LOCALIZATION EFFECT FOR DIRICHLET EIGENFUNCTIONS IN
THIN NON-SMOOTH DOMAINS
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ABSTRACT. We study the localization effect for the eigenfunctions of the Laplace-Dirichlet
problem in a thin three-dimensional plate with curved non-smooth bases. We show that
the eigenfunctions are localized at the thickest region, or the longest traverse axis, of the
plate and that the magnitude of the eigenfunctions decays exponentially as a function of
the distance to this axis. We consider some extensions like mixed boundary value prob-
lems in thin domains. The obtained asymptotic formulas for eigenfunctions prove the
existence of gaps in the essential spectrum of the Dirichlet Laplacian in an unbounded
double-periodic curved piecewise smooth thin layer.

1. INTRODUCTION

1.1. Formulation of the problem. Our aim is to study the asymptotic behavior of
the Laplace-Dirichlet eigenvalues and eigenfunctions in thin three dimensional plates with
non-smooth bases, when the thickness of the plate is proportional to a small parameter € —
07. We will study various aspects of the phenomenon of localization of the eigenfunctions.
Our results (cf. Theorems 3.1, 5.2, 5.3) state that the eigenfunctions are localized at
the thickest region, or the longest traverse axis, of the plate and that the magnitude of
the eigenfunctions decays exponentially as a function of the distance to this axis. This
behavior differs completely from the evenly distributed eigenfunctions of the Dirichlet-
Laplacian, when the domain is a cylindrical plate with constant thickness. Our approach
consists, among other things, of asymptotic analysis and a study of the eigenvalues and
eigenfunctions of a spectral limit problem (Section 2). At the end of the paper we give
generalizations and applications for example by proving the existence of a large number
of spectral gaps for the Laplace-Dirichlet problem in an unbounded double-periodic thin
domain (Section 6.4).

The main results are presented in detail in Sections 1.2 and 1.3, but we start by describ-
ing the geometric setting of the problem and some elementary facts on its spectrum and
eigenfunctions. Let w be a domain in the plane R? bounded by a simple closed Lipschitz
contour dw and let Hy be smooth profile functions in @ = w U dw such that

(1.1) H(y):=Hy(y)+ H-(y) >0, y=(y,y2) €W.

We assume that the origin y = 0 is contained in w and that it is the unique global strict
maximum point of the function H, moreover,

H(y) < HO)=he Ry =(0,400) for yew) {0},
Hi(y) = Lo — rHe(p) + O(r),
(1.2) |Vy (Hx(y) + 1“2’Hi(g0))| <ecr? forae y€Ew.

Key words and phrases. Dirichlet problem, asymptotics of eigenfunctions and eigenvalues, localization
effect, spectral gaps.
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FiGure 1.1. Thin plates with smooth and nonsmooth bases

a)

Here [y are constants, [_ + 1, = H(0), (r,¢) € Ry x S! are polar coordinates in the plane
R? 359, Ry = (0,+0c0), and S is the unit circle,
(1.3) Hye € HY(SY), H(p)=Hi(o) +H _(p) >Ho>0 for ¢eSh
All these assumption are readily satisfied, if for example
H(y) = h—anyi — 2a12y1y2 — azys + O(r®) , where

(1.4) a1 > 0, ase >0, ajiag > a%z

Given a small parameter £ > 0, we introduce the thin plate (see Fig.1.1.a,b)
(1.5) QF={r=(y,2) ER*xR: ycw,—cH (y) <z<eH,(y)}
with gently sloping bases
(1.6) S={r:ycwz=xcH(y)},

which may in general be non-smooth. Let us consider the spectral Dirichlet problem for
the Laplace operator:

(1.7) —Azut(z) = Nu(z), z€QF,

(1.8) u®(z) =0, x€ 0.

In the case Hy € C?(w) the thin plate (1.5) lays between smooth surfaces, cf. Fig. 1.1. a,
but we are mostly interested in the non-smooth bases (1.6) as depicted in Fig.1.1.b and
described above in (1.2), (1.3).

The variational formulation of the problem (1.7), (1.8) reads as the integral identity
(see [23])

(1.9) (Vau®, Vaut)a: = A (u®,v%)qe Y of € H(9F),

where (, )qs stands for the natural scalar product in the Lebesgue space L?(Q) and HJ (Q°)
is the Sobolev space of functions satisfying the Dirichlet condition (1.8). Furthermore, V,
is the gradient operator and A, = V-V, the Laplacian in the variables z = (21, 9, x3) =
(y,z). The spectrum of the problem (1.7), (1.8) consists of the eigenvalue sequence

(1.10) 0<AT <A <A <. <A <. = 40

with the standard convention on repeated multiple eigenvalues. As known, the first eigen-
value \] is simple and the corresponding eigenfunction uj can be taken positive in Q°.

The eigenfunctions uf, u5,us, ..., ug, ... are subject to the orthogonality and normalization
conditions
(111) (u;,ui)ﬂa = 0jk;» ],]{7 e N:= {1,2,3,...}’

where 4, 1 is the Kronecker symbol. The eigenfunctions are infinitely differentiable inside
the plate QF, but in general they do not belong to the Sobolev space H?(Q¢) due to possible
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singularities on the non-smooth bases (1.6) and the lateral side
(1.12) Ye={r€R®: y€cow, —cH _(y) <z <eH(y)}

1.2. Localization effect. We now describe the general aim of the paper concerning
the localization, i.e., pointwise magnitude estimates, of the eigenfunctions u®. It turns out
that the behavior of u® is in this respect totally different from the case of a thin plate
with constant thickness. Indeed, if the functions Hy are constant, e.g., equal to 1/2, and
e is just the thickness of the cylindrical plate (1.5) with the straight bases (1.6), then
Q° = w x (—¢/2,¢/2) and it is possible to solve the spectral problem (1.7), (1.8) ”almost
explicitly” using separation of variables:

22
pr 2 . z 1
(1.13) Aoy = = + Byy tpg(w) = \/;sm <7rp<g + 5)) ©0q(y).

Notice that in (1.13) it is convenient to re-enumerate the eigenpairs {7, u;} with the
double index (p,q) € N2. The numbers 3, belong to the spectrum of the Dirichlet problem
in the longitudinal cross-section w of the plate 2,

—Aypy) =Be(y), yew, ¢y)=0, z€dw,
and the eigenfunctions ¢, are subject to the orthogonality and normalization conditions

(1.14) (¢j> Pr)w = 6k, Jrk €N.
The variational formulation of this problem consists of the integral identity

(Vyp, Vyth)o = Blp, )V 9 € Hy(w)

It is plain, cf. (1.13), that the eigenfunctions of the problem (1.9) in Q°f = wx (—¢/2,£/2)
are characterized by practically uniform distribution in the plate and do not become very
small inside any subdomain of a fixed positive measure.

The main goal of the paper is to show that, for small €, the eigenfunctions uj, behave
in a different way, if the geometric condition (1.2) is assumed. Namely, we show that for
some ¢ > 0 and all € € (0,¢y), the eigenfunction w5, is localized in a ¢y/e-neighborhood of
the origin x = 0, i.e., in the vicinity of the longest interval in Q¢ parallel to the z-axis. At
the same time, u(z) is of the exponentially small order O(exp(—e~'by)), b, > 0, outside
any fixed neighborhood of the origin. More precisely, we derive the asymptotic formula

. _ (2t eH (y)
i) ~ e an(e)sin (15 Y ),

where () is normalization factor,  denotes the stretched variable
(1.15) n=cec 2y,

Moreover, wy, is an eigenfunction associated with the kth eigenvalue of the limit spectral
differential equation

(1.16) —Aqw(n) + Almw(n) = pw(n), n€R?,
where
™ p? 2
(1.17) An) =2=5-H(p) = p"Alp)
and (p, @) are the polar coordinates in the plane R? 5 5 with p = || and p = e~1/?r (see

(1.15)).
The eigenvalues iy of the problem (1.16) appear in the asymptotic formula

2
(1.18) X (2) ~ e 2D ey

Note that in the case h = 1 the right-hand side of (1.18) is nothing but a relatively small
perturbation of the eigenvalue Aj, in (1.13).
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1.3. Main results and structure of the paper. We now describe the results and
the contents of the paper in detail. Section 2 contains the analysis of the limit spectral
problem (1.16). We prove there that its spectrum is discrete and forms an unbounded

positive sequence {sy}, while the eigenfunctions belong to HZ _(R?) and decay as follows:

(1.19) lwp(n)| < cx exp(=brlyl?), b > 0.

This estimate will be derived in Proposition 2.4, and it is preceded by a corresponding
integral estimate in Proposition 2.3.

Section 3 contains a proof of the following convergence result (Theorem 3.5) for the
eigenvalues:

(1.20) e\ (z) — w2 2h?) — pyay as e— 0%

On the left of (1.20) we have the rescaled eigenvalue of the problem (1.9) and on the right
an eigenvalue of the limit equation (1.16). We emphasize that at this stage we cannot yet
establish the equality J(I) = [ (contrary to the conclusions of Theorem 4.2). The way to
verify (1.20) is quite standard: using uj, we construct an appropriate function n — W (n)
(cf. (3.16), (3.24), (3.43)) and then pass to the limit ¢ — 0" in the integral identity (1.9)
with a properly chosen test function. However, due to the unboundedness of the domain,
the embedding H!(R?) C L?(R?) is not compact, hence, this limit procedure needs an
additional supporting argument, and we thus prove in Theorem 3.1 integral estimates
for V,u® and v with the exponentially large weight function (3.3). On one hand, this
weighted estimate helps to overcome the difficulty of the above mentioned absence of the
compact embedding, and, on the other hand, it contains our first result on the localization
of eigenfunctions. However, this result will be improved in Section 5.3 by proving pointwise
estimates with exponential weights.

In Section 4 we establish the convergence rate O(g!/2) in formula (1.20) (see Theorem
4.2). This conclusion is based on Lemma 4.1 about “near eigenvalues and eigenvectors”
and the weighted estimates in Section 3. In parallel we will show that, for some C}, > 0,
the interval

(7r2€’2h*2 tetuy — Coe V2 12 2n 2 f e, + Cp5*1/2>

includes at least one entry of the eigenvalue sequence (1.10). The statement of Theorem
4.2 includes the fact that J(I) =1 in (1.20), but as regards the proof, the case of possible
multiple eigenvalues A and p, is only treated in Section 5.1 (see Remark 5.1).

In Theorem 5.3 we state one of the main results of the paper, the localization estimate
for the eigenfunctions uj, which implies a pointwise bound for the function

(L.21) exp(e blyP)lu (2)] < Ce2

for some constant b > 0. The estimate (1.21) is valid, roughly, in the interior of Q¢ and
means that the eigenfunctions decay exponentially, when the distance (in y-variable) to
the maximum thickness point 0 € R? of the plate increases.

In Section 6 we discuss various related results, in particular we comment on stable
asymptotic forms of eigenvalues in the high-frequency range of the spectrum. This ob-
servation allows to discover similar localization effects in the spectral Neumann problem
under the symmetry assumption H_ = H .

Moreover, with the help of the obtained asymptotic formulas for eigenvalues we detect
gaps in the spectrum of the Dirichlet Laplacian in the double-periodic layer

IF = {(y,2): ye R*, —eH_(y) <z <ecH (y)},

of variable thickness, where the profile functions Hy are [;-periodic in y;, [; > 0,7 = 1,2,
and their restrictions on the rectangle @ = {y = (y1,y2) : v; € [0,1;],i = 1,2} possess all
properties mentioned above.
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1.4. Literature review. Using an analysis of the resolvent, localization of the eigen-
functions of the Dirichlet Laplacian was proved in [16] (see also [5]) in the case of a thin
curved two-dimensional trapezoid

(1.22) 0 ={(y,2) € R?: lyl < 1,0 < z < eH(y)},

where the smooth profile function H has just one strict global maximum at y = 0. Al-
though we deal here with the three-dimensional thin domain (1.6), these phenomena are
of a similar nature.

Other types of localized eigenfunctions are found in [7]. Namely, assume that Q is a
semi-infinite cylinder

Q={=n0€eR" ' xR: new,(>F(n)}, n>2,

where the cross-section w is a domain in R"~! with a smooth boundary, and F € C?(@);
also denote 7 = {{ : n € w,{ = F(n)}. Posing Dirichlet conditions on the lateral side and
Neumann conditions on the end part leads to the problem

—AW(E) = AWV(E). €€ Q,
(1.23) aW(E) =0, €T,
W(E) =0, £€0Q\T.

