigenval-
ues of the harmonic oscillator (1.25). In our case the eigenvalues of the problem (2.5) may
become multiple, which complicates the asymptotic description of the band-gap structure
(6.35). Indeed, if µk has multiplicity κk so that

µk−1 < µk = . . . = µk+κ−1 < µk+κ,

cf. (6.6), then the inclusions (6.43) guarantee the existence of two gaps: one gap of length

ε−1(µk − µk−1) + O(ε−1/2) between the bands σεk−1 and σεk, and another one of length

ε−1(µk+κk
− µk) + O(ε−1/2) between the bands σεk+κk−1 and σεk+κk

. However, our as-
ymptotic formulas do not suffice to make conclusions on the existence of non-empty gaps
between the bands σεk, . . . , σ

ε
k+κk−1. The existence of these gaps are a matter of higher

order terms in the asymptotics of λεk(ξ), . . . , λ
ε
k+κk−1(ξ), as was demonstrated in paper

[36] dealing with a different geometric situation, see fig. 2,a.. We mention that Theorem
1 of the paper [6] presents several explicit asymptotic terms of those eigenvalues, and this
result could be used to detect the gaps in the case (1.4) holds for the thickness function
H; the justification of the asymptotics remains to be worked out.
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(Pérez) Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad
de Cantabria, Avenida de las Castros s/n, 39005 Santander, Spain

E-mail address: meperez@unican.es

(Taskinen) Department of Mathematics and Statistics, University of Helsinki, P.O.Box 68,
FI-00014 Helsinki, Finland

E-mail address: jari.taskinen@helsinki.fi


