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Abstract. We study the essential spectrum of a formally self-adjoint
system of partial differential equations, for example the elasticity system,
in periodic domains with non-periodic perturbations. The perturbation
is realized as a sparse distribution of identical foreign cells in a periodic
medium in Rd, d ≥ 2. It is shown that the essential spectrum consists of
the essential spectrum, with band-gap structure, of the corresponding
problem in the purely periodic medium and of the discrete spectrum of
the model problem, where the periodicity is broken by one foreign cell
only. The increment of the essential spectrum, caused by the perturba-
tion, may occur either inside the spectral gaps, or below the spectrum
of the unperturbed problem. We also discuss generalizations and open
questions.

1. Introduction

1.1. Motivation and aim of the paper. Composite heterogeneous me-
dia and structures in macro- and mesoscales are used in many types of
devices produced by the modern engineering. Mathematically, purely peri-
odic composites can be and have been investigated by using the Floquet-
Bloch-Gelfand (FBG) -theory and basic methods of the spectral theory of
self-adjoint semibounded operators. In contrast to homogeneous media, the
spectrum of a periodic medium has band-gap structure with alternating
passing zones (bands) and stopping zones (gaps), which allow or prevent,
respectively, waves with the frequencies in the zone to propagate. The pass-
ing zones may overlap and there may exist no open gaps, in which case
waves with any frequency above the cut-off value of the essential spectrum
can propagate.

Nevertheless, in the reality it is almost impossible to produce absolutely
periodic composites; all materials with periodic structure have some defects
distributed within them. It should be emphasized that one can also insert
foreign inclusions on purpose in order to create composites with desired
properties. There does not exist much literature on the spectra of periodic
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media with non-periodic perturbations, and the main goal of this paper is to
compensate this shortcoming. We will in particular show that even a sparse
distribution of foreign inclusions in periodic media can cause increments
to the essential spectrum. We formulate this main result of our paper as
Theorem 2.3, and it concerns a general class of formally self-adjoint elliptic
spectral second order boundary value problems (1.20), (1.21) in domains Π],
(1.19).

The above-mentioned peculiarity of wave phenomena is realized mathe-
matically as the emergence of new points of the essential spectrum, either in-
side the spectral gaps or below the spectrum of the purely periodic medium.
These points come from the discrete spectrum of the model problem, where
only one cell is changed into a foreign one.

As for the structure of this paper, the exact statements of the purely pe-
riodic, perturbed and model problems will be given in Sections 1.2–1.3, and
we in particular specify the meaning of ”sparcely distributed” foreign cells.
Besides, in Section 1.4 we present examples of problems in mathematical
physics, to which our results apply directly, while in Section 4 we will dis-
cuss possible generalizations and modifications of the main result yielding
more examples. Section 2 contains descriptions of the spectra of the intro-
duced problems as well as the formulation of our main result in Theorem
2.3. Its proof, divided into several steps, is presented in Section 3.

Sparse perturbations of the Schrödinger equation with decaying potentials
were studied in the papers [15, 16, 23, 24]. In these papers there were found
isolated points of the essential spectrum, which are below the cut-off value
of the spectrum of the equation with the original potential. Our technique
allows to study the spectrum of the Schrödinger equation with non-decaying
periodic potentials with sparsely placed local perturbations; it can yield
points of the essential spectrum inside the spectral gaps.

In the paper [36] we considered one-side directed periodic quantum waveg-
uides (the spectral Dirichlet-Laplace problem) with local perturbations spa-
rsely distributed along the waveguide axis. The final theorem in [36] is
similar to our Theorem 2.3, but the technique in the reference is completely
based on general comprehensive results in [25], [30, Ch. 3,5] about solvability
of elliptic problems in periodic quasi-cylinders and asymptotics of their solu-
tions at infinity. Such theory is not yet known in domains which are periodic
in many dimensions. Serious problems for the present analysis are caused
by the necessity to treat the variational formulation of systems of differ-
ential equations and mixed boundary value problems when the coefficients
and boundaries are not assumed smooth1 ; also the band-gap spectrum of
the unperturbed problem brings additional difficulties. The most technical
issue of our paper, Theorem 3.4 on the exponential decay of the solutions of
the model problem, will be proved by using several new tricks, namely by

1This is a direct requirement of the main application to the elasticity, since the elastic
moduli of composites are usually only piecewise continuous and those associated with
fractures creating micro-cracks are even less smooth.
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verifying the Fredholm property and deriving a priori estimates in weighted
Sobolev spaces without directly using the FBG-transform. It should be men-
tioned that we employ in parallel two dissimilar operator realizations of the
variational problems, the spectra of which have a simple relationship. These
operators are used to verify different particular properties of the perturbed
problem.

1.2. Formulation of the periodic problem. Let $ be the periodicity
cell, which is an open subset of the unit cube

� = {x = (x1, . . . , xd) ∈ Rd : |xj | < 1/2, j = 1, . . . , d}.(1.1)

We denote by Π the interior of the union

Π =
⋃

α∈Zd

$(α),(1.2)

where α = (α1, . . . , αd) is a multi-index, Z is the set of integers and

$(α) = {x : x− α ∈ $}.(1.3)

Let Π be a domain, in particular a connected set, which has a (d − 1)-
dimensional Lipschitz boundary ∂Π. In order to properly formulate the
boundary value problem

L(x,∇)u(x) = λM(x)u(x), x ∈ Π,(1.4)

B(x,∇)u(x) = 0, x ∈ ∂Π,(1.5)

we assume for a moment that the boundary and other data are smooth, but
after going over to the weak statement (1.14) we will return to the Lipschitz
case. The differential operator of the system (1.4) is given by

L(x,∇) = D(−∇)
>
A(x)D(∇),(1.6)

where ∇ is the gradient, A and M are Hermitian positive matrices of size
N ×N and n×n, respectively, and D(∇) is an (N ×n)-matrix of first order

differential operators with constant complex coefficients so that D(−∇)
>

is the formal adjoint of D(∇); the transposition of matrices is denoted by
>. We require that D is algebraically complete [37], that is, there exists a
number %D ∈ N = {1, 2, 3, . . .} such that, for for any row p of homogeneous
polynomials p1, . . . , pm of degree % ≤ %D, one can find a row q = (q1, . . . , qN )
of polynomials satisfying the relation

p(ξ) = q(ξ)D(ξ) ∀ ξ ∈ Rd.(1.7)

In other words, p(ξ) can be divided by D(ξ). Property (1.7) assures that
L is a formally positive operator [37, § 3.7.4], namely, there holds the Korn
inequality

‖u;H1($)‖2 ≤ c
(
a(u, u;$) + ‖u;L2($)‖

)2
,(1.8)
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whereH1($) and L2($) are the Sobolev and Lebesgue spaces, the coefficient
c > 0 depends on $ and D, A, but not on u = (u1, . . . , un)> ∈ H1($)n and
a is the Hermitian positive form

a(u, v;$) =
(
AD(∇)u,D(∇)v

)
$
.(1.9)

For all vector functions u, v ∈ H2
per($)n, which are 1-periodic in the

variables x1, . . . , xd, there holds the Green formula

a(u, v;$) = (Lu, v)$ + (Nu, v)υ(1.10)

where υ = ∂$∩� is the ”interior” boundary of the cell, possibly the empty
set, and

N(x,∇) = D(ν(x))
>
A(x)D(∇)(1.11)

with the unit outward normal vector ν. The boundary condition operator
is given by

B(x,∇) =
(
In − P (x)

)
N(x,∇) + P (x),(1.12)

where In and On are the unit and null matrices of size n×n and P (x) is an
orthogonal projection in Cn, which may depend continuously on x belonging
to the compact set υ. Thus, (1.5) coincides with the Dirichlet condition in
the case P = In and the Neumann one, if P = On.

For a vector function u ∈ H2(Π) satisfying the boundary condition (1.5)
and a vector function v ∈ H(Π), where

H(Π) = {v ∈ H1(Π)n : Pv = 0 on ∂Π},(1.13)

the last scalar product in (1.11) vanishes. Hence, formulas (1.10)-(1.13)
yield the variational formulation of the problem (1.4), (1.5): find u ∈ H(Π)
and λ ∈ C such that

a(u, v; Π) = λ(Mu, v)Π ∀ v ∈ H(Π).(1.14)

Notice that in the variational problem (1.14) it suffices that the matrix
functions A, M and P are bounded and measurable (instead of smooth).
We extend them 1-periodically from $ and υ to Π and ∂Π, respectively,
and require that

CA|η|2 ≥ η>A(x)η ≥ cA|η|2 ∀ η ∈ CN ,

CM |ζ|2 ≥ ζ
>
M(x)ζ ≥ cM |ζ|2 ∀ ζ ∈ Cn,(1.15)

where CA, cA, CM , cM are positive constants independent of x ∈ $, η and
ζ. Also, the normal vector ν is defined almost everywhere on the Lipschitz
surfaces υ and ∂Π.

In Section 2.1 we will give the equivalent operator formulation of the
problem (1.14) and define its spectrum σ properly.
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1.3. Formulation of the perturbed problem. Let $• ⊂ � be a foreign
cell such that

Π◦ = (Π \$) ∪$•(1.16)

is still a domain with Lipschitz boundary (in addition we assume about the
geometry of $• that the domain (1.19), below, will be Lipschitz). We set

A◦ = A in Π \$, A◦ = A• in $•,(1.17)

where A• is a foreign N ×N -matrix with the same general properties as A.
We define the matricesM◦ and P ◦ analogously to (1.17) by using the original
and foreign matrices M , P and M•, P •, respectively, where the latter also
have the qualities described after (1.6). We apply self-evident changes to the
notation in (1.14) and (1.13) (see also the beginning of Section 2.2, below)
and pose the problem

a◦(u◦, v◦; Π◦) = λ◦(M◦u◦, v◦)Π◦ ∀ v◦ ∈ H(Π◦),(1.18)

the spectrum of which will be studied in Section 2.2. Of course, in order to
avoid trivialities, we assume that at least one of $• A•, M•, or P •, differs
from the corresponding original objects.