Here, 0, stands for the normal derivative in 7. The results of [7] are based on the
approach of [11], and they contain the description of the boundary layer phenomenon
of the problem (1.23). Also, [7] provides a simple condition for the function F, which
ensures that the operator of the problem (1.23) has discrete spectrum situated below
the continuous spectrum [87, +00); here 8; = BT is the first eigenvalue of the Dirichlet
Laplacian in w, cf. (1.14). For example in the case A, F(n) > 0, n € w there appears a so
called trapped mode (cf. [25]), which is an eigenvalue A; € (0,AT) of (1.23) (here AT >0
comes from $) with the corresponding eigenfunction Wy € H'(Q). However, the primary
object of investigation in [7] is the Laplace equation with mixed boundary conditions in a
thin, bounded, straight cylinder Q¢ (denoted by Q" in the reference) with two distorted
ends. As shown in [7], each of the eigenvalues Ay € (0, AT) gives rise to an eigenvalue

A~ e 2N+ 0(1)

of the spectral problem in the thin cylinder Q¢, and the corresponding eigenfunction uj,
concentrates in the vicinity of the ends of Q°. Each of the ends of the thin cylinder
generates a problem of type (1.23) and, if at least one of them has non-empty discrete
spectrum, the first eigenfunction uj is localized, possibly at both ends simultaneously.

Both types of localization effects were investigated for the first time in [10] (see also
[33]). The object was a spectral mixed boundary value problem in a thin cylindrical plate
in R3 with a distorted lateral side I'°, and it was shown that under a simple geometric
condition the first eigenfunction is concentrated in the vicinity of either the whole lateral
side, or a single point z° € I'®. Moreover, at some distance from z°, the eigenfunction
becomes of order exp(—dre~1/?) near I'* and of order exp(—dge~") inside the plate; here
or, g > 0. Other localization effects are discussed in [10] as well.

Results of [16] for the two-dimensional trapezoid (1.22) have been generalized in [6] to
the case R%, d > 3, for thin domains such that the profile functions Hy are C'*°-smooth
and

(1.24) H(y) = h— Pam(y) + O(|y]*™ ),

where Py, is a homogeneous positive polynomial of degree 2m > 2 in the variable y €
R9=1\ {0}. A rather elaborate and complete formal asymptotic analysis of eigenvalues
and eigenfunctions of the problem (1.7), (1.8) is performed in [6], but the justification of
the asymptotic formulas for the eigenvalues and eigenfunctions remains incomplete: in [6]
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FIGURE 1.2. Other types of non-smooth thin plates

the authors refer to the papers [16] and [5], where the limit problem in the case m = 1 is
the ordinary differential equation of the harmonic oscillator,

d*w 9
(1.25) —d—n2(77) + An“w(n) = pw(n), neR, A> 0 constant.
The eigenvalues (and the corresponding eigenfunctions) are known exactly, and they are
simple, cf. [24]. Thus, the convergence theorem in [16] is useful to justify the asymp-
totics of simple eigenvalues, but in the higher dimensional case d > 3 the limit problem
becomes (1.16) with many multiple eigenvalues. This case is not treated in [16], and it
requires additional arguments and computations. Known results on the eigenfunctions of
the spectral problem (1.16) in R?~!, are contained in [3, Sect.3]. These include a proof
for the exponential decay under strong enough smoothness hypothesis of the potential.
Obviously, our results in Propositions 2.2 and 2.4 and Remark 2.5 are more general.

In our paper the main attention is paid to the justification scheme. We modify the
approach from the papers [10, 7] and also [36, 35], where similar localization effects were
found for other types of thin domains (see Fig.1.2, a and b). The present approach is
based on weighted a priori estimates, which immediately reveal the localization effect (in
contrast to [16, 15, 5, 6]) and require only mild assumptions on the smoothness properties
of the profile functions Hy. Furthermore, the method provides pointwise estimates in the
case of smooth data.

The approach also works for other than quadratic decay rates in (1.2), cf. also (6.28).
However, the technical details would be quite different for the profile function with H (y) —
H(0) =O(Jy|*), € (0,1) or K > 1. (The case K = 1 has already been considered in [35].)
We choose to treat here only the exponent k£ = 2, since this case is still general enough
and it on the other hand avoids inessential technical complications.

A similar specific behavior of eigenfunctions was found and studied in [1, 8] for some
problems in homogenization theory and in [21] in domains with thin bands.

The papers [16] and [5] contain studies on a planar domain 2. with the Dirichlet con-
dition on the entire boundary. As for the corresponding Neumann problem on )., we
mention that localized eigenfunctions associated with the middle frequencies can be ob-
tained by computations, which are simplified from those in [21]. In the same way, by
methods of [21] one can show that the low frequencies are of the order O(1) and they give
rise to longitudinal vibrations. The limit problem is a Neumann problem in dimension
one and it contains coefficients with information on the shape of the domain 2.. For the
eigenvalues of order O(e72) it is possible to construct the so-called quasimodes or almost
eigenfunctions, which are approximations of certain linear combinations of eigenfunctions
associated with eigenvalues in small intervals. The length of these intervals, and estimates
for the difference between quasimodes and eigenfunctions, provide useful information for
describing the behavior of standing waves, which are solutions of the corresponding time-
dependent problems; their long-time asymptotic limits can be constructed explicitly from
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the quasimodes. From the localization point of view, the supports of the standing waves
are asymptotically concentrated near the point of global maxima, and they obey the same
spatial decay as described in this paper. We refer to [39] and [40] for the time dependent
problems.

The paper [21] contains a study of the asymptotics of eigenfunctions of reinforcement
problems. The problem concerns a second order differential operators with piecewise
constants coefficients in a domain Q. = QU 9Q Uw. C R2. The subdomain w. is a thin
heavy stiff band of a variable width O(e) surrounding the fixed domain Q. The paper
highlights the localization phenomena for the eigenfunctions associated with the middle
frequencies, and we refer to [21] for precise rates of convergence, and for the asymptotic
behavior of the whole spectrum and the associated eigenfunctions. We mention that
several different scales are involved in the problem: the size O(1) of 2, the width O(g)
of we, the density and stiffness O(1) of Q, the density O(¢~!) and stiffness O(¢™™) (with
m > 2) of w., and finally the intermediate scale O(y/¢) which allows to describe the
localized eigenfunctions in neighborhoods of points where the “height function” defining
0. has the local maxima (see comments above (1.15)). As the references [21], [20], [19]
and [22] show, the relation between density and stiffness in reinforcement problems and
asymptotics for eigenpairs may vary very much depending on the situation.

Heterogeneities of masses, in particular the so-called concentrated masses may cause
other kinds of localization phenomena for the supports of eigenfunctions. If the density is
of a very big order O(¢™"), m > 2, in a small region of diameter O(¢), the eigenfunctions
associated with the low frequency eigenvalues (order O(¢™~?)) give rise to vibrations
with supports localized at the points of the concentrated masses (cf. [39]). Also the
Dirichlet condition plays an important role in these localization phenomena: we refer
to [28] for a general bibliography on this subject. We emphasize that the decay rate of
eigenfunctions in the case of concentrated masses is polynomial (or logarithmic, depending
on the dimension of the space) in all directions. This is different from the the exponential
decay in the direction perpendicular to the boundary, which is the behavior described in
this paper and in the other above mentioned results for thin domains.

2. FORMAL ASYMPTOTICS AND SPECTRUM OF THE LIMIT PROBLEM

2.1. Preliminary asymptotic analysis. We introduce the standard asymptotic
ansatze

(2.1) M=l relyt..,

(2.2) u®(z) = sin <7T Ztifi}{y_)@)) wn) + ...,

where the number p and the function w are to be determined and 7 is the rapid variable
(1.15). We insert the ansétze into the equation (1.7), perform formal differentiation (recall
that Hy belong to Hllo’fo(Rz) only) and obtain

Agut(x) + Au ()

= sin (7r %) (5_1Anw(77) — Lw(n) +...

b ) + e V) + ..
() + e po(n) + ..

- L <7r %ﬁ/)@)) (Anw(n) + pw(n)
2

m 1
*amli- (1= eh~ nlH(e) +...)2)w(’7) +> t..
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e = Lain (xZEE (A ) 4 o) - Aen) +

where the coefficient A(n) is given in (1.17) and dots stand for higher-order terms, which
are inessential for the following analysis; we have used that z+eH_(y) < eH(y). Observing
that the Dirichlet conditions (1.8) on the plate bases (1.6) are fulfilled because of the factor
sin(...) in (2.2), we see that the original problem (1.7), (1.8) is satisfied asymptotically,
if and only if the expression in the curly brackets vanishes. In this way we come across
the limit differential equation (1.16) for the first time in this paper. We emphasize, that
since the solutions (eigenfunctions) of this equation decay exponentially (see Proposition
2.3 below), the right-hand side of (2.2) satisfies approximately the Dirichlet condition on
the lateral side ¥§ of €2°, too.

2.2. Studying the limit equation. If A(n) is a quadratic polynomial in 7, cf. (1.4),
the solutions of the equation (1.16) can be found almost explicitly (see [16, 5] and [6]
as well as references therein). However, a general A(n), (1.17), requires a more careful
analysis of the spectrum of the limit equation.

Let H denote the Hilbert space obtained as the completion of the linear set C°(R?)
(infinitely differentiable functions with compact supports) with respect to the weighted
norm

(2.4) llw; H|| = ([ Vw; L2(R?)|? + 111+ p)w; L*(R?)|?)

Then, the variational formulation of the problem (1.16) amounts to finding a number p
and a nontrivial function w € H such that

(2.5) (Vyw, Vyv)ge + (Aw, v)gz = p(w, v)ge vV veH.

1/2

Proposition 2.1. The spectrum of the problem (2.5) is discrete and forms the eigenvalue
sequence

(2.6) O<py <po<pus<...<pup<...<...— 400,

The corresponding eigenfunctions wi,ws, ws, ..., Wk, ... in H can be subject to the nor-
malization and orthogonality conditions

(27) (wj’wk)]RQ = 04,k ja ke N.

The first eigenvalue py is simple and the eigenfunction wi can be chosen positive.

Proof. We use the following variant of Poincare’s inequality,
lv; L(Br)|* < cr(IVyv; L*(Bar) |1 + [lv; L (B2r \ Br)|*) < Crllv H|?,

where B = {n: p = |n| < R} is a disk of radius R > 0. This and (1.17) imply that
the left-hand side of (2.5) is a scalar product in H, denoted by (w,v) in the sequel. Let
K : H — H be the operator defined by the equation

(2.8) (Kw,v) = (w,v)g2 vV w,veH.

Clearly, K is positive, symmetric, and continuous, therefore, self-adjoint. Moreover, it is
compact since the embedding H C L?(R?) is compact due to the following observation: the
embedding operator is the sum of a small operator with norm of magnitude O(R~!) (out-

side the disk Bgr) and a compact operator (inside the disk Bgr). Thus, by [4, Thm. 10.1.5,
10.2.2], the discrete spectrum of K consists of the positive, monotone decreasing sequence

(2.9) Kl> Ko >R3> ...> K> ...—= 0"

together with the point k = 0, which is the only element of the essential spectrum. In
view of (2.8), the abstract equation

Kw=rw in H
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with the new spectral parameter x = pu~! is equivalent to the variational problem (2.5),

and hence the eigenvalue sequence (2.9) turns into (2.6) by inversion. The normalization
and orthogonality conditions (2.7) are standard and straightforward to prove. The strong
maximum principle yields the simpleness of ©1 and the positivity of w;. X

In the following B denotes any function such that

(2.10) B(n) = p*B(),

for some function B € H*°(S!) having the properties

(2.11) B(p) > By and |V,B(n)]> < (1-B)A(n) VneR?
with constants By > 0, 0 < 8 < 1. We also define the weight function
(2.12) ep(n) = exp(B(n)).

Remark 2.2. One can take for example

(2.13) B(n) = bini + banj

so that [V, B(n)|? = 4n?b3 +4n3b3. We have, by (1.2), A(n) > a1n?+agn3 for some a,, > 0,
hence, to satisfy the second relation in (2.11) it suffices to verify 402, € (0,a(1 — B)],
m = 1,2. If (1.4) holds, we may take any b,, with b,, < %,/am and then a suitable g > 0.

