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Abstract. We show that the spectrum of the Dirichlet problem for the Laplace
operator −∆ in the plane R2 perforated by a double-periodic family of holes
contains any a priori number of gaps, for sufficiently large holes. While this result
was already known in the case of circular holes, we consider here a more general
geometric setting with holes of the shape {|x1|µ + |x2|µ ≤ r}, 1 < µ < ∞.

1. Introduction

This work is a generalization of the results contained in the paper [7], which deals
with a singular perturbation problem for the spectrum of the Dirichlet-Laplacian
in the plane R2 with doubly periodic perforation. The motivation of the problem
arises from a physical example modelled by the linear water wave equation, namely
the propagation of surface waves over a layer of an ideal fluid with a double-periodic
family of obstacles, which was studied in the article [5]. It has turned out that
the structure of the spectrum may be interesting from both the mathematical and
physical points of view, since in some geometric situations spectral gaps may occur.
As is well known, existence of spectral gaps has immediate effects on the wave’s
propagation in the given medium: waves can not propagate in the frequency range
corresponding to gaps. A similar effect of the geometry to the spectrum may also
arise for example in the framework of acoustic waves.

The reference [7] only concentrates on circular holes. We aim to extend the results
to more general geometric settings, in which more complicated singularities can arise
at the boundary of the limit domain (terminology explained in the sequel). We refer
to [7] for a more thorough exposition on the background and literature.

We consider the Dirichlet problem for the Helmholtz equation

(D)

{

−∆u(x) = λu(x), x ∈ Πµ
R,

u(x) = 0, x ∈ ∂Πµ
R,

where ∆ is the Laplace operator with respect to the variable x ∈ Πµ
R ⊂ R2 and

λ ∈ C is the spectral parameter. The domain Πµ
R is a doubly periodic perforated

plane defined as follows. Let α = (α1, α2) ∈ Z
2 be a multi-index, 1 ≤ µ < +∞ and

Bµ
R be the disk in R2 defined by

Bµ
R = {x = (x1, x2) ∈ R

2 : (xµ
1 + xµ

2 )
1/µ = R}.
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We set

Bµ
R

(

α+
1

2

)

=
{

x = (x1, x2) :
(

x1 − α1 −
1

2
, x2 − α2 −

1

2

)

∈ Bµ
R

}

,

and let Πµ
R be the plane R2 perforated by the periodic family of µ-depending holes

(Bµ
R(α + 1/2))α∈Z2, i.e.

Πµ
R = R

2 \
⋃

α∈Z2

Bµ
R

(

α +
1

2

)

.

Let Q be the unit square in R2 with center in the origin. We define, for j = 1, 2 :

Sj+
R = {x ∈ ∂Q : xj =

1

2
, |x3−j| <

1

2
−R},

and

Sj−
R = {x ∈ ∂Q : xj = −

1

2
, |x3−j | <

1

2
−R}.

Finally we set

TR ≡ ∂QR \
⋃

j=1,2

(Sj+
R ∪ Sj−

R ).

To underline the singular perturbation features of our problem we switch from the
parameter R ∈]0, 1/2[ to the parameter

ǫ =
1

2
−R > 0,

and we define the periodicity cell:

Qµ := Qµ
ǫ =

{

x ∈ Q :
(

∣

∣

∣

∣

x1 −
1

2

∣

∣

∣

∣

µ

+

∣

∣

∣

∣

x2 −
1

2

∣

∣

∣

∣

µ
)1/µ

>
1

2
− ǫ

}

.

In the limit case of ǫ = 0, we get the bell-flower domain

Qµ
0 =

{

x ∈ Q :
(

∣

∣

∣

∣

x1 −
1

2

∣

∣

∣

∣

µ

+

∣

∣

∣

∣

x2 −
1

2

∣

∣

∣

∣

µ
)1/µ

>
1

2

}

.

Obviously, the domains Qµ are Lipschitz but Qµ
0 is not. The main result we prove

is the following

Theorem 1.1. Given N ∈ N, there exists ǫ(N) > 0 such that for 0 < ǫ ≤ ǫ(N)
the spectrum σ of the problem (D) has at least N gaps [aj , bj], j = 1, . . . , N , where

aj < bj, σ ∩ [aj , bj] = ∅ and σ ∩ [bj−1, aj] 6= ∅ for all j.

The theorem will be a corollary of the more detailed statements of Theorem 3.2
and Corollary 3.3. The general band-gap structure of the spectrum of (D) is ex-
plained in the sequel, see (2) and (3).