Let {αk}k∈N be a sequence of multi-indices in Zd such that the numbers
|αk| = |αk1 |+ . . .+ |αkd| form a monotonely increasing, unbounded sequence.

Replacing the cells (1.3) with indices αk by the foreign cells

$•(α) = {x : x− α ∈ $•}

we obtain the modified domain

Π] =
(

Π \
⋃
k∈N

$(αk)
)
∪
⋃
k∈N

$•(αk).(1.19)

Similarly to (1.17) we define the matrices A], M ] on Π] and Θ] on ∂Π] by
substituting the original matrices in the selected cells $(αk), k ∈ N. Our
principal object of investigation is the spectral boundary value problem

L](x,∇)u(x) = λM ](x)u(x), x ∈ Π],(1.20)

B](x,∇)u(x) = 0, x ∈ ∂Π],(1.21)

where the differential operators L] and B] are defined as in (1.6) and (1.12)
by changing A 7→ A] and P 7→ P ]. By σ] we understand the spectrum of
the variational form of the problem (1.20), (1.21), namely

a](u], v]; Π]) = λ](M ]u], v])Π] ∀ v] ∈ H(Π]),(1.22)

where a] and H(Π]) are obtained from (1.9) and (1.13) by using A] and P ]

instead of A and P .

Remark 1.1. If {αk}k∈N = Zd, then we again obtain a 1-periodic medium
the spectrum of which can be studied by the FBG-theory as will be outlined
in Section 2.1. Many other choices of the sequence {αk}k∈N lead to purely
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periodic media. For example the one corresponding to the chessboard dis-
tribution of the foreign cells only means the doubling of the length of the
period.

To describe the sparse distribution of foreign cells we denote for every
p ∈ N by Lp > 0 the largest natural number such that for the cube

�p = {x : |xj − αpj | < Lp + 1/2, j = 1, . . . , d}(1.23)

there holds �p ∩ $•(αk) = ∅ for all k 6= p. We now make the principal
geometric assumption of this paper by requiring that

lim
k→+∞

Lk = +∞.(1.24)

Remark 1.2. Suppose that condition (1.24) holds with L̃k for some se-
quence {α̃k}k∈N ⊂ Zd. If a new sequence {αp}p∈N is defined by α2k−1 =

α̃2k−1 and α2k = α2k−1 + (1, 0, . . . , 0) for all k ∈ N, then Lp = 0 for every
p ∈ N so that (1.24) does certainly not hold. However, we perform the
change of coordinates x 7→ x′ = (x1/2, x2, . . . , xd) and redefine the matrix
differential operator D(∇) accordingly, but still regard the obtained matri-
ces and domain Π′ as 1-periodic in all directions. In this way we join the cells
$′(α2k−1) and $′(α2k), which allows us to redetermine L′p and see that con-
dition (1.24) holds. Apparently, this idea can be modified and generalized
in many ways; see also Sections 3.3 and 4.1.

Remark 1.3. Let αk = (kN, 0, . . . , 0) for k ∈ N and some fixed N ∈ N.
Then, Lk = N−1 and condition (1.24) fails. However, the foreign inclusions
$•(αk), k ∈ N, form a so called open waveguide, and the corresponding
problem (1.22) has been thoroughly investigated in [5].

1.4. Concrete spectral problems in mathematical physics. 1◦. Scalar
case. Let n = 1, N = d and D(∇) = ∇. Then, (1.6) is a scalar elliptic
second-order differential operator in divergence form. Clearly, %D = 1 in
(1.7). In addition, let $ 6= � and A = Id so that L(∇) = −∆ is the
negative Laplacian. In the case B(x,∇) = ν(x)>∇ we have the Neumann
spectral problem (1.4), (1.5), which describes, for example, the propagation
of waves in a homogeneous acoustic medium polluted by particles of two
types, � \ $ and � \ $•. A more general real, symmetric and positive
definite matrix function A could describe an anisotropic and inhomogeneous
medium, in particular a stratified one, if the periodicity occurs only in the
directions x1, . . . , xd−1. The case of the Dirichlet boundary conditions is
usually connected to quantum waveguides.

2◦. Elastic medium. Let d = n = 3, N = 6 and

(1.25) D(∇)> =

 ∂1 0 0 0 2−1/2∂3 2−1/2∂2

0 ∂2 0 2−1/2∂3 0 2−1/2∂1

0 0 ∂3 2−1/2∂2 2−1/2∂1 0

 , ∂j =
∂

∂xj
.

This matrix is algebraically complete with %D = 2, see [37].



SPARSELY PLACED FOREIGN INCLUSIONS 7

Using the Voigt-Mandel notation we regard the displacement vector u as
the column (u1, u2, u3)>, where uj is the projection to xj-axis. The strain
column

ε(u) = D(∇)u =
(
ε11u, ε22u, ε33u,

√
2ε23(u),

√
2ε31(u),

√
2ε12(u)

)>
(1.26)

contains the Cartesian components of the strain tensor

εjk(u) =
1

2

(∂uj
∂xk

+
∂uk
∂xj

)
, j, k = 1, 2, 3.

The elastic moduli of a deformable medium form the symmetric and positive
definite 6× 6-matrix A(x), and by Hooke’s law, it defines the stress column

σ(u;x) = A(x)ε(u;x) = A(x)D(∇)u(x)(1.27)

which has the same structure as (1.26). The normalization factors 2−1/2 and√
2 in (1.25) and (1.26) make the natural norms of two representations, the

tensor of rank 3 and the column of height 6, equal to each other. Finally,
M(x) = %(x)I3 in (1.6) is the material density.

The system (1.4) defined by (1.25)–(1.27) describes the time-harmonic
oscillations of an elastic medium. The case of Neumann boundary conditions
B = N , see (1.11), describes the case the surface ∂Π is traction-free and the
Dirichlet case B = Id corresponds to the rigidly fixed surface. We also
mention the linearized Signorini conditions which are obtained by fixing in
(1.12) the orthogonal projection

P (x) = ν(x)ν(x)>.

These describe the situation that the solid Π is in an inseparable contact
with the absolutely rigid profile ∂Π.

To treat two-dimensional problems of the elasticity theory one needs some
obvious changes to the notation introduced above.

3◦. In Section 4 we will describe other problems in mathematical physics
which do not exactly satisfy the conditions although they can be treated by
straightforward modifications of our approach.

2. Spectra of the problems.

2.1. Purely periodic case. The FBG-transform [11]

u(x) 7→ Uη(x) =
1

(2π)d/2

∑
α∈Z

e−iα
>ηu(x+ α)(2.1)

is a discrete analogue of the Fourier transform, and it converts the prob-
lem (1.14) in the periodic set Π, (1.2), into the following problem in the
periodicity cell:

a(Uη, V η;$) = Λη(MUη, V η)$.(2.2)

Problem (2.2) depends on the Floquet parameter, the dual Gelfand variable

η = (η1, . . . , ηd) ∈ [−π, π]d,(2.3)
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and it is posed in the subspace

Hηper($) =
{
Uη ∈ H1($)n : PUη = 0 on υ,

Uη(x)
∣∣
xj=1/2

= eiηjUη(x)
∣∣
xj=−1/2

, j = 1, . . . , d
}
,(2.4)

the definition of which includes the Dirichlet part of the condition (1.6)
restricted to υ ⊂ ∂$ and the so-called quasi-periodicity conditions on ∂$∩
∂�, while Λη is just a new notation for the spectral parameter.

In the subspace (2.4) we introduce a new scalar product

〈U, V 〉$ = a(U, V ;$) + (MU,V )$(2.5)

and the positive, symmetric and continuous (thus self-adjoint) operator Aη,
which is determined by the relation

〈AηUη, V η〉$ = (MηUη, V η)$ ∀ Uη, V η ∈ Hηper($).(2.6)

Our assumptions on A and M and the Korn inequality (1.8) imply that the
sesquilinear form (2.5) is Hermitian, closed and positive in Hηper($).

Owing to (2.5) and (2.6), the problem (2.2) is equivalent to the abstract
equation

AηUη = µηUη in Hηper($)

with the new spectral parameter

µη = (1 + Λη)−1.(2.7)

Due to the compactness of the embedding H1($) ⊂ L2($), the operator
Aη is compact and by [3, Thm. 10.1.5.,10.2.2.], [39, Thm. VI.16], its essential
spectrum Ση

ess consists of the single point µ = 0 and the discrete spectrum
Ση

di of the positive monotonely decreasing sequence

1 ≥ µη1 ≥ µ
η
2 ≥ . . . ≥ µ

η
m ≥ . . .→ +0,

where the multiplicities of the eigenvalues are taken into account.
The relation (2.7) determines the eigenvalue sequence

0 ≤ Λη1 ≤ Λη2 ≤ . . . ≤ Ληn ≤ . . .→ +∞
of the problem (2.2). The corresponding eigenvectors Uη(m) ∈ H

η
per($), m ∈

N, can be subject to the normalization and orthogonality conditions(
MUη(m), U

η
(k)

)
$

= δm,k, m, k ∈ N,

where δm,k is the Kronecker symbol. Each eigenpair {Ληm, Uη(m)} generates

the Floquet wave

wηm(m)(x) = eiα
>ηUη(m)(x− α), x ∈ $(α), α ∈ Zd(2.8)

which belongs to H1
loc(Π)n and satisfies the integral identity (1.14) with the

parameter λ = Ληmm and test functions v ∈ C∞c (Π)n ∩H(Π).
The functions [−π, π] 3 η 7→ Ληm are continuous and 2π-periodic in the

variables (2.3) for all m ∈ N. This fact, other main properties of the FBG-
transform and information on purely periodic elliptic problems can be found
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in the monographs [44, 18, 39] and others. In particular it is known that
the spectrum σ of the original problem has the band-gap structure

σ =
⋃
m∈N

βm(2.9)

composed of the spectral bands βm, which are compact intervals

βm = {Ληm : η ∈ [−π, π]d}, m ∈ N.(2.10)

If Ληm does not depend on η ∈ [−π, π]d, i.e. Ληm = Λ0
m for all η, then Λ0

m is
an eigenvalue of the problem (1.14) with infinite multiplicity and it belongs
to the point spectrum σpo. For particular scalar problems with certain
geometric restrictions it has been proved that σpo = ∅, see [42, 43, 41, 17]
and others. There exist examples of concrete problems with non-empty point
spectrum. The discrete spectrum σdi of purely periodic elliptic problems is
always empty.