The next assertion proves the exponential decay of eigenfunctions of the problem (2.5).

Proposition 2.3. Let j € N and {u;,w;} € Ry x H be an eigenpair of the problem
(2.5), as in Proposition 2.1. The inclusion epw; € H holds true for all B satisfying
(2.10)+(2.11), and there exists a constant Cjp such that

(2.14) lesVyws; L*(R?)|| + lles(1 + p)wy; L*(R*)|| < Cj.

Proof. Let Egp = Er(B) := {n : B(n) < R?} be domains exhausting the plane R?
when R — 4o00. We introduce the weight function

(2.15) R(n) = {Zféziz), Z 2 %};7\ Eg,

which is positive, belongs to H*°(R?) and satisfies

RO ITROE < {740 et

see (2.10). Since (2.15) equals a constant near infinity, we can consider the integral identity
(2.5) with the test function v = RW; = R*w; € H and the eigenpair {xj,w;}. A simple
calculation shows that
willW: L*(R?)|®

= (Vqwy, RVyWj)r2 + (Vyw;, WiV R)gz + (AW, Wj)ge

= [V Wjs LAR)|* = (w; V4R, VyWi)zz + (Vg Wi, w; Vi R)ze

— |[WRTIV,R; L2(R?)||2 + (AW, W;)ge

= [V Wy L2(R?)||* + (AW, Wy)ge — [[W;R™ VR L*(R?) |
(2.16) > [[Vy Wi L2(R?)|? + BAW;, W )ge.

Furthermore, there exists () > 0 such that

g
5 A(n) for necR? \E,(5)
We clearly also have the estimate

1ilIWjs L (Er o))II? < pj exp(2r;(8))llwj; L*(Ey,9) 1> <

Hj <
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< pj exp(2r;(B))lhwj; L*(R?)||? = p; exp(2r;(8))-
Hence, the following bound holds uniformly for R > 1:

B
5 (AW, W)ge

< VW5 L2 (R?)|]? + B(AW,, Wj)ge — 15]|W; L* (B, )12
(2.17) < pjexp(2r;(5)).

IV, Wy L2(R?)[|* +

Since the weight function (2.15) is monotone, passing to the limit R — +oo proves that
B
IV(esw;); LAR?)* + 5 1A 2epuwy; LP(R?)||? < pjexp(2ri(8)).

So, (1.17), (1.3), and (2.12) yield the inequality (2.14). X

2.4. Pointwise estimates of the decay rate. In the following our aim is to describe
the behavior of wy at infinity by estimating its weighted norms with the weight ep given
by (2.12) and (2.13); see (1.19). More precisely, we derive weighted Sobolev and Hélder
(pointwise) estimates for the functions egwy — Sobolev estimates will be provided in the
case of a general function #, see (1.3), and Holder estimates in the case of a smooth H in
(1.2). The definitions of these norms are standard,

! ‘ 1/2
s @) = (3 IV @)
§=0
l
lo; CH* (R = Y sup [Vio(n)|
=0 neR2
(2.18) +sup  sup  (In— <7 Viv(n) = Vi),
neER2 (eR2: [n—(|<1
where [ € {0,1,2,...}, a € (0,1) and V%v is the collection of all order j derivatives of the
function v.

Proposition 2.4. Let the weight e be as in (2.12) with B given by (2.13).
1°. If H € H>>=(SY), then epwy, € H*(R?).
2°. If H € CH(SY), a € (0,1), then egwy, € C3(R?).

Proof. The functions wy, may lack smoothness in any disk B% = {n : |n| < R}, a fact
which can be caused for example by the singularities O(|n|~!) of the third-order derivatives
of A at n = 0. Indeed, according to classical results in [12] and [30], see also [38, Ch.3],
the eigenfunctions have the representation

(2.19) wi(n) = pe(n) + p*Yr(e,Inp) + wi(n), n € BE,

where pi is a polynomial of degree 3, v is a linear function in In p with coefficients in
HA2°(S1) or C**(Sh), and the fast decaying remainder wy (1) is of order O(p?>~%) for p — 0.
It is easy to see that the second term on the right in (2.19) does not belong to H°(S!) or
C42(S), a € (0,1). In what follows we verify the desired inclusions 1° and 2° outside the
above-mentioned disk and consider the functions % € H>*°(S!) and H € Ch*(S1).

Let us define the squares

Qpg =10+ Im —pl < (m+1)/2,Im2 — gl < (m+1)/2},
(2.20) m=0,1, p,¢g€Z:={0,£1,+2,... }.

To treat the case 1°, we write the equation (1.16) in the form

(2.21) —Agwi(n) = fe(n) == mewi(n) — Awe(n), 1€ Qpys
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and recall the standard local elliptic estimates for solutions of elliptic equations (cf. [2]),
(2.22) i H2(Qpg)II? < eIl fis H* (Qpg) P + lwis L2 (@) IIP),

which holds true for s = 0,1,2 due to the assumption of 1° on A and H. Also note that
ng C Qzl)q and that the squares ng fill the plane. The same constant ¢ can be chosen in
(2.22) for all s =0,1,2 and all p,q € Z, because the measure of Q) does not depend on
p and q.

Since |A(n)] < ¢(p® +¢*) in Q3

(2.23) 13 L2 @p)IP < cx(1+ (0% + %)) lwrs L2 (Qpg) 17
By (2.13), the weight function (2.12) satisfies the relations

we get directly from (2.21)

e exp(—bp(p® + ¢*)")en(p,q) < en(n)
(2.24) < chexp(bf(0* + ¢*) " Pes(p.q), nE Qs
with some positive constants bfé and cﬁ independent of p and q. We now take s = 0 in

(2.22), multiply both (2.22) and (2.23) with eg(p, ¢) and use (2.24) to bring weights inside
the norms, and estimate the first term on the right hand side (2.22) by (2.23). This yields

2

_ 1 _ ;
S+ AT 2 exp (= 565 + bp)p ) enViwr LH(Q,)|1?
j=0

(2.25) < el (1 + p)epwi; L*(Qp,)]1%.
The weight on the left satisfies for any ¢ > 0 the bound

ep(n)(1+p*) "% exp ( —~ %(bE + b?s)p) > Csep_s(n)

where ep_s is as in (2.12)—(2.13) with b, replaced by b, —d, m = 1, 2.
We now sum up the inequalities (2.25) with respect to p,q € Z. Since the square Qzl,q
intersects only 8 of the neighboring squares, we obtain

2
(2.26) > lles—sViwg; L*(R?)|* < 9exC5 | (1 + p)epwy; L2(R?)|1.
j=0
Note that the right-hand side of (2.26) is finite due to Proposition 2.3. Furthermore, to

estimate the Sobolev-norm of eg_sw; one has to commute eg_s and V% on the left-hand
side of (2.26). This produces additional powers of || = p, but these can be compensated
by replacing the weight eg_5 by eg_o5. As a result we find that

(2.27) len—2swi; HA(R?)||” < Clles (1 + p)wy; L*(R?)|*.

We repeat this argument, replacing (2.23) by
(2.28) 1fs; HA Q) 1? < (1 + (0 + ¢*)?)[wi; H* Qo)1
(which also follows from (2.21)) and taking s = 2 in (2.22), and thus obtain
(2.29) llep—aswi; HA(R?)||? < Cilles(1 + p)wy; L*(R?)]|.

The proof of the statement 1° is completed by Proposition 2.3 and the remark that § > 0
and B in Remark 2.2 are arbitrary and, thus, we could have considered from the very
beginning the function epyos with a small § > 0 instead of eg. This yields the above
estimates for egwy in place of eg_os5wy.

In the case 2° we first observe that H € H%*°(S!) and, using the same argument as
above, derive the estimate

lep—aswi; H3(R?)||? < Cxllen(1 + p)wy; LA(R?)|2.
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By the Sobolev embedding H3(R?) c C%*(R?), we then have the inclusion ep_ 45wy €
C1*(R?). The proof is completed by employing the argument of the case 1° once more,
but instead of (2.23) and (2.22) we now use

1£: O (@Il < ex (L +p” + ¢)l[wi; CH Q)|
and the local estimate (cf. [2])
[wr; CH QI < el fi; CH*(@pg)ll + [[wr; L2(Qp) ),
where the right hand side does not exceed Ci(1 + p? + ¢?)|lwi; C14( zlzq)H' X

We again emphasize that, of course, increasing the smoothness of the coefficient A
improves the smoothness of the eigenfunctions wy, but increasing the smoothness of the
angular part A in (1.17) is not in general helpful in this respect: the derivative V%wk may

remain logarithmically singular at n = (0,0). However, w, € C°°(R?) holds true for a
polynomial A(n), cf. (1.4).

Remark 2.5. Assuming only that H satisfies (1.3), the above presented argument proves
the inclusion epwy, € H3(R?). Since HL°(S') ¢ C%(S?) for all a € (0,1), we get in this
case egwy, € C%%(R?).

3. CONVERGENCE THEOREM

3.1. Weighted estimates for eigenfunctions. Our purpose is to prove in this section
the convergence result (1.20) for the eigenvalues of the problem (1.9). To this end we need
the following theorem, which also yields the localization effect for the eigenfunctions of
the problem (1.7), (1.8). The proof of the theorem is similar to that of Proposition 2.3.

Theorem 3.1. Let the function B be as in (2.10), (2.11), let k € N, and assume that
the eigenvalue X;, of the problem (1.9) satisfies the bound

€ 727T2 -1
(31) )\k S g ﬁ + A€ 5
or small € > 0 and a constant > 0. en there exist € = er(B, > 0 and ¢, =
ll 0 d A 0. Th h ) B, A 0 d

cx(B,A) > 0 such that the corresponding eigenfunction uj, satisfies for € € (0,ey] the
estimate

(3:2) / E5(y)” (elVyui (@) + 2|0:ui (@) + (1 + e yP)ui (@) ) do <
Qe

where the normalization (1.11) holds,

eB(Eil/Qy)v ye ERa
(33) gB(y) - {exp (%5_1.32), y € W\ER,

ep is the exponential weight function (2.12), the set Eg is defined above formula (2.15),
and R is some positive number.

Proof. Since the weight function (3.3) is continuous, we have v* = EgUS = E3uf €
HE(9F), and we insert v as a test function into the integral equation (1.9) for the eigenpair
{A\,,u}. Repeating the calculation (2.16) with small modifications and commuting V,
and Ep several times, we obtain

RIUG L2 ()]
= [10:UF; L*()|* + (Vyui, E8VyUR)os + (Vyui, Ui Vyp)os
(3.4) = 0:Ug; L2(Q) | + IV Uis LA(Q)|? — lURE€R " Vy€n; L*(0°) 1%



LOCALIZATION EFFECT FOR DIRICHLET EIGENFUNCTIONS 13

here, 8, = 0/dz. From (1.17), (3.3), (2.12), and (2.10) we obtain that A(e~/2y) =
e 1A(y) and

) 2
o _ J e t(1=BAW)IEsW)I*,  y€ER,
(35) venl = {5 A
We now fix R > 0 such that the relation
(3 6) 7I'2 o 7T_2 > (1 - B)A(y) + t|y|2’ (RS ERa
' H(y? h2 =T, y € w\ Eg,

is valid for some positive constants ¢t and 7. This is possible by the following two facts,
which are based on the original assumptions in Section 1.1. First, the function y — H (y) 2
has the global strict minimum h~2 at the point y = 0. Second, owing to the formulas (1.2),
(1.3) and (1.17), we have

P w2 W (h=rH(g) + 06’

Hyp W " B2 H(y)?
2hr2H () + O(r3)
. = 72 =A 3.
(37) L opn)r = A+ 067
Integrating the Friedrichs inequality
eHy(y) ) eHy(y)
€ 2 i € 2
. >
5) | eviwafes s [ Wi e
—eH_(y) —eH_(y)
with respect to w 3 y yields
(3.9) 10:Uf; L2 () |? > w22 | H~ U L2 ()|

Taking into account (3.5), (3.6), and (3.8), we deduce from (3.4)
A
— UG L@
> [10:Ug; L) + [V Ug; L2(Q9))1? — URER ' V€3 LX)

—2”2 . T2/0c\ |12
- ﬁHUk;L(Q)H
> IV, U L2(QF)|2 + — T 1 Us 24
> ||V, Ug; L*(92°)]] +3 W—ﬁ—( - B)A(y) ) Uk (y, 2)|"dx
0%
7’ 1 1Y o 2
t3 T2 2 \Uk (y, 2)|“dx
o:\qs,
£ 2 £\[12 3 2 £ 2 T £ 2
(3.10) > |V, Ug; L=()]| tz [T Ui (y, 2) d90+6—2 Ui (y, 2)|"dx
G, as\s,

where Q% = {(y,2) € Q° : y € Eg} and r = |y|. The choice of £, > 0 is done at this point
as follows. We write o = v2t~1A and then fix £, and a constant Cz > 0 such that in the
case € € (0,ey] the following inequalities hold:

1
22

2 2 t
SA< ST, ZA < =r?for r > eo,
5 5 g2

(3.11)
ep(e2y)? = exp(B(s~?y)) < Cp for r > \/zo.
The normalization condition [u$; L*(QF)|| = 1 and the latter estimate (3.11) yield

(3.12) 0% LAH@QYF)IP < Chllui; LA (7)1 < C3
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where ﬁz,/g = {x € Q¢ : |y| < Vep}. The inequalities (3.10), (3.11), and (3.12) give
32 > L 2@y

= = (HU;‘E;LQ(QE)IIQ — U5 220\ 95 1)

t A ~
IV, Ui LA + S lIrUi; LA (QR) 1 = U L2(9°\ Qy°)|I?

Y

SIUE 1200\ 05l — U 220\ 032
(13) = HVini;Lz(QE)HQ+2—62!!7“U§;L2(Q%)H2+2—6HUE;L2(QE\%)H2-

Note that the sum of the last two terms is bigger than 7e=2||rUg; L?(Q°)|* for some
number 7 > 0 independent of € and &, hence,

I€puzs L2(Q)|* = ”gBuk’LQ QY + lEpug; L2(Q\ )17
(3.14) < Chllug; LAQO)? + 7 o2 |lr U L2\ YF)|* < CR(L+ 0727 1A).
We get the bound (3.2) — without the term e2€%|9,u5|> — by observing that

1 c
IV, Ui L (°)|1* > §||5BVyUE;J'JZ(QE)II2 ) rUF; L2 ()2

(see (3.5) and (1.17)) and by estimating the last term using (3.13) and (3.14).
The missing term is treated as follows. Since the norm ||E5(1 4 e~ V/2|y|)ug; L2(Q9)]| is
bounded uniformly with respect to ¢, the identity (3.4) yields

10:UF; L2(Q9)|1? = €p0:uis LH(Q)1P < All€pui; L) + [[ugVyEr; L2 ()] <
< ke 2 Ep (L + |y uis LH(Q)|P < Cpe™?.
which completes the proof. X
The following assertion could be proven by a proper choice of test functions in the

max-min principle (see, e.g., [4, Theorem 10.2.2]). However, we will only prove it as a
consequence of the calculations in Section 5 (see Remark 5.1).

Lemma 3.2. The eigenvalues (1.10) can be estimated by

7T2 Ak
1 <N - ——= <=
(3.15) e2h? — ¢

where the numbers Ay do not depend on &, although A — +00 as k — +o0.

3.2. Calculations with the eigenfunctions. The aim of this section is to present
weighted estimates for some averages of the eigenfunctions uj,. These functions will be
needed in the treatment of the problem (2.5) in Section 3.3. We assume in the following
that (3.1) holds for the eigenvalues A;. Recalling the original ansatz (2.2), we set

eH(y)
316) ) = e [ S i Sy.5) = sin ()
—eH_(y)

and also define V,u$ in the same way, replacing uj by Vyuj, in (3.16). To clarify the role
of the denominator eH (y) in front of the integral in (3.16), we remark that

eHy (y)
(3.17) %EH(ZJ) = / <sin (W%W)>2dz.
—eH_(y)

Let us consider the following estimates.
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Lemma 3.3. We have

2 C
/53 ‘vyuk yuk(y)‘ dygf,
— c
(315) / En(v)? [V ()] dy < %

Proof. The Cauchy-Schwartz-Bunyakowski inequality and the weighted estimate (3.2)
yield

/ Ep(y)*r? | (y)|* dy

A eH(y ) el (y)
< 6_2/53@) r ( / S y’ > (y)g / |Ui(yaz)|2d2d?/
w —eH_ —eH_(y)
. < 2.2 € 2 <
319 <o / Eny)*r?u ()P < ey

where Hy = min{H (y) | y € @} > 0.
Furthermore, differentiating the first equality in (3.16) and using the boundary condition
(1.8), we obtain

Vyus (y) = Vyug (y) — u (y)H(y) "'V, H(y)

eHy(y)
+ STHGE (sH )V, H-(y)
—eH_(y)
— (2 +eH_ (y))VyH(y)) cos (W%fé/)@))ui(y, z)dz
(320) = Vyui(y) — () H(y) " VyH (y) + L (y).
By (1.2) we have |V, H (y)| < Cgly| and H(y)~' > h™! | hence, we can rewrite (3.19) as
(3.21) / EB(y)Q\%;)y)f w5 )| dy < ex.

We repeat the calculation (3.19) for Vyui by omitting the factor r? = |y[?, and use
Theorem 3.1, to get the estimate

(3.22) /EB 2|V (y | dy < 5= T /53 2|V us ()] d:c<

Again by (3.2), the last term I;(y) in (3.20) satisfies the estimate

eH(y) 9
623 [ e e d< S / et ([ ol ) < %
w —eH _(y)

here, the first factor of the integrand of I (y, z) was bounded by cer.

The first inequality (3.18) follows now by solving |Vyug(y) — Vyui(yﬂ2 from (3.20),
multiplying by the weight, integrating, and using the bounds (3.21) and (3.23). The
second comes from the first and (3.22). K
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Recalling now the choice of the rapid variables (1.15), we set

(3.24) Wi, (1) = eag(e)ug (' *n)x(e!?n),

where ay(¢) is a normalization factor such that ||w%; L' (R?)|| = 1 and ¥ is a smooth cut-off
function with support inside the domain w such that

(3.25) 0<x<1, x(y=1lforr<R and x(y)=0forr>2R>0.

The functions (3.24) will appear in the construction of the eigenfunctions of the problem
(2.5) in Section 3.3. The rest of this section is devoted to showing that the normalization
factor ay(e) is bounded and bounded away of 0 uniformly in e.

Lemma 3.4. There are numbers af > 0 such that
(3.26) 0<a, <aple) <af Vee(0,e]
Proof. We need additional estimates for the functions uj(n), so we proceed by setting
(3.27) i (y,2) = ui(y, 2) = Se(y, 2)uz (v).
By (3.16) and (3.17), the orthogonality condition
eH i (y)

(3.28) / S.(y, 2)ugt(y, 2) dz = 0

—eH_(y)

holds true in the domain w > y. We write the minimum principle (see, e.g. [4, Thm
10.2.1))
472 0,U; L?(—eH_ H 2
e2H(y) |U; L*(—eH(y),eH(y))]]

where minimum is computed over all non-zero functions U € H}(—eH_(y),eH (y)) satis-
fying to the orthogonality condition (3.28). We emphasize that 472e~2H (y)~2 is nothing
but the second eigenvalue of the Dirichlet problem for the differential operator —92 in the
interval (—eH_(y),eH4(y)). The identity (3.29) yields

4 2
I s L@ < 0. L2 (@)
Furthermore,
= [IVauis L2 = 10:ui" + uf0:Se; LX(Q) | + [Vyuis L2(99)|* =
= [10:ui; L2 Q)1 + [[uf0: 525 LA(Q) 1P + | Vyugs L) + 215
Since Ep(y) > 1 in (3.2), we deduce that
IV yuis L2 Q) < cpe ™.

The orthogonality condition (3.28) and the estimate (3.19), again with B = 0, yield

I, = / u_z(y)azse(x)azu?—(x) dx = _/ u_z(y)uil(x)agsé(x) dx
Qe

QE
2 —
-5 [ it @S do
QE

:§/@%§;ﬁmm%mmm

(913
(330) < ce 2 |lrug; Q)| luis LA(Q9)|| < ene™Hlugs L2(Q9)])-
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We have used here that the integral of h=2ug (y)ust(z)S.(x) over QF vanishes. Moreover,
[uf0:8e; L () |
eHy ()

— 52/H / <cos (w%@‘)@))zdmg

—eH_(y)

2 — L P
2% [ B Rl =5 Q/ Hy) S ()P da

g2

2 — 2 —
(33) =5 / Se(@fE ) dy + =5 (ﬁ - %) |52 (2 (y)|? da.
QE

Qe
The last term does not exceed ce ! |ruf; L*(w)|* < cxe™! (see (1.2) and (3.19)).
Putting the above formulas together gives

372
2h2 H el LQ Q:—:)HQ

< N - g (It Z20) 2 + 186 L))
(3.32) + e (U Juits LA0)]).

Since u§, = uit +S.ug is normalized and the summands are mutually orthogonal in L?(Qf),
we have

(3.33) I1Scufs L2(Q9) |7 + ug™s L2(99)|° = 1.
We recall Lemma 3.2 and derive from (3.32) and (3.1) the estimate
(3.34) Jus; 2(09) 2 < cpe.

Formulas (3.17), (1.2) and (3.28), (3.33) yield

_ ch _
s 2P - 5 [ ke

€ — _
(3.35) = 5| [ ) = WGy < CelyT 221 < s
and, therefore,
h —
(3.36) %HUi; L@ > 1= ug L2(Q)]* = epe > 1 = Che.

Notice that, by (3.19),

/ (1= x(9)?) [ () Py

w

< e sup { Iy 850y / yPEs(w)” g (v) Py
ly|>R
(3.37) < ¢rpexp(—bp/e) with bB >0

and

/ (y)? [u,(y) Py < = /H x()? us, () P da

(3.38) < ¢ / i (2)[2dz = ©
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By definitions, the normalization factor ay(e) satisfies

1= / 5, () = (€)% / ()2 [ () Py,
RQ

hence, (3.26) follows from (3.36), (3.37) and (3.38). X

3.3. Deriving the limit equation once more. In this section we will derive the
limit equation (2.5) from the original integral identity (1.9) by putting the eigenfunction
uy and a partially specified test function (3.39) into (1.9) and passing to the limit £ — 4-0.
Combining this process with the estimates of the previous section yields the eigenvalues
and eigenfunctions of the limit problem, which will be denoted by Ml? and qu in the
sequel.

We fix an arbitrary infinitely differentiable and compactly supported function V €
C>®(R?), and set

(3.39) V(@) = S:(y. 2)V (e Py)x(y)

where x € C2°(w) is the cut-off function (3.25). Writing the integral identity (1.9) for the
eigenpair {7, s} and using the test function (3.39), we have

(3.40) Az (ug, v°) e — (O:ug, 0,0%)q: = (Vyuj, Vyvo)ae.

We rewrite the left-hand side I} of (3.40) by using the definition (3.16) and integrating
by parts in z:

eHy(y)

IF = X / XV (e V2y) / 5:(y, 2)ul (4, 2)dzdy
w —eH_(y)

) eHy (y)
T _ _
- = [ XV Y2y H (y) Se(y, 2)ug (y, 2)dzdy
w —eH _(y)

7T2

(3.41) = %/V(€_1/2y)(AiH(y)—E—QH(y)‘l)x(y)u_i(y)dy

w

The right-hand side IZ of (3.40) equals
ITE = (ngy(xui),vy‘/)ga + (Vyui,XVVySE)Qs

(3.42) + (Vyug, SsVVyX)a: — (UgVyx, SeVyV)ge ) =1 IS + 122 + 122
Aiming to pass to the limit ¢ — 0T in (3.40), we set
€ e m e 1/2 \7E(-1/2
(3.43) Mi=e(N— ). i) = (e nyu (/).
From (3.15), (3.18), (3.24), (3.26), and (3.38) we derive the formulas
0 < M <Ay,
W |? = [V Wi L2(R?) | + [|(1 + [n) Wi L2 (R?) |
—\ 12 —2
(3.44) = / (52 !Vy(xui)‘ + (e + 52r2) |XU2‘ )dy < Cj.