The band-gap structure (2.9) makes it possible that a spectral gap γm 6= ∅
is opened between the bands βm and βm+1, the gap being an open interval,
which is free of the essential spectrum but has both endpoints in it. In the
case that the lower bound

λ† := σ = min{Λη0 : η ∈ [−π, π]d}(2.11)

is positive, we will also consider the interval γ0 = (0, λ†) below the essential
spectrum. Examples of spectral gaps exist in the case of lattices of thin
acoustic and quantum waveguides (see [38, 7, 19, 12, 34, 2, 27, 28] and
many others), in double porocity problems [13, 14, 46], in the Dirichlet and
Neumann problems for the Laplacian in the periodically perforated plane
[32, 33, 8] and other problems in mathematical physics.

2.2. The case of a local perturbation. We now consider problem (1.18),
which concerns the periodic medium Π◦ perturbed in one cell, see (1.16),
and which is posed in the space

H(Π◦) = {u ∈ H1(Π◦)n : Pu = 0 on ∂Π \ υ, P •u = 0 on υ• }

with the scalar product

〈u◦, v◦〉◦ = a◦(u◦, v◦; Π◦) + (M◦u◦, v◦)Π◦(2.12)

(cf. (2.5) and (2.6)), and the positive, continuous self-adjoint operator A◦,
which is determined by the relation

〈A◦u◦, v◦〉$ = (M◦u◦, v◦)$ ∀ u◦, v◦ ∈ H(Π◦).(2.13)

Problem (1.18) becomes equivalent to the abstract equation

A◦u◦ = µ◦u◦ in H(Π◦)

with the spectral parameter

µ◦ = (1 + λ◦)−1,(2.14)
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cf. (2.7). Since the perturbation is localized, the essential spectrum σ◦ess of
the problem (1.18) coincides with that of the unperturbed problem, hence,

σ◦ess = σ and Σ◦ess = {0} ∪
{
µ◦ : (µ◦)−1 − 1 ∈ σ◦ess

}
,(2.15)

where Σ◦ess is the essential spectrum of the operator A◦. However, in contrast
to the purely periodic problem (1.14), the discrete components

σ◦di and Σ◦di =
{
µ◦ : (µ◦)−1 − 1 ∈ σ◦di

}
.

of the spectra σ◦ and Σ◦ may be nonempty.
Examples of eigenvalues inside spectral gaps γm, m ≥ 1, and on the

interval γ0 below the essential spectrum (2.15) can be found, e.g., in [9, 1,
4, 6, 29].

Let us demonstrate by a standard example of a perturbation of a periodic
medium, how one can find an eigenvalue in any spectral gap. We consider a
perforated medium (1.2), that is, we set $ = �\ω, where ω 6= ∅ is a domain
with a smooth boundary and ω ⊂ �. We also pick up another domain ω•

with a smooth boundary such that ω• ⊂ ω, and connect the original cell $
with ω• by a cylindrical ligament ςε with a circular cross-section of radius
ε. We set

$• = $ ∪ ω• ∪ ςε, A• = A in $• \ ω•, A• = IN in ω•,

M• = M, P • = P in $• \ ω•, M• = ρIn, P • = In in ω•,(2.16)

Lemma 2.1. 1) Let P = In so that (1.5) coincides with the Dirichlet con-
dition. Then, the cut-off value (2.11) is positive.

2) Assume that the spectral gap γm, m ∈ {0} ∪ N, is non-empty. Then,
one can find the parameters ε and ρ in (2.16) such that γm 6= ∅ contains at
least one eigenvalue of the operator A◦.

Proof. 1) Owing to the Dirichlet condition on υ (see the explanation
below (1.12)), the Korn inequality (1.8) becomes

‖u;H1($)‖2 ≤ c$,Aa(u, u;$) ∀ u ∈ H1($)n, u = 0 on υ.(2.17)

Estimates (2.17) and (1.15) yield

a(u, u;$) ≥ c−1
$,A‖u;L2($)‖2 ≥ (c$,ACM )−1(Mu, u)$

and thus also λ† > (c$,ACM )−1 > 0.
2) Let τ•1 > 0 be the first eigenvalue of the Dirichlet problem

D(−∇)
>
D(∇)w•(x) = τ•w•(x), x ∈ ω•, w•(x) = 0, x ∈ ∂ω•,(2.18)

cf. the notation in (2.16). The corresponding eigenvector w•(1) belongs to

C∞(ω•)n due to our assumption on the smoothness of the boundary ∂ω•,
and therefore

|w•(x)| ≤ cdist(x, ∂ω•), |∇w•(x)| ≤ c, x ∈ ω•.(2.19)
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Let Q be the intersection point of the axis of the circular cylinder ζε and
the surface ∂ω•. We define the smooth cut-off functions X and Xε,

X(r) = 1 for r ≥ 3 and X(r) = 0 for r ≤ 2,

Xε = X(ε−1|x−Q|), x ∈ ω• and Xε = 0, x ∈ Π◦ \ ω•.(2.20)

Then, we set uε = Xεw
• ∈ H(Π◦) and observe that in view of (2.19) and

(2.20) we have ∣∣∣(Muε, uε)Π◦ − ‖w•;L2(ω•)‖2
∣∣∣ ≤ cε2+d,∣∣∣a◦(uε, uε; Π◦)− ‖D(∇)w•;L2(ω•)‖2

∣∣∣ ≤ cεd.(2.21)

Our lemma will follow from a well-known perturbation result, namely the
lemma on ”near eigenvalues” [45], which is based on the spectral decompo-
sition of the resolvent (see e.g. [3, Ch. 6]). It can be written briefly as the
implication

‖U◦;H(Π◦)‖ = 1, M◦ ∈ R+, ‖A◦U◦ −M◦U◦;H(Π◦)‖ =: δ◦ ∈ (0,M◦)
⇒ ∃ µ◦ ∈ σ◦ such that |µ◦ −M◦| ≤ δ◦.(2.22)

We recall the factor ρ in (2.16) as well as the relation (2.14) and take U◦ =
‖uε;H(Π◦)‖−1uε andM◦ = (1+ρ−1τ•1 )−1. Using the definition of the norm
of a Hilbert space, we obtain

δ0 := ‖A◦U◦ −M◦U◦;H(Π◦)‖ = inf
∣∣〈A◦U◦ −M◦U◦, v◦〉∣∣

= (1 + ρ−1τ•1 )−1‖uε;H(Π◦)‖−1

× inf
∣∣∣(1 + ρ−1τ•1 )(M◦uε, v◦)Π◦ − a◦(uε, v◦; Π◦)− (M◦uε, v◦)Π◦

∣∣∣
= (1 + ρ−1τ•1 )−1‖uε;H(Π◦)‖−1 inf

∣∣∣a◦(uε, v◦; Π◦)− (τ◦1 )−1(M◦uε, v◦)Π◦

∣∣∣.
Here, the infimum is taken over all functions v◦ ∈ H(Π◦) with norm one, and
we have also used formulas (2.12) and (2.13). Taking into account (2.16),
(2.21) and (2.18) yields∣∣∣(a◦(uε, v◦; Π◦)− τ◦1 (ρ−1M◦uε, v◦)Π◦)

−
(
(D(∇)w•(1), D(∇)(Xεv

◦)
)
ω•
− τ◦1 (w(1), Xεv

◦)ω•
∣∣∣

≤ cεd/2‖v◦;H(Π◦)‖

and thus δ0 ≤ c0ε
d/2.

We now choose ρ > 0 and ε > 0 such that[
(1 + ρ−1τ◦1 )−1 − c0ε

d/2, (1 + ρ−1τ◦1 )−1 + c0ε
d/2
]
⊂ Γm

= {µ : µ−1 − 1 ∈ γm} 6= ∅

and use assertion (2.22) to complete the proof. �
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Remark 2.2. 1) In the above application of the implication (2.22) it was
much more convenient to use the operator A◦, (2.13), than the operator
directly connected to the variational problem (1.18). The same will also
happen in Section 3.

2) In the case λ† > 0, cf. Lemma 2.1.1), there exists a much easier way to
verify that γ0 ∩ σ◦di 6= ∅ with the help of the following observation. Namely,
the norm n◦ < 1 of the operator A◦ is an eigenvalue belonging to the discrete
spectrum Σ◦di, if the upper bound (1 + λ†)

−1 < 1 of the essential spectrum
Σ◦ess is strictly less than n◦. Then, by (2.14), (n◦)−1 − 1 ∈ γ0 ∩ σ◦di. In the
above example, we take the zero extension u• of w•(1) from ω• onto Π◦: this

falls into the space H(Π◦) and therefore

n◦ = sup
u◦∈H(Π◦)

〈A◦u◦, u◦〉◦
〈u◦, u◦〉◦

≥ 〈A
◦u•, u•〉◦
〈u•, u•〉◦

=
ρ‖w•(1);L

2(ω•)‖2

‖D(∇)w•(1);L
2(ω•)‖2 + ρ‖w•(1);L

2(ω•)‖2
=

ρ

τ•1 + ρ
.

It again suffices to choose ρ > 0 properly. �

2.3. The case of sparsely placed inclusions. In the same way as above
we introduce the scalar product

〈u], v]〉] = a](u], v]; Π]) + (M ]u], v])Π]

and the positive, continuous, self-adjoint operator A], which is determined
by the formula

〈A]u], v]〉$ = (M ]u], v])Π] ∀ u], v] ∈ H(Π]).

in the space

H(Π]) = {u] ∈ H1(Π])n : P ]u] = 0 on ∂Π] }.