By weak completeness of the space H, we thus find number M, }3 , a function W,S € H and
a positive null sequence {g,}qen such that

(3.45) M — MY, W — Wy weakly in H ;
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consequently, the sequence {W,:q} convergences to W strongly in L?(R?). Moreover, since
W§ = ag(e)~1wg, the normalization of w5, in L*(R?), see (3.24), and (3.26) yield
(3.46) Wi LR = ¢, >0, [[W; L2(R?)]| = o

Let us now write the expression (3.41) as follows:

2 £ 2
e ._ & e 1/2 m Mg 7 1/2,\—2
Ir = 2/V(n)Wk(n)Tl’(&‘ n)(—gghfr e 2 C n) >dn
]RQ
h € €
(3.47) =: —§(IlO+Il1),
5 = [ VaWie(OF - Aw) dn
R2
el 1 € m € m 1/2,\—2 1/2
I = 7 V()W (n) W+Mk—?H(5 n)~* ) (H(e*n) — h)dn
]RQ
2 - 1 1 €
(3.48) += / V(n)Wy (U)(ﬁ T HER? p!‘“ﬁ)) dn.
]RQ

Clearly, by virtue of (3.45),
£ = MY(W, V)2 — (AW, V)ge.
Notice that by (1.2) and (1.17),
|H(y)—hl <er®, [Hy) 2 —h™2 <er? W72 —H(y) 2 — 7 2A(y)| < o,

Hence, we can apply the weighted estimate (3.19) with the exponential multiplier (3.3)
and obtain

|7

IN

oV L*(R?)]| Sup {Esy) (L +e )+ e7?)} 2 répus; LP(w))|

(349) < Cp(V)e'/2
Note that the supremum is of the order O(e?) and that the factor €'/ comes from the
coordinate compression 7 — y = ne'/2.
We take into account V,x(y) = 0 for |y| > R and the exponential weight
63(5_1/23/)_1 < exp(—e~1bpr?)
in the estimate (3.2), and thus obtain
15| < cexp(—¢"bpR)EV2(|V, Vs L2(R?)|| |Epui; ()]
+ Y2V LA R [|Ep Vyug; L2(QF)]) < en(V)e'/? exp(—e 'bpR).
Moreover, the estimate (3.2) with the weight £g(y) > 1 implies the inequality
IV ks L9 < ey
so, this and the two simple formulas
(3.50) IVySe(2)| < s, XV LA()]| < ||V L2(R?)
yield
|I52] < ([ Vyui; L2(Q0) || XV L2(Q9)|| < Cr(V)e'/2.
We finally write the term 5! in (3.42) as follows:
'=10+ I+ 12,
eh

_ h
I = E(Vy(xui),vy‘/)w - E(VUWIS’VWV)RQ’
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- h — _
(351) I = S(H = WV, Vo Ve, 12 = S (Tyxu; — Vy(xig), Vy Ve
Applying the estimates (3.22), (3.18) and taking into account that ||V, V;L*(w)|| <
[V, V; L3(R?)||, we obtain

17 < exe sup (rEp(y) ™Y IEBVyxug; L2 (@) V4V LA(R?)]| < Cu(V)e,

YEw
1°] < erel| Vyxug, — Vy (xz); L @) IV, Vi P (@) < Cr(V)e'/2.
Collecting the above presented information on the terms of (3.40), we see that only I =0

and I£Y have nontrivial limits when & = g, — 07; all other terms I, lj , I vanish in the
limit. Although the bounds Ck(V) in the above estimates depend on the test function
V € CX(R?), we can pass to the limit e, — 0% by using (3.45). As a consequence of
(3.48) and (3.51) we get the integral identity

(3.52) (Vo W2,V Vg + (AW, Ve = MP(WP, V)ge

By a completion argument, (3.52) holds true for all V' € H. Hence, M ,S is an eigenvalue of
the problem (2.5) and W,S is a corresponding eigenfunction, since is not zero, see (3.46).

3.4. First result on asymptotics of eigenvalues. In the following result we prove
the asymptotics (1.20) of the eigenvalues 7. Information on the relation of the order of
the eigenvalues in the original and limit problems will be clarified only in later sections.

Theorem 3.5. The eigenvalues Xj, (1.10), of the problem (1.9) have the asymptotic
behavior (1.20), i.e., for all indices

(X (z) — m2e72h?) — pyay as €— 0",
where J(1) > 1 and ) is an eigenvalue of the limit problem (2.5).

Notice that (3.15) was used in (3.44), hence, the following proof assumes Lemma 3.2 to
be proven.

Proof. Let | € N be given, and consider the eigenvalues A, ..., A7 and the correspond-
ing eigenfunctions u5, ..., uf € H}(Q°), cf. (1.10), (1.11). We select the null sequence {¢,}
such that the convergence (3.45) occurs for any k = 1,...,l, and consider the numbers
M. .. ,Ml0 and the functions W7, ... ,VVZO € H defined by (3.45). We have

(WP, W)g2 = € / X(v)* s (y)us, (y) dy

(3.53) =2 / H(y)™"Se(y, 2)° w5 (y)ug () x(v)* do = T35, + T3¢

where

K= / S P T de = 7 [ (o) — 03 @) (i) — 0 (2) da

2
-2 / () () do + T3 = 2 0+ T3
QE

and the functions uil are as in (3.41). To estimate the integrals

J =2 / Sy, 2)20 () () (L (y) " x()? — h™) da

— / (@ () () (x(y)? — b~ H(y)) dy,
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5 =3 [ @ @) - wt @) - @) d

Qe
we apply the inequalities (3.19), (3.34) and obtain

T3 < eesup (=2 x(w)® — b H)I) ol @)l Iy L)) < e
2] < e(luss R0 + ugs 2O ) (1 + [l L9 + Jufs LA(Q9)]) < e

Hence, by (3.45), taking the limit ¢ = ¢, — 0" turns the equality (3.53) into
2 .
(W7 Wige = Eaj,k, G k=1,...,L
This means that the limit eigenfunctions W7, ..., WZO are linearly independent in H, and

thus they correspond to [ limit eigenvalues M?, ..., M ZO in the spectrum (2.6) of the prob-
lem (2.5). This proves the theorem modulo Lemma 3.2. KX

4. ASYMPTOTICS OF EIGENVALUES.

4.1. Abstract formulation of the problem in °. Our main result of the asymp-
totics of the eigenvalues A; will be presented in Theorem 4.2. To prepare the proof we
give in this section the abstract operator theoretic formulation of the problem (1.9) and
cite a basic result from general spectral theory.

In the same way as in Section 2.2 we introduce the Hilbert space H® = H{(Q°) with
the scalar product

1 2
(a1) (7). = (VW + 2 (1= 5 )00
€ eh
and the operator 7¢ : H®* — H?,
(TFu®,v%)e = (uf,v%)qs, u,v° € H.

As a consequence of the Friedrichs inequality (3.9) and the first formula in (1.2), the
properties of the bilinear form (4.1) imply that the operator 7°¢ is continuous, positive,
self-adjoint and compact, hence, its spectrum is discrete. Problem (1.9) is equivalent to
the abstract spectral equation

(4.2) Teof = 15¢F.
Eigenvalues of T¢ are
(4.3) 7']::; = ()\i — e 2p2 _1_671)*1’

and form a positive null sequence. The corresponding eigenfunctions ¢} = (7'/::)1/ 2ui
satisfy (cf. (1.11))

1 2
(5ot = (D200 (Vi Ve + 2 (1= Tz ) 05 )
(4.4) = (uj,up)as = 0j -

The following basic assertion is known as the lemma on “near eigenvalues and eigen-
vectors”. A proof can be found in [43] (see also [4, Chapter 6]).

Lemma 4.1. Let the function ®° € H® and the positive number T be such that
(4.5) |O%;HE || =1, [|[T°®° —T°9%;H*||=t¢c (0,T°).
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Then the segment [T€ — t,T¢ + t| contains an eigenvalue of the operator T¢. Moreover,

for any t; € (t,T¢) there exist coefficients ay(e),...,aj+x—1(€) such that
J+K-1 + J+K—-1
(1.6 [0 Y g <2t Y e =1
i=J g
where 75(€), ..., T3, x_, are all of the eigenvalues of T* contained in the segment [T° —
t1,T¢ +t1] and o5, ..., 95, _, are the corresponding eigenvectors normalized by

(5, ke = Ojik-

4.2. Approximate solutions of the abstract equation and asymptotics of
eigenvalues. We construct approximate eigenfunctions related to the equation (4.2) from
the eigenfunctions w,, and use these functions and Lemma 4.1. to derive the asymptotic
formula (4.24).

Let ug be an eigenvalue of the problem (2.5) of multiplicity s, so that

(4.7) Pr—1 < [k = " = [kiog-1 < Mkt

the case s, = 1 is not excluded. We set T¢ = &(1 + ;) ~!. Using the eigenfunctions
Wiy - -+, Whs,—1, We construct s, approximate solutions for the equation (4.2) by

(4.8) () = [|V5; HEH_llllg(x), p=Fk,....k+x —1,

where y is the cut-off function (3.25) and

(4.9) W (2) = x(y)wy(=~Y/2y) sin (w%)

We proceed by calculating the scalar products (¥, ¥¢). and computing the numbers
t :=t, in (4.5). The exponentially decaying estimates of Proposition 2.3 make this task
quite easy, since we obtain

reR4

{TQteXp(—QB(e_l/QT)} .

2 —1/2, 32
/ [y|= |wp(e™/7y)|"dz < c max (EETRE
Qe

X /(1 +e/2p)? exp(2B(5_1/2r))]wp(5_1/2y)]2dx <™ >0,

QE
/ (1 — x()?)wple2y)2da + / VX)L (e 2y) Pde
QE Qa
(4.10) < cexp(—d,e1/?)

for some constant J, > 0. Moreover,
V205 (2) = X(y)S=(2)e™ 2V w, (e 2y)| < e(1+ [Vyx((9) DIwy (e 2y),

0- V(@) = X(y)%((;))wp(fl/zy)v Ce(x) = cos (W%W)

We also recall the integral in (3.17) and note that replacing the integrand by C.(x) does
not change it. Then we use the relations (2.5), (2.7), (3.7), and (3.50) to obtain

(05, WE), = / VU, 2) - VW (y, =) dydz + / 0.V (y, 2) - 0. (y, 2) dyd=
Qe Qe
1

2
+ - (1 - W) / VoY, 2)Ve(y, 2) dydz
(913
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1 w2 1
= 5 [ XOPH@V ) Ty + - [ @) sy o)
R2 R2
1 7T2 2
+ B 1- 2 X(y)"H (y)wp(n)wq(n) dy
R2
+ O(exp(—d,e /%) + O(e?)
h
Y (Vywp, Viywg)ge + (wp, we)re + (Awp, wg)g2) + 0(53/2)
h
(4.11) = o5 (14 m)dpq + 0(%/?),
where p,q =k, ...,k + 3 — 1. In particular, this formula shows that for small € > 0,
1
(4.12) |05 HE|| > 551/2;11/2(1 ) (@S, @), — 0| < Ot/
Now we write
0p = |IT°®} — T BP|| = || 0p ||~ T | W5, — (T) ' 7= 0 HY |
TR © i [ ‘ ARV I
|| P H 1+ up( P U)Q
1 n? 1
+ (2= 5) (W50 — <(1+ ) (¥, 09)a

2

T
sup ‘(Vm\ﬂ;, Vv — (W + %)(\D;,’UE)QE

IS
— \IJE;HE —1
T

— we.HE| L € Hi WE f 2 We
- || P’ H 1+/J'k sSup ?( p U )Q€+ W )
(413)  + P050T) (T, 05, V%),
where the supremum is computed over all v* € H® such that ||v®; H®|| = 1. This normal-

ization condition and inequalities (3.8), (3.19) provide the estimate
e Mm% L2 ()P + o5 L2 ()2
(4.14) < e(e7?|lro; LHQO)|P + el LHQO)?) < Clo"s HE|P = C.
The first scalar product I§ on the right-hand side of (4.13) can be written as

+eH1(y)
=B fwymx) | Sey.2)v" (v, 2)dzdy
w —eH_(y)
7 H{y
(4.15) = 2 [, i LDy )
€ h
Here, n is the fast variable (1.15) and
h _
VE@) = gex(ePn)vi(e! ),

cf.(3.24). Hence, in view of (1.2) and (4.14),

15 = (s Vsel < e [ 12 (o) 1V )y

w

(4.16) < e xlylwp; L)l e [[ro%; LAw)|| < e[ [nuwp; L*(R?)]| = ¢’/
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For the second scalar product I5 in (4.13), we use (3.7) and write

7.[.2 2
I H(y) (1 - H}(Ly)g)wp(n)vs(n)dy,

27 a2p2 h

w

15 + (Awp, VF)ge| < 66_2/7“3|wp(77)| [V=(n)ldy

(4.17) < cel|p?wp; L2 (R?)|| = cpe.