The relation of the essential spectrum Σ]
ess ⊂ [0, 1] of the operator A] and

the essential spectrum σ]ess of the problem (1.22) is the same as before,

σ]ess = {λ : (1 + λ)−1 ∈ Σ]
ess}.(2.23)

In the following, main result of this paper we characterize the essential
spectrum of the principal problem formulated in Section 1.3.

Theorem 2.3. The essential spectrum (2.23) of the boundary value problem
(1.20)–(1.21), or (1.22), in the medium (1.19) with sparsely placed inclusions
(1.3) equals

σ]ess = σ ∪ σ◦di

where σ is the spectrum of the problem (1.14) in the purely periodic medium
(1.2) and σ◦di is the discrete spectrum of the problem (1.18) in the medium
(1.16) with the single inclusion $•.
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Recall that the spectra of the problems (1.14) and (1.18) were described
in Sections 2.1 and 2.2, respectively.

The proof will be given in the next section.

2.4. Operators of the inhomogeneous problems. Let us fix the param-
eter λ ∈ C. In addition to the operators A and A◦, we will also need the
operators

B(λ) : H(Π)→ H(Π)∗ and B◦(λ) : H(Π◦)→ H(Π◦)∗,(2.24)

respectively, related to the spectral problems (1.4)–(1.5), (1.14), on the in-
tact domain Π and to (1.18) on the perturbed domain Π◦. The operator
B(λ) is defined by mapping u ∈ H(Π) to the functional

v 7→ a(u, v; Π)− λ(Mu, v)Π, v ∈ H(Π),(2.25)

and the definition of B◦(λ) is analogous. In other words, B(λ) is the problem
operator of the inhomogeneous problem

a(u, v; Π)− λ(Mu, v)Π = f(v) ∀ v ∈ H(Π),(2.26)

where f ∈ H(Π)∗ is given; the case B◦(λ) is similar.

Lemma 2.4. If λ ∈ R, λ /∈ σ = σess, then the operator B(λ) : H(Π) →
H(Π)∗ is an isomorphism.

Proof. The FBG-transform is an isomorphism from the Sobolev space
H1(Π) onto the space L2([−π, π]d;Hηper($)) of abstract functions in η with
the norm ( ∫

[−π,π]d

‖Uη;Hηper($)‖2dη
)1/2

.

Applying the FBG-transform, equation (2.26) turns into the problem,

a(Uη, V η;$)− λ(MUη, V η)$ = F η(V η) ∀ V η ∈ Hη($),(2.27)

where the notation is as in (2.1), and F η is defined as the compose of f
and theFBG-transform. By the assumption, the distance of λ from the
union of the eigenvalues Λη (see (2.9), (2.10)) is positive, hence, (2.27) has
a unique solution Uη for every η, and we even get an upper bound for the
norm ‖Uη;H1($)‖. Taking the inverse FBG-transform yields a solution u
of (2.26).

The uniqueness of the solution by an indirect argument: having two differ-
ent solutions of (2.26) would lead to having two different solutions of (2.27)
for some η, which is a contradiction. Finally, as B(λ) is a bounded operator,
the boundedness of the inverse follows from the open mapping theorem. �
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3. Identification of the essential spectrum.

3.1. On exponentially decaying solutions of the inhomogeneous
problems. Let us proceed to consider the inhomogeneous problem

a◦(u◦, v◦; Π◦)− λ(M◦u◦, v◦)Π◦ = f◦(v◦) ∀ v◦ ∈ H(Π◦),(3.1)

where f◦ ∈ H(Π◦)∗ is an (anti)linear continuous functional on H◦(Π◦). In
this section we treat the parameter values

λ ∈ R, λ /∈ σ◦ess = σ(3.2)

and the operator B◦(λ) : H(Π◦)→ H(Π◦)∗ of (2.24).

Proposition 3.1. If (3.2) holds, then the operator B◦(λ), (2.24), is Fred-
holm.

This result follows immediately from the following one.

Lemma 3.2. If (3.2) holds, the operator B◦(λ) has a parametrix, i.e. a
mapping R◦(λ) : H(Π◦)∗ → H(Π◦) such that the operator

B◦(λ)R◦(λ)− id : H(Π◦)∗ → H(Π◦)∗(3.3)

is compact.

The compactness of (3.3) actually means that R◦(λ) is a right parametrix
for B◦(λ), but this suffices, since B◦(λ) is self-adjoint with respect to the
duality so that the adjoint of R◦(λ) is a left parametrix.

Proof. Let f◦ be as in (3.1). We recall that by Lemma 2.4 and as-
sumption (3.2), the operator B(λ) is an isomorphism. The parametrix will
be constructed as a perturbation of the inverse B(λ)−1 of B(λ). Putting
B(λ)−1 into (3.3) instead of R◦(λ) leaves a discrepancy in a neighborhood
of the modified cell $•, which is compensated by solving a variational prob-
lem (see (3.8), below) in a bounded domain and extending its solution to
Π◦ by using suitable cut-off functions.

1◦. In the first part of the proof we define three subsidiary functionals.
We define the smooth cut-off functions

χ(t) = 1 for t > 1/4 and χ(t) = 0 for t < −1/4,

XJ(x) =

d∏
j=1

χ(J + xj)χ(J − xj), J ∈ N.(3.4)

Notice that XJ ∈ C∞c (�J) and XJ = 1 on �J−1, where

�J = {x : |xj | < J + 1/2, j = 1, . . . , d}.(3.5)

Let us define the functional f1 ∈ H(Π)∗ and the vector function u1 ∈ H(Π)∩
H(Π◦) by

f1(v) = f◦
(
(1−X2)v

)
, u1 = (1−X2)B(λ)−1f1.(3.6)



SPARSELY PLACED FOREIGN INCLUSIONS 15

We next set

f2(v◦) = f◦
(
(1− (1−X2)2)v◦

)
−
(
A◦u1D(∇)X2, D(∇)v◦

)
Π◦

+
(
A◦D(∇)u1, v◦D(∇)X2

)
Π◦
.(3.7)

Since 1− (1−X2)2 = X2(2−X2), this functional has a compact support in
Π◦2, where Π◦N = Π◦ ∩�N for N ∈ N. Then, we consider the problem

a0
T (u2, v◦; Π◦3) = f2(v◦), where

a0
T (u2, v◦; Π◦3) := a◦(u2, v◦; Π◦3)− λ(M◦u2, v◦)Π◦3

+ T (u2, v◦)Π◦3
,(3.8)

which is posed in the space

H◦(Π◦J)

=
{
v ∈ H1(Π◦J) : P ◦v = 0 on ∂Π◦ ∩�J , v = 0 on ∂�J ∩Π◦

}
(3.9)

with J = 3. Problem (3.9) is uniquely solvable for large T > 0. This follows
from the Lax-Milgram lemma, since summing the Korn inequalities (1.8) in
$(α) ⊂ Π3, α 6= 0, and the inequality

‖v◦;H1($•)‖ ≤ c$•
(
a◦(v◦, v◦;$•) + ‖v◦;L2($•)‖2

)
,

we see that

a0
T (v◦, v◦; Π◦3) ≥ min{c−1

$ , c−1
$•}‖v

◦;H1(Π◦3)‖2

+(T − 1− λCM )‖v◦;L2(Π◦3)‖2.
We still denote

f3(v◦) = T (X3u
2, v◦)Π◦ +

(
A◦u2D(∇)X3, D(∇)v◦

)
Π◦

−
(
A◦D(∇)u2, v◦D(∇)X3

)
Π◦

(3.10)

By standard estimates,

‖u1;H(Π◦)‖+ ‖X3u
2;H(Π◦)‖ ≤ c‖f◦;H(Π◦)∗‖

hence, we observe that, first,

‖f3;H(Π◦)∗‖ ≤ c‖f◦;H(Π◦)∗‖
and, second,

the mapping f◦ 7→ f3 is compact in the space H(Π◦)∗,(3.11)

because each of the scalar products on the right-hand side of (3.10) has the
compactly supported factor X3 and contains derivatives of u2 or v◦ at most
in one position.

2◦. We now show that the parametrix can be defined by R0(λ)f◦ =
u1 + X3u

2. Notice that the calculation (3.12)–(3.14), with straightforward
changes, will be used several times in the sequel.

We calculate for all v◦ ∈ H(Π◦) using (2.25), (3.6) and taking into account
the support of the cut-off function,

B◦(u1)(v◦) =
(
AD(∇)

(
(1−X2)R(λ)−1f1

)
, D(∇)v◦

)
Π
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−λ
(
M(1−X2)R(λ)−1f1, v◦

)
Π

(3.12)

We commute here the cut-off function 1 − X2 to the right factor so that
(3.12) equals(

AD(∇)R(λ)−1f1, D(∇)
(
(1−X2)v◦

))
Π

−λ
(
M(R(λ)−1f1, (1−X2)v◦

)
Π

+
(
A◦u2D(∇)X2, D(∇)v◦

)
Π◦
−
(
A◦D(∇)u2, v◦D(∇)X2

)
Π◦
.(3.13)

Here we use (2.25) for the first two terms and (3.7) for the last ones: (3.12)
equals

B(λ)R(λ)f1
(
(1−X2)v◦

)
+ f◦

(
(1− (1−X2)2)v◦

)
= f1((1−X2)v◦)− f2(v◦) + f◦

(
(1− (1−X2)2)v◦

)
= f◦(v◦)− f2(v◦).

Hence,

B◦u1 = f◦ − f2.(3.14)

Commuting the cut-off function in the same way as in (3.12)-(3.13) and
taking into account (3.8), (3.10) yield

B◦(X3u
2)(v◦)

=
(
A◦D(∇)(X3u

2), D(∇)v◦
)

Π◦3
− λ

(
M◦(X3u

2), v◦
)

Π◦3

=
(
A◦D(∇)u2, D(∇)(X3v

◦)
)

Π◦3
− λ

(
M◦u2, (X3v

◦)
)

Π◦3

+
(
A◦u2D(∇)X3, D(∇)v◦

)
Π◦3
−
(
A◦D(∇)u2, v◦D(∇)X3

)
Π◦3

= f2(v◦) + T (u2, v◦)Π◦3

+
(
A◦u2D(∇)X3, D(∇)v◦

)
Π◦3
−
(
A◦D(∇)u2, v◦D(∇)X3

)
Π◦3

= f2(v◦) + f3(v◦) ⇒ B◦(X3u
2) = f2 + f3.(3.15)

In view of (3.14), (3.15), (3.11), setting R◦(λ)f◦ = u1 + X3u
2 yields the

desired parametrix. �

Our immediate goal is now to prove that a solution u◦ ∈ H(Π◦) of the
problem (3.1) inherits the exponential decay at infinity from the right-hand
side f◦.

We fix the spectral parameter λ satisfying (3.2). The subspace kerB◦(λ),
which consists of the solutions of the homogeneous problem (1.18), may
be non-trivial, since λ may still be an eigenvalue. However, the dimension
K = dim kerB◦(λ) is finite due to Proposition 3.1. Let u◦(1), . . . , u(K) ∈
H(Π◦) be a basis of kerB◦(λ). We can choose the number J ∈ N such that
the restrictions u◦(1)

∣∣
Π◦J
, . . . , u◦(K)

∣∣
Π◦J

are linearly independent in L2(Π◦J)n.

Moreover, we find vector functions ψ(1), . . . , ψ(K) ∈ H(Π◦J) (see (3.9)) such
that (

u◦(j), ψ(k)

)
Π◦J

= δj,k, j, k = 1, . . . ,K.(3.16)
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Proposition 3.3. For every λ as in (3.2), the problem

a◦(u[, v[; Π◦) − λ(M◦u[, v[)Π◦ +
K∑
k=1

(ψ(k), v
[)Π◦J

(u[, ψ(k))Π◦J

= f [(v[) ∀ v[ ∈ H(Π◦)(3.17)

has a unique solution u[ ∈ H(Π◦) for every f [ ∈ H(Π◦)∗, and there holds
the estimate

‖u[;H(Π◦)‖ ≤ c[‖f [;H(Π◦)∗‖

Proof. The functional

v 7→ f◦(v) = f [(v)−
K∑
k=1

f b(u◦(k))(ψ(k), v)Π◦J
,

clearly has the property

f◦(v) = 0 ∀ v ∈ kerB◦(λ).

Since the operator (2.24) is self-adjoint, problem (3.1) with the right-hand
side f◦ thus has a solution u◦ ∈ H(Π◦) which is defined up to an addendum
belonging to kerB◦(λ), i.e.,

u[ = u◦ + c1u
◦
(1) + . . .+ cKu

◦
(K).

The conditions (u◦, ψ(k))Π◦J
= 0, k = 1, . . . ,K make the solution u◦ unique.

It remains to set

cK = f [(u(k)), k = 1, . . . ,K. �

Let us now introduce the weighted spaceWκ(Π◦) of vector functions u◦ ∈
H2

loc(Π
◦)n which fulfill the boundary condition P ◦u◦ = 0 on ∂Π◦ and have

finite norm

‖u◦;Wκ(Π◦)‖ = ‖Eκu◦;H1(Π◦)‖,

where the weight function Eκ is defined for all κ ≥ 0 by

Eκ(x) =
d∏
j=1

max{1, eκ(|xj |−J−1/2)},(3.18)

and by Eκ(x) = E|κ|(x)−1 for κ < 0. The number J is fixed such that Eκ = 1

on suppψ(k) ⊂ Π◦J .

For κ > 0, any solution uκ := u[ ∈ Wκ(Π◦) ⊂ H(Π◦) of the problem
(3.17) must by definition satisfy the integral identity

a◦(uκ, vκ; Π◦) − λ(M◦uκ, vκ)Π◦ +
K∑
k=1

(ψ(k), v
κ)Π◦(u

κ, ψ(k))Π◦

= fκ(vκ) ∀ vκ ∈ W−κ(Π◦),(3.19)
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where

fκ ∈ W−κ(Π◦)∗(3.20)

is a continuous (anti)linear functional W−κ(Π◦) → C, which decays expo-
nentially at infinity, since it acts on the space of exponentially growing vector
functions.

Theorem 3.4. For every λ as in (3.2), there exists κ0 > 0 such that for
κ ∈ [0, κ0), problem (3.19) with right-hand side (3.20) has a unique solution
uκ ∈ Wκ(Π◦), which satisfies the estimate

‖uκ;Wκ(Π◦)‖ ≤ cκ‖fκ;W−κ(Π◦)∗‖

and coincides with the (unique) solution u[ ∈ H(Π◦) of the problem (3.17)

with the right-hand side f [ = fκ ∈ H(Π◦)∗.

Proof. For uκ ∈ Wκ(Π◦) and vκ ∈ W−κ(Π◦), we set uκ = E−κuκ, v =
Eκvκ ∈ H(Π◦). Then, we rewrite (3.19) as follows:

a◦(Eκuκ, E−κvκ; Π◦)− λ(M◦uκ,vκ)Π◦

+
J∑
k=1

(ψ(k),v
κ)Π◦(u

κ, ψ(k))Π◦ = fκ(vκ) := fκ(E−κvκ) ∀vκ ∈ H(Π◦).(3.21)

A simple computation gives us

r◦κ(uκ,vκ)

:=
(
AD(∇)(Eκuκ), D(∇)(E−κvκ)

)
Π◦
−
(
AD(∇)uκ, D(∇)vκ

)
Π◦

=
(
AD(∇)Eκ)uκ), (D(∇)E−κ)vκ

)
Π◦

+
(
A(D(∇)Eκ)uκ, E−κD(∇)vκ

)
Π◦

+
(
AEκD(∇)uκ, (D(∇)E−κ)vκ

)
Π◦
.

The inequalities ∣∣∣∂E±κ
∂xj

(x)
∣∣∣ ≤ κE±κ(x), j = 1, . . . , d,

hold for the weight Eκ, (3.18), and therefore

|r◦κ(uκ,vκ)| ≤ cκ‖uκ;H(Π◦)‖ ‖vκ;H(Π◦)‖.

In other words, the operators of the problems (3.21) and (3.17) differ by an
operator H(Π◦)→ H(Π◦)∗ with a small norm O(κ) as κ→ 0.

Thus, in view of Proposition 3.3, problem (3.21) is also uniquely solvable2

and therefore problem (3.19) has a solution uκ ∈ Wκ(Π=0) which is a solu-
tion of the problem (3.17) as well, because Wκ(Π◦) ⊂ H(Π◦) ⊂ W−κ(Π◦).
Hence, the claimed coincidence of the solutions follows from the uniqueness
statement in Proposition 3.3. �

2This and the further arguments in this proof are the very reason for inserting the sum
on the left-hand side of (3.19) into the integral identity (3.1).
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Note that a solution u◦ ∈ kerB◦(λ) of the problem (1.18) satisfies problem
(3.17) with the right-hand side

f [(v[) =

K∑
k=1

(ψ(k), v
[)Π◦(u

◦, ψ(k))Π◦ ,

which has a compact support and hence satisfies (3.20). This observation
yields the following

Corollary 3.5. If κ is as in Theorem 3.4, then there holds the inclusion
kerB◦(λ) ⊂ Wκ(Π◦).

3.2. Weyl sequences. In this section, the inclusion

σ ∪ σ◦di ⊂ σ]ess(3.22)

will be verified in a standard way, namely, by constructing singular sequences
for the operator A] at a point µ ∈ Σ∪Σ◦di, see, e.g., [3, §1 Ch. 9], [39, VII.12].

Let λ ∈ σ and µ = (1 + λ)−1 ∈ Σ. We consider the Floquet wave

w(x) = eiη
>αU(x−α) for x ∈ $(α) and α ∈ Zd, see (2.8), (2.9), and obtain

for any J ∈ N,

‖XJw;H(Π)‖2 ≥ (MXJw,XJw)Π ≥ (2J − 1)d.(3.23)

Here we took into account that the number of the cells (1.3) on which Xj = 1

is exactly (2J − 1)d. Furthermore, since w satisfies the purely periodic
problem in Π, we observe that, first,

a(w,Xjv; Π) = λ(Mw,XJv)Π ∀ v ∈ H(Π),

and, second, by (1.15), there holds

‖A◦(XJw)− µXJw;H(Π)∗‖ = sup
∣∣〈A◦(XJw)− µXJw, v〉

∣∣
= (1 + λ)−1 sup

∣∣a(XJw, v; Π)− λ(MXJw, v)Π

∣∣
= (1 + λ)−1 sup

∣∣∣(A(D(∇)XJ)w,D(∇)v
)

Π

−
(
AD(∇)w, (D(∇)XJ)v

)
Π
≤ CJd−1.(3.24)

Here, the supremum is computed over the unit ball of H(Π). To get the
inequality at the end of (3.24) we used the fact that ∇XJ 6= 0 only in the
set ΠJ \ ΠJ−1 which contains (2J + 1)d − (2J − 1)d = O(2d(2J)d−1) cells,
by (3.4), and that |D(∇)XJ(x)| ≤ cX uniformly with respect to J ∈ N.

The entries of the Weyl sequence are now defined as

W J(x) = ‖XJw;H(Π)‖−1X
α(J)
J (x)w(x− α(J)),(3.25)

where Xα
J (x) := XJ(x − α) for α ∈ Zd and the shift vectors α(J) ∈ Zd are

chosen such that

Π ∩ suppX
α(J)
J = Π] ∩ suppX

α(J)
J .
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Thus, the support of (3.25) belongs to the set

Π \
⋃
k∈N

$(αk)

which is nothing but the part of the perturbed medium (1.19) which coin-
cides with the original medium. The choice of the shift vectors is possible
because the distance of adjacent foreign cells increases unboundedly due to
the assumption (1.24). The condition

suppW J ∩ suppWK = ∅ for J 6= K(3.26)

can be satisfied for the same reason.
Formulas (3.25) and (3.26) readily imply the properties

1◦. ‖W J ;H(Π])‖ = 1 for all J ∈ N,
2◦. W J ⇁ 0 weakly in H(Π]) as J → +∞
The third property, which is needed in order to make {W J}∞J=1 into a Weyl
sequence, namely
3◦. ‖A]W J − µW J ;H(Π])‖ = 0 as J → +∞,
is a consequence of (3.23)–(3.25).