The last scalar product I§ in (4.13) requires a quite involved argument using all the
tricks introduced above. Indeed, we claim that the formula

(4.18) |15 + (Vywp, Vy VO )re| = [I5 — (Aywp, VE)ge| < cpe

holds true for 5. To see this we start by calculating V, ¥ with the help of (4.9) and get
three terms, out of which the one with the derivative of w, equals

(4.19) 5o = - [ V=) Ay ()i,

after integration by parts. The additional terms with derivatives of the factors x(y) and
S:(y,z) are of small order O(e) as a consequence of the following: the integral with
|Vyx(y)| has been estimated in (4.10), and the uniform estimate (3.50) holds for the
gradient V,S.(y, z), cf. (3.20). Finally, the term (4.19) can be processed in the same way
as in (4.15)-(4.17), and it turns into (Aywp, VE)g2 (the subtrahend in (4.18)) plus terms
of order O(g). This yields (4.18).

Since the eigenpairs {ug, wp}t, p =k, ..., k+ g — 1, satisfy the equation (1.16), we have

— i (wp, Vg2 + (Awp, V)2 — (Aywp, VE)g2 = 0.

Hence, the estimates (4.16), (4.17) and (4.18) together with the bound (4.12) yield for
(4.13)

(4.20) 8 = || W5 HE ||~ sup (I§ + I5 + I5) < /2,
UE

€
L+ p
By Lemma 4.1, the operator 7¢ has the eigenvalues Tjg(p), p=k,...,k+x —1, such that

R €
Combining this estimate with (4.3), we get for e < &, := (2cx(1 + puz)) 2

2 1/2 7T2 1
R AR

(4.21) < e

™

; ™ 1 1/ 2 1\ 1

AJe) — 2]2 + - < cp(1+ pr)e ()\EJs(p) T 252 + g) + z +—

2 1 1+ pg
€
(4.22) = N~ g T2 <2
and thus
™ _

(4.23) Nrew) ~ g T o | S 2a(l p) 212,

Let us formulate a theorem based on the above considerations.

Theorem 4.2. For all k € N there exist positive numbers €, and Cy, such that the estimate

(4.24)
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holds for the eigenvalues A and py, (cf. (1.10), (2.6)) of the problems (1.9) and (2.5),
respectively, and for all € € (0,eg].

In the case all eigenvalues of the limit problem are simple, the proof is given by the
arguments in this section (formula (4.23)) and Section 3.3.. However, in the general case,
the subindex J¢(p) of A%, ®) is not yet shown to be equal to k. This gap will be removed

and the proof thus completed in the next section, see Remark 5.1.

5. ASYMPTOTICS AND LOCALIZATION OF EIGENFUNCTIONS.

5.1. Treating multiple eigenvalues. We first complete the proof of the previous
theorem by additional remarks on possible multiple eigenvalues of the limit problem. Thus,
we assume first that uy is as in (4.7) an eigenvalue of multiplicity 3¢ > 1 and prove that

there exist a least », eigenvalues 75. k) yT5e (k)L —1 of the operator T°¢ satisfying the
estimate

€
(5.1) T, — T < Cpe’/?

for some constant Cg, which may be large but still independent of £ . To this end we
apply the second part of Lemma 4.1 with t; = Cie3/? and get the coefficient vector

(52) afp) = (a;ng(k),...,a;’Jg(k)_i_Kg(k)_l) € RKE(k)’ p= ]’C,,]’C‘f—%k — 1,
such that
20, 2Ck

£ QE.JTE p _

(53) |0 - Sy < g < &
Je(k)+Ke(k)—1
(5.4) S: = > s lagl=1
j=Je(k)

Here, 7'56(@, . ,Tjs(kHK(k)g_l are all of the eigenvalues of the operator 7°¢ in the segment
(5.5) [E(1+ )™ — Cre®? e(1+ ) ™! + Cre®?),

and at the end of the inequality (5.3) we used the estimate (4.20). Now (5.3), (4.12) imply,
forp,g==Fk,....k+ 3 — 1,

‘(afp)’ afa))RKE(’“) - 51’7‘1‘ - KSZ’ Sg)e — 5p7q|
4
(5.6) = |(S5,85 — B5). + (S5 — BS, BE). + (DS, BE). — 5| < Ci: + Crel/2,

Thus, in the case of a small enough € and a large enough Cj, the vectors (5.2) are mutually
“almost orthogonal” and thus at least linearly independent (cf. (4.6) for the normalization
in RX°(k)). This is possible only, if K¢(k) > .

Remark 5.1. Combining (5.1) and (4.3) shows that every eigenvalue (1.10) of the prob-
lem (1.9) is in a Che'/2-neighborhood of some point m2e=2h =2 + ey, This proves
Lemma 3.2.

The relation J¢(k) > k and Theorem 3.5 imply the equality J(k) = k, hence, the proof
of Theorem 4.2 is completed, too.

5.2. Asymptotics of eigenfunctions. In this section we formulate a result on the
asymptotic behavior of the eigenfunctions ¢}, = (15)Y2u5, see (4.4). Recall that the
functions W3 are localized and satisfy exponential decay estimates as a consequence of
(4.9) and Proposition 2.4.
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Theorem 5.2. Let py be an eigenvalue of the problem (2.5) with multiplicity >, > 1,
cf. (2.4), (4.7). There exist positive numbers €y, ¢, and an orthonormal sequence of

vectors {bF, ..., biJr%kfl} C R*, such that the eigenfunctions ¢g,. .., gpiJr%kfl admit the
estimates
2 k+%k71
(5.7) ( o= = )Y b US| < anE Ve e (0,6
€ vt

Here, p € {k,...,k + s, — 1}, the norm of H® is as in (4.1), the eigenfunctions @5
are orthonormalized in H®, the functions Vi are defined in (4.9) and wy, ..., Wits—1
denote the eigenfunctions of the limit equation (1.16) subject to the orthogonality and
normalization conditions (2.7).

Proof. In view of the proof in Section 5.1. and Theorem 3.5, we can choose for every
k the number t; = cie in Lemma 4.1 such that the segment
(5.8) [e(1 4 k) ™" — cre, e(1+ )~ + cpel,
contains the interval (5.5) and the eigenvalues 7,..., 75, ; but no other eigenvalues of

the operator 7°. In this way we obtain J°(k) = k and K°(k) = s in (5.4), while the
estimates (5.3) and (5.6) now take the form

(5.9) |5 — S5 B <20 Ve
and
(5.10) (A e — b < CHVE,

hence, these bounds vanish as ¢ — 07. We now use them to estimate the remainder terms
in the asymptotic presentation of eigenfunctions, below.
First, by (4.8), (4.9) and (4.11), we can rewrite (5.9) as

<2 /e

(5.11)
Ck

Lt o) ~Y205 — S5 HE

=
he
Second, the definition (4.1), (3.7), and the Friedrichs inequality (3.9) yield for the function
(4.9)
IV 55 L2 (Qe) I + €| 0295 L (Qe) |12
1 1
(5.12) b L)+ w5 L2(00)|? <

Third, direct calculations together with (4.9) and the exponential decay of wpy(n) as p —
+00 show that each term on the left-hand side of (5.12) is of order €. We also remark that

(5.13) 1Sy B[ = O(1)
due to (4.4) and (5.4). Finally, we observe that the 3¢ X s-matrix
af = (a?k;)""’afk"i‘%k—l))

is “almost orthogonal” due to (5.10), and thus there exists an orthogonal matrix b° such
that b%a® differs from the unit s X sg-matrix by O(y/¢) in the standard matrix norm (see,
e.g., [37, Sect.7.1] and [26, Lemma 1.5]). Taking for b7 , the columns of ° and putting

(9)
together (5.4), (5.9)—(5.13) yields (5.7). K

5.3. Localization effect revisited. Theorem 5.2 can be written for the eigenfunctions
uf, (1.11), by using the estimate (5.12). However, although the estimate (5.7) is in a sense
even asymptotically sharp, it does not yet prove the desired localization effect: recall that
we expect the eigenfunctions uf, to be exponentially small as a function of the distance to
the maximum thickness point. The bound (5.7) would only tell that the difference of uj,
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from a function with such a decay property would be small in some norm. This kind of
result is already contained in Theorem 3.1 because of the exponentially growing weight on
the left-hand side of (3.2).

In the next theorem we assume that the profile functions H4 are smooth and derive
estimates for the eigenfunctions in a weighted parameter-dependent Holder norm

l
lu; CL* Q)| =D & sup V()|
]70 xelle

(5.14) + et sup sup (Jz — x|7¥|Viu(z) — Viu(x)|),
€N xEQe: |z—x|<e

cf. (2.18). Since the edges vy = {z : y € dw,z = £cH4 (y)} of the plate (1.5) still cause
boundary irregularities, we will give the estimates only in a subset of {2, not including the
the edge Ow x {0}. We mention that weighted Holder estimates were extended up to the
edges of an elastic cylindrical plate in the paper [34], but for simplicity we do not repeat
that consideration here.

Theorem 5.3. Assume that the profile functions Hy are C*°-smooth. For any |l € N,
a € (0,1) and d > 0, there exist positive numbers €i, and cj such that for all € € (0,¢ex]
the eigenfunction uj, (1.11), satisfies
(5.15) | exp(ebr2)u; CLL(QF ()] < e

Here b is a positive constant, Q.(d) := {x € Q. 1 y € weq} and weqg == {y € w :
dist (y, Ow) > ed}.

Proof. We fix a point 3° € w.4 and the discs B? = {y : |y —4°| < ped/2}, p = 1,2.
The change of variables

zi (.0) = (7 (y—y°),e ')
transforms the small cells =2 = {x € Q. : y € B} C . into the cells of unit size
E={(.¢): Il < pd,—H_(3° +en) < ¢ < Hi(y" +em)}, p=12

Furthermore, the function

2235 (0,¢) = Ug(n,¢) = ui(y° + en, £C)

vanishes at the surfaces Egi(yo) ={(n,¢) : |n| <2ed,{ = +Hy(y°+en)} and satisfies the
equation

A Ui(n,0) + XU, 0) = Fi(n.€) =0, (1,¢) € 2.
Local elliptic estimates [2] for solutions of boundary-value problems in domains with
smooth boundaries show that

|Us; e EL ) < © (HFE;cl*Laéz(yO))u + \|U€;L2<E§<y0>>u)
(5.16) = CO|U%; LA E2(0))]).

The constant C' in (5.16) can be chosen independently of Af, £ and y°, because £2); > 0
is bounded, see (3.15), and the bases £2%(y°) of the cell Eg(yo) are gently sloping and
dependent smoothly on 3°. Defining the weight function

Eg(n) = exp(e~'bly’ +enl?)

as in Remark 2.2 with b = b; = by, its derivatives are uniformly bounded for all € gf(yo)
and € € (0,e]. This weight can thus be inserted into all norms in the estimate (5.16),
and we obtain

(5.17) |B5US O ED)| < Cpl| BUS L (E2))).
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It suffices to change back to the original coordinates z = (y° + en,e¢) and observe the
following facts. First, this coordinate change turns the standard Holder norms in (5.17)
into the e-dependent Hélder norm of (5.14). Second, applying the inequality (3.2) with
the weight function (3.3) and B(y) = bly|? yields

IE5US LA(E2D)| < e Epus LA(ED)|| < cpe ™2,

where the coefficient e73/2 comes from the coordinate dilation. X

The exponential factor exp(e~!br?) in (5.15) shows that the eigenfunction us () is ex-
ponentially small outside any neighborhood of the coordinate origin. The large coefficient
£73/2 on the right hand side in (5.15) is caused by the L?(Q.)-normalization. Derivatives
of jth order gain the additional large factor e/ (cf. (5.14)) as a consequence of scaling,
or, the use of the intrinsic stretched coordinates.

6. GENERALIZATIONS AND OPEN QUESTIONS

6.1. Mixed boundary value problem. In this section we consider a problem related
to (1.7), (1.8) but having different, namely, mixed boundary conditions, see (6.1)—(6.3).
The asymptotic behavior of the eigenvalues differs very much from the problem (1.7)—(1.8),
as shown by Theorem 6.1. In addition, the case of a mirror symmetric plate is considered in
Theorem 6.2 with the help of an auxiliary spectral problem (6.13) with artificial boundary
conditions. We include a discussion on the results and the existing literature in Remark
6.3.