The proof of the inclusion Σdi ⊂ Σ]
ess is much simpler because of the

exponential decay of the eigenvectors of the problem (1.18), established in
Corollary 3.5. Indeed, we take a function w ∈ kerB◦(λ) with λ ∈ Σ◦d,
(Mw,w)Π◦ = 1, and obtain

‖XJw;H(Π◦)‖2 ≥ 1

2
− ‖(1−XJ)w;H(Π◦)‖2 ≥ 1

2
− ce−2κJ ,

‖A◦(XJw)− µXJw;H(Π◦)∗‖2

= (1 + λ)−1 sup
∣∣a◦(XJw, v; Π◦)− λ(M◦XJw, v)Π◦

∣∣
= (1 + λ)−1 sup

∣∣∣(A(D(∇)XJ)w,D(∇)v
)

Π◦
−
(
AD(∇)w, (D(∇)XJ)v

)
Π◦

≤ Ce−κJ ,(3.27)

where the supremum is taken over functions v belonging to the unit sphere
of H(Π◦). We define the vector function W J as in (3.25), by changing Π
into Π◦ and α(J) into αp, where p is chosen such that Lp ≥ J and (3.26)
holds, too. Now the properties 1◦-3◦ of a Weyl sequence follow from (3.25)
and (3.27), and the inclusion (3.22) is thus proven.

3.3. Parametrix. We fix the spectral parameter

λ ∈ R \ (σ ∪ σ◦di)(3.28)

and proceed to construct the right parametrix

R](λ) : H(Π])∗ → H(Π])(3.29)

for the operator B](λ) : H(Π]) → H(Π])∗ of the inhomogeneous problem
(1.22), i.e.

a](u], v]); Π])− λ(M ]u], v])Π] = f ](v]) ∀v] ∈ H(Π]).
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Accordingly, we will prove that the mapping

B](λ)R](λ)− Id : H(Π])∗ → H(Π])∗(3.30)

is compact, since in view of the self-adjointness of B](λ), this implies that
the operator B](λ) is Fredholm (cf. the explanation on the left parametrix
after Lemma 3.2) and thus

µ = (1 + λ)−1 /∈ σ].

This, together with the inclusion (3.22), complete the proof of Theorem 2.3.
The proof will be given in several steps. In the step a) we divide the

domain Π] into two parts, one inside the box �J (notation in (3.5)) and
one outside it, for some large enough J . We apply the result of Section 3.1
to treat a given right-hand side f ] in the bounded subdomain �J . In the
step b) we use a cut-off function to eliminate the right-hand side f ] near all
foreign cells and solve the problem in a purely periodic domain. In the step c)
we compensate the discrepancies caused by the previous approximations by
solving an infinite family of problems in Π◦. To show that all discrepancies
only give rise to a compact operator we use the exponential decay of the
solutions in Π◦ as explained in Section 3.1, the assumption on the sparse
distribution of the foreign cells, and the choice of a large enough number J
as a technical tool.
a). We fix an arbitrary natural number m > 1 and, by (1.24), assume

that the number J ∈ N is large enough so that Lp ≥ m for any cell $•(αp) ⊂
Π] \�J , cf. (1.19) and (1.23). Let us denote by α1, . . . , αk

}−1 the indices of
the cells $•(αk) which are contained in Π] ∩�J . For a moment, we regard
Π as a J-periodic domain in d directions, so that the side lengths of the
periodicity cells (call them J-cells) are equal to J . Let us define another
new domain

Π} = (Π] ∩�J) ∪ (Π \�J),

which is obtained from Π by changing only one J-cell, namely Π ∩ �J , by
another one, Π]∩�J . In the subdomain Π∩�J all J-cells remain unaltered.
Up to a rescaling, the domain Π} has the same geometric properties as Π◦

and in particular the results of Section 3.1 can be applied. More precisely,
we now fix a functional f ] ∈ H(Π])∗ and define the functional

f} ∈ H(Π})∗ , f}(v}) = f ](XJv
})(3.31)

so that supp f} ⊂ Π] ∩�J (i.e., f} vanishes on functions with support out-
side this subdomain). Next, we consider the analogue of the problem (3.1),
where all quantities with the superindex ◦ are replaced by those with index
} and where (3.31) is posed as the right-hand side. If the corresponding
problem operator is denoted by B} : H(Π})→ H(Π})∗, then the results of
Section 3.1 yield a parametrix R}(λ) : H(Π})∗ → H(Π}). We set

u1 = XJ+1R}(λ)f} ∈ H(Π]).(3.32)
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b). To treat f ] outside �J , we define

f1(v]) = f ]((1−XJ)v])(3.33)

and consider the purely periodic problem (with problem operator BΠ(λ) :
H(Π)→ H(Π)∗)

a(uΠ, vΠ; Π)− λ(MuΠ, vΠ)Π = fΠ(vΠ) ∀ vΠ ∈ H(Π),(3.34)

where

fΠ(vΠ) = f1(X2v
Π) and Xq(x) =

∏
k≥k}

(
1−Xq(x− αk)

)
, q = 1, 2.

We have X2 = 0 on all foreign cells $•(αk) ⊂ Π] \ �J , hence, fΠ ∈ H(Π)∗

and moreover,

|fΠ(v)| ≤ ‖f1;H(Π])∗‖ ‖X2v;H(Π])‖
≤ c‖f1;H(Π])∗‖

(
‖v;H(Π)‖+ ‖v∇X2;L2(Π)‖

)
≤ c‖f1;H(Π])∗‖ ‖v;H(Π)‖
⇒ ‖fΠ;H(Π)∗‖ ≤ ‖f ];H(Π])∗‖.(3.35)

Since λ /∈ σ by the assumption (3.28), the problem (3.34) has a unique
solution uΠ satisfying the estimate

‖uΠ;H(Π)‖ ≤ c‖fΠ;H(Π)∗‖ ≤ C‖f ];H(Π])∗‖.(3.36)

We set

u2 = (1−XJ−1)X1u
Π = (1−XJ−1)X1(BΠ)−1fΠ(3.37)

and observe that analogously to (3.35),

‖u2;H(Π])‖ ≤ c‖uΠ;H(Π)‖ ≤ C‖f ];H(Π])∗‖.

c). To compensate the discrepancy left by (3.37) we set

fX(v) = −
(
A(D(∇)XJ−1)uΠ, D(∇)v

)
Π

+
(
AD(∇)uΠ, (D(∇)XJ−1)v

)
Π
,

f(k)(v) = −f1(Xk
2 v) +

(
A(D(∇)Xk

1 )uΠ, D(∇)v
)

Π

−
(
AD(∇)uΠ, (D(∇)Xk

1 )v
)

Π
(3.38)

where we denote for q = 1, 2,

Xk
q = Xq ◦ τk with τk(x) := x− αk ∀x ∈ Rd, k ∈ N,(3.39)

and Xq is as in (3.4). Observe that the mapping f ] 7→ fX ∈ H(Π])∗ is
compact, for the same reasons as in (3.11).

For every k ∈ N, the functional (3.38) has a compact support in a neigh-
borhood of the foreign cell $•(αk), and the shifted functional

f◦(k)(v
◦) = f(k)(v

◦
(k)), v◦(k) = v◦ ◦ τk(3.40)
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belongs to H(Π◦)∗ and W−κ(Π◦)∗ for all κ. We recall that due to (3.28),
λ /∈ σ◦ = σ ∪ σ◦di. Using Theorem 3.4 we thus obtain for all k ∈ N, for any
κ ∈ (0, κ0) a solution u◦(k) ∈ Wκ(Π◦)∗ of the problem

a◦(u◦(k), v
κ; Π◦) − λ(M◦u◦(k), v

κ)Π◦ = f◦(k)(v
κ) ∀ vκ ∈ Wκ(Π◦),(3.41)

such that

‖u◦(k);Wκ(Π◦)‖ ≤ c0‖f◦(k);W−κ(Π◦)∗‖ ≤ c′0‖f◦(k);H(Π◦)∗‖.(3.42)

Notice that the functions ψ(k) of the equation (3.19) do not appear in (3.41),
since we are assuming that λ is not an eigenvalue of the problem (1.18) and
thus dim kerB◦(λ) = 0, see (3.28), the choice of the functions ψ(k) and the
discussion above (3.16).

Finally, we set

u3 =
∑
k≥k}

χk u
◦
(k) ◦ τ

k,(3.43)

where we define one more family of cut-off-functions by χk(x) = XLk/2 ◦
τk(x) = XLk/2(x − αk), k ∈ N, so that the supports of the terms in (3.43)
are mutually disjoint by the choice of the numbers Lk in (1.23).