So, we consider in the thin domain (1.5) the problem

(6.1) —Azut(z) = Nu(z), =€,
(6.2) ou(z) =0, zeXi,
(6.3) uf(xz) =0, x€Xf:=00°\ (82 UX9),

where X% denotes the plate bases (1.6), X§ = 00° \ (3% U X%) the lateral sides of the
plate (1.12), and 0, is the directional derivative along the outward normal on ¥5. The
variational formulation of the problem (6.1)—(6.3) reads as

(6.4) (V2uf, Vv )ge = A (u®,0%)qe Voot € HY(Q5%5),
where H{ (QF; 5) is a subspace of functions in the Sobolev space H!(2F) which satisfy the
Dirichlet condition (6.3) on X§. We use in this section the notation A\, k = 1,2, ... also for

the eigenvalues of the problem (6.4); they form a positive monotone unbounded sequence
as in (1.10). The corresponding eigenfunctions, still denoted by uj,, can be subject to the
same normalization and orthogonality conditions as in (1.11).

It is well known that the eigenvalues convergence,

A, = Bk ase—0,
where (i is the kth eigenvalue in the spectrum
(6.5) 0<p1<Pa<Ps<...<Bp <. .. <= 40
of the two-dimensional Dirichlet limit problem
=Vy - H(y)Vye(y) = BHY)e(y), y Ew, w(y) =0, y € dw.
Notice that the variational form of this problem is
(HVy, Vy)o = B(Hp, ¥) ¥ ¢ € Hp(w;0w).
The normalization and orthogonality conditions for the eigenfunctions are
(Hej, 0k)w = 05k, Jik €N,

Let us formulate the following theorem from [37, Ch.7], the proof of which uses the
procedures of direct and inverse reduction. The proof given in [37] requires smoothness
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of the profiles H4, but only minor modifications are needed to cover the case of piecewise
smooth, continuous Hy in (1.2), (1.3). (For more details, see also [36, 35].) This result
gives estimates for the asymptotic remainders in the expansions of the eigenvalues A}, and
the eigenfunctions uf. The dependence on the eigenvalue S, its multiplicity s¢; and other
attributes of the limit spectrum (6.5) is explicitly presented in these estimates. We also
mention the papers [32, 26, 20], where this procedure has been applied to other singularly
perturbed problems.
If B; is an eigenvalue of multiplicity s, i.e.,

(6.6) Br-1 < Br = ... = Brasg—1 < Bt
then the relative distance dj to other eigenvalues is defined by
dk:min{ B —-1,1— B }

Br—1 Bt 4,

Theorem 6.1. There exist positive numbers ey and cy, Cy depending only on w and H
such that the following statements hold true for the eigenvalue sequence {)\; o1 Of the
problem (6.4).

Let us consider a k € N and the corresponding eigenvalue By.

1) If € satisfies

(6.7) 0<e<eps Bt
then there are elements )\5, . ,)\§+%k_1 such that
(6.8) A — Bel < coe'2aB)%, p =i i+ — 1.

2) If € is so small that

1\ 2

(6.9) 0<e<eor? (1 + d_k) Bt
then the interval
(6.10) B = cos' 2822, B+ o287
contains the eigenvalues Aj,, . .. ,)\2+%k_1 and no other eigenvalues. Hence, j =k in (6.8).

3) If the slightly stronger assumption

1\ 2
(6.11) 0<e<epsx,” (1 + d_> (Br + Brtsa)
k
holds, then the interval
1 1
(6.12) [5(5k + Br—-1), 5(6k + ﬁkﬂr%k)}

does not include any eigenvalue A, with p <k or p >k + s, either.
4) If (6.11) holds, then there exist an orthonormal sequence (bj(e))?::k_lof vectors in
R, bl (g) = (bi(e), . ,b{;+%k71(€)), such that the following estimates are valid:

k}-i-%k—l )
B2 by HY ()
p=k

1
< Coe'/?54, (1+d—)ﬁk, j=k, ... k+ s —1.
k
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We comment this result in Remark 6.3, below.

We next consider the eigenvalues of the problem (6.1)—(6.3) in the special case of a plate
¢ which is mirror symmetric with respect to the plane {z = 0}, that is, H = H_ in
(1.5). In this case it is natural to pose artificial boundary conditions, [9], on the central
cross-section I'§ = {x € Q° : z = 0}, and we are thus led to the auxiliary spectral problem

—Agup(r) = Nup(z), @ ey,
(6.13) dui(r) =0, xe€Xq,
uj(x) =0, xeXiUTYy,

where QF = {x € Q° : 2z > 0} and ¥} = {z € £f : z > 0}. Since every function
va € HE(Q5%; %5 UTE) vanishes on the central plane, one can extend such a v, as an odd
function vy in z to the entire plate 2%, and as a consequence vy, € Hol(QE; ¥5). Thus, any
eigenpair {7, uj } of the problem (6.13) gives rise to an eigenpair {7, uj} of the problem
(6.1)—(6.3).

The mixed boundary value problem (6.13) has all the properties of the Dirichlet problem
(1.7)—(1.8), which are necessary for the arguments and results in Sections 2-5, except for
some minor modification; we return to this in the next section, when treating a straight-
forward generalization of (6.13). So, the following result concerning the eigenvalues Aj, of
the problem (6.1)—(6.3) can be proven in the same way as Theorem 4.2 (see also Remark
6.5).

Theorem 6.2. Assume that Hy = H_ holds in (1.1) and that the thickness function
H = 2H. satisfies the conditions (1.2) and (1.3). Then, for every k € N there exists
e > 0 such that for all € € (0,ey] the eigenvalue sequence ()‘159);11 of the problem (6.1)—

(6.3) has entries )\i((e), e ’)\i((e)—l—%k—l satisfying the relationship

2
(6.14) - o] < e V2,

T 4e2h2
where j = K(€),...,K(g) + s — 1, ux is an eigenvalue of problem (2.5) with multiplicity
»y. and the factor ¢ > 0 is independent of € € (0,¢ex].

We emphasize that the eigenvalue index K (¢) in (6.14) in general depends on €, because
the interval (0, ines_QhQ) contains indefinitely many eigenvalues f3,, when ¢ — 0. Also,
it is not possible to guarantee that the number of eigenvalues satisfying (6.14) equals .
Hence, part of the information on eigenfunctions in Theorem 5.2 is lost, when applied to
the eigenfunctions of the problem (6.4).

Remark 6.3. Let us return to Theorem 6.1. There, the weakest of the assumptions
for € is the first one (6.7), however, the conclusion does not ensure that p = k in the
estimate (6.8), and, moreover, there may still be other eigenvalues satisfying (6.8). To
guarantee the localization and isolation of A7,..., A}, o1 into the segments (6.10) and
(6.12), respectively, one has to accept the much smaller bounds (6.9) and (6.11) for e. In
the last case we also have the asymptotic description of the eigenfunctions ug, ..., ug a1
These observations suggest that the traditional asymptotic anséitze

N~ B ui(@) ~ e Par(e)er(y)
for the eigenpairs of the mixed boundary value problem (6.1)—(6.3) only work for a wide
but certainly restricted range of the spectrum.
The above observed difference of the asymptotic behavior of lower and higher eigenvalues
actually defines the higher frequency range of the spectrum, and in spite of the failure of
the asymptotic expansions in the high-frequency range one may find eigenvalue sequences

with other types of stable asymptotics. This phenomenon is discussed in some special
cases in [41, 29, 37, 31, 32, 26, 27, 18].



LOCALIZATION EFFECT FOR DIRICHLET EIGENFUNCTIONS 31

We still mention other types of problems, namely, models arising from reinforcement
problems, where the spectral parameter is related with the size of reinforced bands and the
physical properties of the materials such as stiffness or density. In [18] and [21], the low,
middle and high frequencies have been considered in very different situations. Depending
on the problem and the geometry of the band, the middle frequencies can give rise to
vibrations with energy localized along the interface between the media (cf. [18]), or they
can give rise to vibrations localized near points of local maxima of the function defining
the geometry of the reinforcing band. The latter type of localization is consider in [21],
and it is similar to the one appearing in the present paper: see Section 1.4. for more
details.

6.2. Another mixed boundary value problem. Let us extend the Dirichlet con-
ditions over the lower base ¥° and consider the problem

(6.15) —Azut(z) = Nu(z), z€Qf,
(6.16) ou(z) =0, zeXi,
(6.17) u(z) =0, zeif =X5Uxs,

with the variational formulation
(Vous, Vv )ge = A (uf,0%)qs ¥V o° € Hy(Q5;%5).
Then the asymptotic ansétze (2.1), (2.2) are replaced by

w2 T z+eH_(y)

(6.18) A= afzm —i—&?*l,u +..., u(x)=sin < 5 T{y)) w(n) + ...

Remark 6.4. Note that sin(...) in (2.2) vanishes both for z = ¢H, (y) and z = —eH_(y),

whereas sin(...) in (6.18) vanishes only for z = —¢H_(y) and 0,sin(...) = 0 for z =
eH,(y). The last fact imitates the Neumann boundary conditions (6.16), which, in view
of (1.6), can be written in the form

(L+ eIV, Hy(n)P) % (007 (y, 2)
(6.19) —eVyH(y) - Vyu'(y, Z)) |z:€H+(y) =0

Since the stretching coefficient in (1.15) is equal to e~ /2, the subtrahend in (6.19) is of
higher order than the derivative 0,u®(y,eH(y)) in local variables. X

Repeating the calculations leading to (1.16) with minor modifications and using the
notation (1.17), yields the following limit differential equation

(6.20) ~Agu() + 5 Auw(n) = poly), 7 € R

The coordinate dilation 5 — 27/25 and the parameter change p — 2u reduce (6.20) to

the spectral equation (1.16). Then we use the eigenvalue sequence (2.6) to obtain the
eigenvalue sequence of the spectral problem (6.20),

1 1 1 1
0< = — < = <...< = <...<...—> .
<2M1<2M2_2M3_ _2Mk_ < +00

Remark 6.5. In the artificial problem (6.13) we also need to replace h by hy = h/2.
Hence, the second term on the left of (6.20) becomes 2A(n)w(n). This explains the factor
V2 in (6.14). X

Asymptotics of eigenvalues and eigenfunctions of problem (6.15)—(6.17) can now be
formulated as in Theorems 4.2 and 5.2 with obvious modifications.

6.3. Concluding geometric remarks. (i) Continuity of the profile functions. Since
the eigenfunctions are localized near the maximum point 0 € w of H, the considerations
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FIGURE 6.1. a) Thin domain permitting generalization, b) thin domain
not suitable for generalization

in Sections 3-5 require the inclusion Hy € H> only in some neighborhood of 0. Outside
this neighborhood the functions Hi may have jumps as depicted in Fig. 6.1, a.

(#i) Local mazima. Let us return to the Dirichlet problem (1.7), (1.8) and assume that
the thickness function (1.1) has a local strict maximum at a point y% € w \ {0}, that is

H(y) = hy — r{Hy(pq) + O(rf), Iy € (0,h),

where (ry, ) € Ry x S! is the polar coordinate system centered at y? and, as in (1.3),
Hy € H(S'), Hy > 0. Using the same argument as in Section 2.1, one can perform the
formal asymptotic analysis and derive the following limit differential equation

(6.21) =Bt (1) + A )t () = phut (), 1 € R,
where, similarly to (1.17),
A¥(n) = 2m Ry i My ()
and n? = e~ 1/2(y — y?) are the stretched coordinates centered at y%. By an appropriate

affine transform, equation (6.21) reduces to the differential equation (1.16). We write the
spectrum of (6.21) as

O<pl<pbi<pi<..<pl<.. <.. —+4o0.
Note that in the special case Hy = c,H the eigenvalue ME; is an explicit function of the
numbers p, hy, alu,q and ¢;. The eigenvalues have the expansions

(6.22) Ny =& 2h 2w el 4+ XN o,

which look quite similar to (1.18), and they show that eigenvalue sequences have stable
asymptotics in the high-frequency range of the spectrum. The justification procedure from
Section 4 can be applied to derive the estimate \X%(E)\ < ¢e%/? for the remainder in (6.22),
and assertions similar to Theorems 4.2 and 6.2 can also be proven. We recall that other
eigenvalue sequences of this type have been discussed in Section 6.1.