We need to show that the map

H(Π])∗ 3 f ] 7→
∑
k≥k}

f̃3
(k) ∈ H(Π])∗,(3.44)

where

f̃3
(k)(v) = −

(
A(D(∇)χk)u

◦
(k) ◦ τ

k, D(∇)v
)

Π]

+
(
AD(∇)u◦(k) ◦ τ

k, (D(∇)χk)v
)

Π] ,(3.45)

is compact (since we will see that this sum appears in the discrepancy caused
by the series (3.43)). By the same argument as after (3.10) one can see that

a single mapping f ] 7→ f̃3
(k)(v) is compact, but this is not enough to conclude

the same property for the whole infinite sum of them. However, we take into
account the weight (3.18), which is of order O(eκLk/2) on the set

(τk)−1(Sk), where Sk = supp
(
|D(∇)χk|

)
,

see (3.4) and the definition of χk just above. Thus, we obtain for every
v ∈ H(Π]) with ‖v;H(Π])‖ ≤ 1 and for every k ≥ k}, by (3.45),

|f̃3
(k)(v)| ≤ c‖u◦(k) ◦ τ

k;H1(Sk)‖ = c
∥∥u◦(k);H

1
(
(τk)−1(Sk)

)∥∥
= ce−κLk/2‖eκLk/2u◦(k);H

1
(
(τk)−1(Sk)

)
‖ ≤ c′e−κLk/2‖u◦(k);Wκ(Π◦)‖.(3.46)

By (3.38), (3.33), (3.36), there also holds ‖f◦(k);H(Π◦)∗‖ ≤ c‖f ];H(Π])∗‖
for all k so that we get by (3.46), (3.42) and the disjointness of the supports
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of the functionals f◦(k)∑
k≥k}

eκLk‖f̃3
(k);H(Π])∗‖2 ≤ c

∑
k≥k}

‖u◦(k);Wκ(Π◦)‖2

≤ c′
∑
k≥k}

‖f◦(k);H(Π])∗‖2 ≤ cκ‖f ];H(Π])∗‖2.(3.47)

We can now conclude that the operator (3.44) is compact, since it can be
presented for any ε > 0 as the sum F ε(f ]) + F εcomp(f ]), where F εcomp is
compact and F ε has norm less than ε. Indeed, by the key assumption (1.24)
we can choose kε ≥ k} large enough such that cκe

−κLj ≤ ε2 for all j ≥ kε,
where the constant cκ is as in (3.47), and then define

F ε(f ]) =
∑
k≥kε

f̃3
(k).

so that (3.47) and the above choice imply

‖F ε(f ]);H(Π])‖2 ≤
∑
k≥kε

c−1
κ eκLjε2‖f̃3

(k);H(Π])‖2 ≤ ε2‖f ];H(Π])∗‖2.

The operator defined by the finite sum

F εcomp(f ]) =
∑
k<kε

f̃3
(k)

is compact by what was said about single terms.
d). We now define the parametrix (3.29) by combining the expressions

(3.32), (3.37) and (3.43):

R](λ)f ] = u1 + u2 − u3.(3.48)

To prove that (3.30) is indeed a compact operator, we fix v] ∈ H(Π]). First,
let us employ (3.31), (3.32):

B](λ)u1(v])

=
(
AD(∇)(XJ+1R}f}), D(∇)v]

)
Π}
− λ
(
MXJ+1R}f}, v]

)
Π}

=
(
AD(∇)R}f}, D(∇)(XJ+1v

])
)

Π}
− λ
(
MR}f}, XJ+1v

]
)

Π}

+
(
A(D(∇)XJ+1)R}f}, D(∇)v]

)
Π}
−
(
AD(∇)R}f}, v]D(∇)XJ+1

)
Π}
.(3.49)

Since XJ+1XJ = XJ , the penultimate row equals

B}(λ)R}(λ)f}(XJ+1v
]) = f}(XJ+1v

]) + K̃1f}(XJv
])

= f ](XJv
]) +K1f ](v]),

where K̃1 : H}(Π})∗ → H}(Π})∗ is a compact operator, and thus also the
operator K1 : H](Π])∗ → H](Π])∗ defined by

K1f ](v]) = K̃1f}(XJv
])(3.50)
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is compact. The last line of (3.49) is denoted by f̃1(v]), and the map

f ] 7→ f̃1 ∈ H(Π])∗ is compact, for the same reasons as in (3.11). We obtain

B](λ)u1(v]) = f ](XJv
]) +K1f ](v]) + f̃1(v]).(3.51)

Next, we use (3.33), (3.34) , the identities X1X2 = X2 and (1 −XJ)(1 −
XJ−1) = 1−XJ , and fΠ(v]) = f ](X2(1−XJ)v]). The following argument
is similar although much simpler than (3.49)–(3.51), since we can use the
unique solution of (3.34) instead of the parametrix R}:

B](λ)u2(v])

=
(
AD(∇)

(
(1−XJ−1)X1(BΠ)−1fΠ

)
, D(∇)v])

)
Π

−λ
(
M(1−XJ−1)X1(BΠ)−1fΠ), v])

)
Π

= f ](X2(1−XJ)v]) +
(
AuΠD(∇)

(
(1−XJ−1)X1

)
, D(∇)v])

)
Π}

−
(
AD(∇)uΠ, v]D(∇)

(
(1−XJ−1)X1

))
Π}

= f ](X2(1−XJ)v])−
(
A(D(∇)XJ−1)uΠ, D(∇)v]

)
Π

+
(
AD(∇)uΠ, (D(∇)XJ−1)v]

)
Π
,

+
∑
k≥k}

(
A(D(∇)Xk

1 )uΠ, D(∇)v]
)

Π

−
(
AD(∇)uΠ, (D(∇)Xk

1 )v]
)

Π

= f ](X2(1−XJ)v]) + fX(v]) +
∑
k≥k}

(
f(k)(v

]) + f1(Xk
2 v

])
)
,(3.52)

where we at the end used the notation (3.38).
Finally, by (3.43),

B](λ)u3(v])

=
∑
k≥k}

((
AD(∇)(χku

◦
(k) ◦ τ

k), D(∇)v]
)

Π]
− λ

(
Mχku

◦
(k) ◦ τ

k, v]
)

Π]

)
=
∑
k≥k}

((
AD(∇)(u◦(k) ◦ τ

k), D(∇)(χkv
])
)

Π] − λ
(
Mu◦(k) ◦ τ

k, χkv
]
)

Π]

+
(
A(D(∇)χk)u

◦
(k) ◦ τ

k, D(∇)v]
)

Π]

−
(
AD(∇)u◦(k) ◦ τ

k, (D(∇)χk)v
]
)

Π]

)
.

Here, the penultimate line is by (3.41), (3.40) equal to∑
k≥k}

f(k)(χkv
]),
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and the terms on the last line are equal to f̃3
(k)(v

]), by (3.45). Due to

the supports of the cut-off functions Xk
1 and χk, see (3.38), (3.43) we have

f(k)(χkv
]) = f(k)(v

]) for all k, hence,

−B](λ)u3(v]) = −
∑
k≥k}

(
f(k)(v

]) + f̃3
(k)(v

])
)
.(3.53)

Summing up (3.51), (3.52) and (3.53) (see (3.48)) yields for all v] ∈ H(Π]).

B](λ)R](λ)f ](v]) = f ](v]) +K1f ](v]) + f̃1(v]) + fX(v])−
∑
k≥k}

f̃3
(k)(v

]).

The right hand side forms, as desired, a compact perturbation of the identity
mapping of H(Π])∗, by the remarks around (3.50), (3.51), (3.39), (3.45). �

4. Possible generalizations.

4.1. Geometry. One can generalize the results of the previous sections
for example by considering, instead of a single cell $•, several types of
such cells $•(1), . . . , $

•
(m), which have the characteristics A•(q), M

•
(q) and P •(q),

1 = 1, . . . ,m, and satisfy the sparseness assumption (1.24) with sequences

{L(q)
p }p∈N for the cubes �p(q) ⊃ $•(q)(α

p
(q)) of size 2L

(q)
p + 1, cf. (1.23). The

essential spectrum of the problem (1.22) in the medium Π] with the family{
$•(q)(α

p
(q)) : p ∈ N, q = 1, . . . ,m

}
of inclusions is

σ]ess = σ ∪
m⋃
q=1

σ
◦,(q)
di

where σ
◦,(q)
di is the discrete spectrum of the problem (1.18) corresponding to

the foreign cell $•(q) instead of $•, see Sections 1.3 and 2.2.

One may also consider sparsely distributed identical conglomerates of mis-
cellaneous foreign inclusions. This can be done along the scheme which was
explained in Remark 1.2 in the simple case of the duplication of neighbouring
cells. The general case can be studied by using the coordinate dilation

x 7→ (τ−1
1 x1, . . . , τ

−1
d xd), τ = (τ1, . . . , τd) ∈ Nd,

which puts the conglomerate inside one cell of size one. It is worth mention-
ing that such affine transforms of Cartesian coordinates preserve the linear
elasticity equations in d = 2, 3, if one uses the Voigt-Mandel notation and
introduces artificial, non-physical, displacements, strains and stresses. See,
e.g. [20].

Our approach, with minor modifications, also applies to layer-like com-
posites, where the space Rd = ∪α∈Zd�(α) is replaced by the layer L� paved
with the cells

$� = $(α)× ω ⊂ Rd+d�
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where ω is a bounded Lipschitz domain in the space Rd� of dimension d� >
1.

Our method also works for lattices different from the cubic one, (1.2),
(1.1), for example, for the honeycomb lattice (cf. [19, 34]). One can find a
detailed description of such lattices, e.g., in [44].

4.2. Absolutely rigid inclusions in elasticity. Let Π ⊂ R3 be a triply
periodically perforated Euclidean space, namely, define the periodicity cells
by $ = � \ ω, where ω 6= ∅ is a Lipschitz domain inside the cube, ω ⊂ �.
Then, define the domain Π as in (1.1)–(1.3). We wish to study the linear
elasticity problem in Π with boundary conditions describing the contact
with absolutely rigid bodies ω(α), α ∈ Z3. However, due to the topology of
the situation, the usual Dirichlet condition (1.5) (corresponding to P = Id
in (1.12)) cannot be used now, since the forces acting on the surfaces ∂ω(α)
should be balanced by some weird, impossible non-physical activity.

Instead of the Dirichlet conditions, the following boundary conditions on
the isolated surfaces are appropriate from the mechanical point of view,

u(x) = d(x)cα, x ∈ ∂ω(α)(4.1) ∫
∂ω(α)

d(x)>D(ν(x))>A(x)D(∇)u(x)dx = 0 ∈ R6,(4.2)

where cα can be an arbitrary column in R6 and d(x) is the following 3× 6-
matrix of rigid motions,

d(x) =

 1 0 0 0 −2−1/2x3 2−1/2x2

0 1 0 2−1/2x3 0 −2−1/2x1

0 0 1 −2−1/2x2 2−1/2x1 0

 ;

compare with the structure of the matrix D> in (1.25). According to (4.1),
the displacement vector u is a rigid motion (a linear combination of the
three translations and three rotations) of the rigid body ω(α), while the six
relations in (4.2) make the traction force D(ν)>AD(∇)u (see the Hooke law
(1.27)) on the surface ∂ω(α) self-balanced.

The variational formulation of the elasticity problem is posed in the space

H(Π) = {u ∈ H1(Π)3 : u
∣∣
∂ω(α)

∈ Dα, α ∈ Z
}
,(4.3)

where

Dα = {u : u(x) = d(x− α)cα for some cα ∈ R6, x ∈ ∂ω(α)}.
Notice that the sequence {cα}α∈Zd is not fixed a priori, but it is found by
solving the whole problem. We also remark that the integral conditions
(4.2) have been derived form the integral identity (1.14) by using the Green
formula and the arbitrariness of cα in (4.3).

Although the space (4.3) is not formally included in the scheme of Sec-
tions 2 and 3, the method can still clearly be applied to prove the above
statements.
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In dimension d = 2 we have

D(∇)> =

(
∂1 0 2−1/2∂2

0 ∂2 2−1/2∂1

)
, d(x) =

(
1 0 2−1/2x2

0 1 −2−1/2x1

)
and A is a symmetric, positive definite matrix of size 3 × 3, whose entries
are real valued functions. In this case the Dirichlet boundary conditions
make sense, since any part of the two-dimensional plane can be reached
from outside it.

4.3. Kirchhoff plates. Let us consider a two-dimensional model of a thin
elastic anistropic plate see [22, 40, 26, 10] and many others. This is a fourth
order analogue of the (scalar) equation (1.4): in the operator (1.6), the real-
valued function matrix A of size 3 × 3 is assumed symmetric and positive
definite, but D(∇) is replaced by the second order column operator

D(∇)> =
( ∂2

∂x2
1

,
∂2

∂x2
2

,
√

2
∂2

∂x1∂x2

)
.

Repeating the proofs in this case would require many changes (for example,
the continuous weight functions (3.18) should be made differentiable), how-
ever, the scheme would work as a whole and it would lead to conclusions
similar to Theorem 2.3. We refrain from formulating the exact results and
instead only mention that in this elastic plate model, the Dirichlet (clamp-
ing) boundary conditions of the second order model are replaced by

u(x) = 0, ∂νu(x) = 0

on the edges of the plate, i.e. for x ∈ ∂Π. The boundary conditions, which
correspond to the Neumann or mixed conditions of the second order case,
are much more complicated, see the monographs cited above.

4.4. Piezoelectric media. We set d = 3, n = 4, N = 9 and denote
DE(∇) = ∇ and (as in (1.25)) DM(∇) = D(∇) , and introduce the 9 × 4-
and 9× 9-matrices

(4.4) D(∇) =

(
DM(∇) O6×1

O3×3 DE(∇)

)
, A =

(
AMM −AME

AEM AEE

)
;

the superscripts M and E stand for ”mechanical” and ”electrical”. Further-
more, AMM and AEE are the elastic and dielectric matrices, which are real,
symmetric, positive definite, and of sizes 6 × 6 and 3 × 3, respectively. No

restriction is posed on the real piezoelectric matrix AME =
(
AEM

)>
, except

that it is not the null matrix.
Although the matrix A is not symmetric, the spectrum of the piezoelec-

tricity system (1.4) with appropriate boundary conditions (1.5) is contained
in the set of non-negative real numbers, see for example [35, 31, 21] and oth-
ers. This is a consequence of the specific structure of the diagonal matrix

M(x) = %M(x)diag {1, 1, 1, 0}
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on the right-hand side of (1.4); here %M > 0 is the material density, see
Section 1.4, 2◦. The vector function u = (uM1 , u

M
2 , u

M
3 , u

E
4 )> is composed

of the displacement vector uM = (uM1 , u
M
2 , u

M
3 )> and the electric potential

uE = uE4 .
The Neumann boundary condition

D(ν(x))>A(x)D(∇)u(x) = 0, x ∈ ∂Π,

means that the holes ω(α) consist of vacuum, which is an insulator and
corresponds to a traction-free boundary.

The Dirichlet conditions

uM(x) = 0, uE(x), x ∈ ∂Π,(4.5)

correspond to the ideal contact of the piezoelectric medium with an abso-
lutely rigid conductor, but this setting has a clear physical sense only in the
case Rd \Π is a connected set. If the domain is perforated by isolated voids,
the conditions (4.5) must be reformulated in the same way as in Section
4.2 for both the mechanical and electric components, because the electric
potential becomes constant at each isolated conductor surface ∂ω(α); these
constans may differ from each other for different α.

The piezoelectricity problem can be reduced to a study of a self-adjoint
operator, see [35, 31, 21], but this operator contains a non- trivial integro-
differential operator term, the definition of which is only implicit. Applying
the theory of self-adjoint semibounded Hilbert space operators is still pos-
sible, but the calculations become quite troublesome, see the papers cited
above. It is thus more convenient to deal directly with the operators gener-
ated by the integral identities. The key observation in doing so is that for
matrices (4.4) we have

(AD(∇)u,D(∇)u)Π = a(u, u; Π) + b(u, u; Π),

a(u, u; Π) =
(
AMMDM(∇)uM, DM(∇)uM

)
Π

+
(
AEEDE(∇)uE, DE(∇)uE

)
Π

b(u, u; Π) =
(
AEMDM(∇)uM, DE(∇)uE

)
Π
−
(
AMEDE(∇)uE, DM(∇)uM

)
Π
.

Here, most importantly,

a(u, u; Π) ≥ cA‖D(∇)u;L2(Π)‖2

Re b(u, u; Π) = 0

so that the Lax-Milgram lemma can be applied. However, additional consid-
erations are needed for the investigation of the spectra of piezoelectric media
with either localized or sparsely placed defects, and we leave this topic to a
planned forthcoming papers by the authors.
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Appl. 60, Birkhäuser, Basel, 1993.

[19] P. Kuchment, O. Post, On the spectrum of carbon nano-structures. Communications
in Mathematical Physics. 275, 3 (2007), 805–826.

[20] S. Langer, S.A. Nazarov, M. Specovius-Neugebauer, Affine transformations of threed-
imensional anisotropic media, and explicit formulas for fundamental matrices. Prikl.
Mekh. Techn. Fizika. 47, 2 (2006), 95-102 (English transl. J. Appl. Mech. Techn.
Physics 47,2 (2006), 229-235).

[21] G. Leugering, S.A. Nazarov, J. Taskinen, Umov-Poynting-Mandelstam radiation con-
ditions in periodic composite piezoelectric waveguides. Asympt. Anal. 111 (2019),
69–111.

[22] S. G. Mikhlin, Variational methods in mathematical physics, 2nd corrected and aug-
mented ed. Nauka, Moscow, 1970 (English transl. of 1st ed. Macmillan Co., New
York, 1964).

[23] S. Molchanov, B. Vainberg, Scattering on the system of sparse bumps: multidimen-
sional case. Applicable Analysis 71 (1–4), 167–185.



SPARSELY PLACED FOREIGN INCLUSIONS 31

[24] S. Molchanov, B. Vainberg, Spectrum of multidimensional Schrödinger operators with
sparse potentials. Analytical and Computational Methods in Scattering and Applied
Mathematics, Chapman & Hall/CRC, Newark, DE (1998), 231–254,.

[25] S.A. Nazarov, Elliptic boundary value problems with periodic coefficients in a cylin-
der. Izv. Akad. Nauk SSSR. Ser. Mat. (1) 45 (1981), 101–112 (English transl. Math.
USSR. Izvestija (1) 18 (1982), 89–98).

[26] S.A. Nazarov, Asymptotic theory of thin plates and rods. Dimension reduction and
integral bounds (Russian). Nauchnaya Kniga, Novosibirsk, 2002.

[27] S.A. Nazarov, The spectra of rectangular lattices of quantum waveguides. Izv. Ross.
Akad. Nauk. Ser. Mat. 81 (2017), 31–92 (English transl. Math. Izvestiya 81 (2017),
31–92).

[28] S.A. Nazarov, Breakdown of cycles and the possibility of opening spectral gaps in
a square lattice of thin acoustic waveguides. Izv. Ross. Akad. Nauk. Ser. Mat. 82
(2018), 4–51 (English transl. Math. Izvestiya 82 (2018), 1148–1195).

[29] S.A. Nazarov, Asymptotics of eigenvalues and eigenfunctions in a thin square Dirichlet
lattice with a curved ligament. Matem. Zametki, to appear in April 2019.

[30] S.A. Nazarov, B.A. Plamenevsky, Elliptic problems in domains with piecewise smooth
boundaries. Walter de Gruyter, Berlin, New York, 1994.

[31] S.A. Nazarov, K. Ruotsalainen, M. Silvola, Trapped modes in piezoelectric and elastic
waveguides. J. Elasticity 124(2016), 193–223.

[32] S.A. Nazarov, K. Ruotsalainen, J. Taskinen, Essential spectrum of a periodic elastic
waveguide may contain arbitrarily many gaps. Applicable Anal. 89,1 (2010), 109–124.

[33] S.A. Nazarov, K. Ruotsalainen, J. Taskinen, Spectral gaps in the Dirichlet and Neu-
mann problems on the plane perforated by a double periodic family of circular holes.
Probl. mat. analiz. Novosibirsk 62 (2011), 51–100 (English transl. Journal of Math.
Sci. 181,2 (2012), 164–222).

[34] S.A. Nazarov, K. Ruotsalainen, P. Uusitalo, Asymptotics of the spectrum of the
Dirichlet Laplacian on a thin carbon nano-structure. C. R. Mecanique 343 (2015),
360–364.

[35] S.A Nazarov, J. Taskinen, Spectral gaps for periodic piezoelectric waveguides.
Zeitschrift Angew. Math. Phys. 66 (2015), 3017–3047.

[36] S.A. Nazarov, J. Taskinen, Essential spectrum of a periodic waveguide with non-
periodic perturbation J. Math.Anal.Appl. 463 (2018) 922–933.
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