(iii) Limit problem in the half-plane. The global maximum h of the function H may
occur at a point ¢° € Ow. To treat this case let us assume that H is smooth enough, for
example, of class H**°, and that y° = 0 and the y;-axis is tangent to the contour dw.
Moreover, the relations (1.2), (1.3) are supposed to hold, when the circle S is replaced by
the semi-circle S}F. The limit problem then reads as

(6.23) —Ayw(n) + Anw(n) = pw(n), neRE =(0,00) xR,
(6.24) w(0,m2) =0, n2 €R,

where the positive function A is still given by (1.17). Actually all eigenvalues of the prob-
lem (6.23), (6.24) have already been listed in Proposition 2.1, because the even extension
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of the function
(6.25) R3 37— A(n)

to the entire plane R? and the simultaneous odd extension of a solution w convert the
Dirichlet problem in R% into the single differential equation (1.16). In other words, the
spectrum of the problem (6.23), (6.24) is composed of those eigenvalues (2.6), which are
associated with eigenfunctions that are odd in 7.

The boundary condition (6.24) is inherited from the Dirichlet condition (1.8) on the
lateral side I'® of the plate €2°. To treat the corresponding Neumann condition instead
of (6.24), one starts with the mixed boundary value problem composed of the differential
equation (1.7) and the boundary conditions

(6.26) u®(z) =0, z € X, dyut(z) =0, z € Xj.

Then, the Neumann boundary condition in (6.26) gives rise to the Neumann condition
ow
—(0 =0 eR
an (0,m2) =0, meR,

to be combined with the equation (6.23). Again, we have already seen the spectrum
of this limit Neumann problem: by a consideration analogous to the one in the previ-
ous paragraph, it consists of those eigenvalues ux in (2.6) for which the corresponding
eigenfunctions are even in 7.

We emphasize that the curvature x of the contour 0w has no effect on the asymptotic
and justification procedures in Sections 2-5. Indeed, the Laplace operator A, reads in the
curvilinear coordinates (n, s) as

(6.27)  (1+ ””(3))_1%(1 + n/ﬁ(S))% +(1+ nn(s))_l%(l + HK(S))_l%.
Here, n is the oriented distance from the contour dw, n > 0 inside w, and s is the arc

length calculated from the point 3° = (0,0) along dw anticlockwise. After the change of
variables

(n7 S) = n= (7717 772) = (6_1/21”&, 8_1/28)7
the main asymptotic part aflAn of the differential operator (6.27) appears on the left-
hand side of the limit equation (1.16). Moreover, the next term £~ '/2x(0)/dn; in the

asymptotic decomposition of (6.27) is small in comparison and thus does not exist in limit
problem. The eigenfunctions wy in Proposition 2.4 still have an exponential discrepancy

(A — e A wi(n)] < cre™ V2 exp(—e 1 (Bi/*n? + BY/*s%)),

which can be estimated along the scheme in Section 4.

If the boundary dw is piecewise smooth and the maximum of H occurs at a corner
point, then a limit equation similar to (6.23) is to be posed in the corresponding unbounded
corner domain. However, this generalization is quite straightforward and we skip a detailed
discussion of it.

(iv) A different type of global mazimum. Let
H(y) < HO)=:h for yew) {0},
(6.28) H(y) = h —r"H(p) + O(r~*h).
Then, the coordinate dilation (1.15) has to be replaced by

2
24Kk

yr—e %y with a=



34 NAZAROV, PEREZ, AND TASKINEN

To study the eigenvalues A} and the corresponding eigenfunctions uf () of the problem
(1.9), we first notice that a calculation similar to that in Section 2.1 yields the limit
equation

—Agw(n) + 21070 P H(p)w(n) = pw(n), n € R?.

This can be used to determine the perturbation term in the expansion
o7 4/(2 3
)\i =g ﬁ+6_ /( +H),u,k—|—)\i
and also the last multiplier wy(n) in the asymptotic ansatz (2.2) for uf(x). We predict
the following estimate for the eigenvalues

—2/(2+k)

AL < cre ,

yet, we refrain to formulate this as a rigorous result for the case (6.28), since the approach
of our paper would inevitably lead to many additional cumbersome formulas requiring
some further arguments. We also refer to papers [5, 6] containing the case (1.24) with a
positive homogeneous polynomial of degree k = 2m.

(v) Open questions. We finally mention two cases where even the formal asymptotic
ansétze for the eigenpairs of the problem (1.7), (1.8) remain unclear.
In the first case we assume that

H(y) = h — a1y} — agyd™ + O(r*™ ™) with ay,a9 >0, m > 1.

In the formal asymptotic procedures in Section 2.1 the term asy3™ would be ignored, and
we would be lead to the following limit differential equation,

(6.29) —Ayw(n) + 47 hBainiw(n) = pw(n), n € R?

which looks quite similar to (1.16). Thus, it would be natural to introduce the Hilbert
space H with the weighted norm

lw; HI| = ([|Vyw; L2 (R[> + (1 + [m[*)"/?w; L (R?)]].
However, the spectrum of the operator of problem (6.29) cannot be discrete due to the

following observation: If y € C°(R?) is a function with a support in the unit square
(—1/2,1/2)2, the functions n — x4(m, 12 — q), ¢ € N, have the properties

(6.30) Ixq; L*(R?)|| = ¢, # 0,
(6.31) Ixq; H| < Cy, suppxq Nsuppx, =@ for ¢ #p, ¢,p € N.

Using (6.31) one can find a subsequence {xg, } which converges to null weakly in H, but
this subsequence cannot converge to null in the norm of L?(R?), due to (6.30). In other
words, the embedding H C L?(R?) cannot be compact, and the spectrum is thus not
discrete (cf. [4, Theorem 10.5.1])

Second, let us assume that

H(y)<h for yew\r,
1
H(y) = h— gag dist(y,7)* + O(dist(y,7)"), a0 >0,

i.e. the maximum h is attained by the thickness function (1.1) along a simple smooth closed
contour v inside the domain w. It is quite probable that a modification of the ansatze
developed in [10, 33, 36] could be used to describe the asymptotic behavior (¢ — 07) of the
eigenpairs of the spectral problem (1.7), (1.8), however, a much more elaborate analysis is
needed to confirm these hypothesis. We finally mention that asymptotic ansidtze become
incomprehensible, if v is a smooth open curve with ends in dw, see Fig.6.1, b, or even a
criss-cross curve.
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6.4. Spectral gaps for the Dirichlet problem in a thin infinite layer. Let w be
the rectangle {y : —ly, < Ym < L, m = 1,2} with sides of length 2[,, > 0. We assume
that the profile functions Hy satisfy the requirements (1.1), (1.2) and (1.3) in w, and in
addition that the periodic extensions of Hy to the entire plane R? are continuous, for
simplicity (cf. Section 6.3 (i) and papers [36, 35]). We consider the spectral Dirichlet
problem

(6.32) —AU*(z) = A°U%(z), x € ITF,

(6.33) U(z) =0, x € olF,

in the thin layer

(6.34) I° = {(y,2) : y e R* —eH (y) <z <eHi(y)}.

This problem is associated with a positive definite self-adjoint unbounded operator A®,
see, e.g., [4, Ch. 10]. By e.g. [13, 42, 14] it is known that the spectrum o¢ = o(A®) of
problem (6.33) has the band-gap structure

(6.35) of=Jot, o ={A=X(8): &n € [0,7/lm), m=1,2},
keN

where £ = (£1,&2) denotes the dual variable of the Gelfand transform [17] and the numbers
A%(§) are entries of the eigenvalue sequence

(6.36) 0<AI(E) <A <~ <A () < = 4+
of the following model problem in the periodicity cell, or, the curved prism Q¢, (1.5):
(6.37) —Aut(z;€) = Nu(z;6), z€QF,
(6.38) ut(y, £eHi(y);€) = 0, yew=(~I1,l1) x (=l2,12),
(llayQaZ 5) = 2Z§1l1 6( llayQaZ'g) Y2 S (_l2al2)a
(6.39) ut(yn,l, 2 §) = ¥Rl (y1, —lp, %6), w1 € (=l1, ),
out ouf
l = e%itih l ; —ly,1
ay ( 1,Y2, %; 5) 6:1/1( 1)?/25275)) Y2 S ( 29 2))
out ouf
(6.40) 8—(?/1,52,2;5) = X2l (y 1y, 2;€), y1 € (=11, 1)
Y2 0y

The problem is formally self-adjoint due to the quasi-periodicity conditions (6.39), (6.40)
with the real parameters £, and &, and its variational formulation is

(6.41)  (Vus(56), Vo (5€))as = A (u™(58), 07 (€)= ¥V 07 (5€) € H (%),

where H®(Q°; &) is the subspace of functions v¥(-;€) € HE(QF; 24) satisfying the Dirich-
let conditions (6.38) and the stable quasi-periodicity conditions (6.39). The variational
problem (6.41) is associated with a positive definite operator A®(¢) in L?(Qf). Since the
embedding H'(Q) C L?(QF) is compact, the spectrum of A¢(¢) is discrete and forms the

eigenvalue sequence (6.37), where the eigenvalues are listed according to their multiplicities
(see, e.g., [4, Theorems 10.1.5 and 10.2.2]). Furthermore, each of the functions

[0,7/11) x [0,7/12) 3 & = Ai(€)

is evidently continuous and (7/l,,)-periodic in &, so that the spectral bands oy in (6.35)
are closed connected bounded intervals.

The eigenvalues (6.36) of the problem (6.41) can be investigated in the same way as
the eigenvalues (1.10) of the problem (1.9). Replacing the Dirichlet condition by the
quasi-periodicity conditions (6.39), (6.40) on the lateral side ¥ of Q¢, (1.12), does not
have an effect on the formal asymptotic analysis (Sections 2 and 6.2) and the justification
scheme (Sections 3-5). Even more importantly, all bounds in the estimates of the previous
sections can be proven independently of £ € [0,7/l1) x [0,7/l2). We refrain to formulate
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an assertion on the asymptotics of the eigenvalues A7 (§) of the problem (6.41), but just
refer to the result (4.24), Theorem 4.2, which can easily be adapted to this case as well.
We emphasize that the asymptotic terms 72 ~2h~2 and ppe ! in (4.24) are independent
of £&. Moreover, the quasi-periodicity conditions (6.39), (6.40) are imposed at a fixed
distance from the point 3°, i.e., in a set where the eigenfunctions do not localize. Hence,
the parameter £ has only a very small effect on the eigenvalues so that the inequalities

(6.42) IX(6) = AR(€)] < e exp(—e 1),

are valid for some § > 0, for all £,& € [0,7/l1) x [0,7/l2). The inequality (6.42) can be
proven from the estimates of this paper by a rather simple argument found e.g. in [36].
Due to (6.42) and (4.24), the length |o7| of the spectral band of, in (6.35) can be estimated
by ¢ exp(—e~1/25), and the band on the other hand satisfies

e m° pe o w Mk | Ck
(6.43) oy, C <62h2+ 6 \/§’th2+ . +\/E>
These two observations together with the unboudedness and monotonicity of the eigenvalue
sequence (2.6) imply that the number of open spectral gaps grows to the infinity ase — 0F.
(By a spectral gap we mean an interval in Ry which is free of the spectrum ¢°, but has
endpoints in it.)

The above observation is based on the the original idea of [15], where the two-dimensional
periodic thin strip was considered and the sequence (2.6) consisted of the simple eigenval-
ues of the harmonic oscillator (1.25). In our case the eigenvalues of the problem (2.5) may
become multiple, which complicates the asymptotic description of the band-gap structure
(6.35). Indeed, if pg has multiplicity s so that

Pe—1 < [k = oo = Mhgoe—1 < Mkt
cf. (6.6), then the inclusions (6.43) guarantee the existence of two gaps: one gap of length
e uk — pr—1) + O(e71/2) between the bands of , and of, and another one of length

e ks, — fr) + O(e7/?) between the bands Oftsy—1 and of, . However, our as-
ymptotic formulas do not suffice to make conclusions on the existence of non-empty gaps

between the bands of,..., 07, ;. The existence of these gaps are a matter of higher
order terms in the asymptotics of A7 (§),..., AL +%k71(§), as was demonstrated in paper

[36] dealing with a different geometric situation, see fig. 2,a.. We mention that Theorem
1 of the paper [6] presents several explicit asymptotic terms of those eigenvalues, and this
result could be used to detect the gaps in the case (1.4) holds for the thickness function
H; the justification of the asymptotics remains to be worked out.
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