Notation. By c, C, C ′ etc. (respectively, Cn) we denote positive constants inde-
pendent of the variables, parameters or functions (resp. depending on the parameter
n) in the given expressions. However, most of the quantities in the following depend
also on the number µ, but this will usually not be displayed. By (f, g)Ω we denote
the L2(Ω)-inner product of functions f, g ∈ L2(Ω). We use standard notation for
Sobolev spaces, in particular H1(Ω) denotes the Sobolev-Hilbert space of L2(Ω)-
functions with weak derivatives in L2(Ω), and H1

0 (Ω) is its subspace consisting of
functions with vanishing traces on the boundary.
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2. Problems on bounded domains.

The Floquet-Bloch transform, also known as the Gelfand transform, is defined for
functions on Πµ

R by

u 7→ U(y, η) =
1

2π

∑

α∈Z2

e−iη·(x+α)u(x+ α) , y ∈ Qµ.

For more information about this, see e.g. [7], [6]. This transforms the problem (D)
into the following parameter η ∈ [−π, π[×[−π, π[ -dependent problem in the cell Qµ,

(D′)







∆U(y, η) = Λ(η)U(y, η), y ∈ Qǫ, η ∈ [−π, π[2,
U(y, η) = 0, y ∈ Tǫ,
U |Sj+

ǫ
= eiηjU |Sj−

ǫ
, j = 1, 2,

where Λ(η) is a spectral parameter and its connection with λ is explained below. Let
Hǫ(η) be the subspace of H1(Qǫ) satisfying the η-dependent boundary conditions
on Tǫ and Sj±

ǫ of the problem (D′). Clearly this is a closed subspace of H1(Qǫ) for
the topology induced by the standard inner product of H1(Qǫ), and thus it is itself
a Hilbert space, for all η. The weak solutions of (D′) are the solutions in Hǫ(η) of
the variational identity

(1) (∇U(·, η),∇V )Qǫ = Λ(η)(U(·, η), V )Qǫ ∀ V ∈ Hǫ(η).

Note that the quadratic form on the left-hand side is closed and non-negative with
dense domain Hǫ(η) ⊂ L2(Qǫ) . By the quadratic form theory for semibounded dif-
ferential operators (see e.g. [9]), the problem (1) can be associated with a self-adjoint
operator A(η) on Hǫ(η), the spectrum of which is discrete due to the compactness
of the embedding Hǫ(η) → L2(Qǫ). Hence, the spectrum of the problem (D′) is
discrete for each fixed η, and consists of the increasing sequence

(2) 0 ≤ Λǫ
1(η) ≤ Λǫ

2(η) ≤ Λǫ
3(η) ≤ · · · → ∞

of eigenvalues, multiplicities taken into account. We can also assume that the set of
eigenfunctions (U ǫ

n(η))n∈N associated with the identity (1) is a complete orthonormal
set in L2(Qǫ).

It is also known that the functions

η 7→ Λǫ
n(η)

are continuous (see e.g. [10, Chapter 6]), so that the sets Υn = {Λǫ
n(η) : η ∈ [−π, π[2}

are (possibly overlapping) closed real intervals. The Floquet-Bloch-Gelfand theory
(see e.g. [11], [12]) states that the spectrum σ of the original problem (D) and the
spectra of the problems (D′) are related by

(3) σ =
⋃

n∈N

Υn.

Our main result will follow by proving estimates for the endpoints of the intervals
Υn.

We next consider the limit problem, which formally corresponds to the case ǫ = 0.
Note that the domain Qµ

0 is no more Lipschitz, since four µ-power outer cusps appear
at its boundary. We identify the vertices of these cusps with θj+, θj−, j = 1, 2, where

θ1± =
(

±
1

2
, 0
)

, θ2± =
(

0,±
1

2

)

.
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We define also the Hilbert space H0 as the subspace of H1(Q0) such that

V (x) = 0 in the trace sense, for all x ∈ T 0 = ∂Q0 \ {θ
j± : j = 1, 2}.

The variational setting for the limit problem (D
′

0) in Q0 is

(4) (∇U0,∇V )Q0 = Λ0(U0, V )Q0 ∀V ∈ H0

where U0 is to be found in H0, too. We want to show that the non-negative self-
adjoint operator A0 on H0 associated with the closed quadratic form on the left
hand-side of (4) has discrete spectrum. According to the theory of densely defined
and symmetric quadratic forms (see e.g. [9, Chp.10]), it is sufficient to show that H0

is compactly embedded in L2(Q0). This is not trivial, because the functions in H0

might be unbounded in a neighbourhood of θj± in ̟0.
In the following we define, for a given δ > 0, the Lipschitz domain

Q0(δ) = {x ∈ Q0 : |xj| <
1

2
− δ, j = 1, 2},

and R0(δ) = Q0 \Q0(δ)

Proposition 2.1. The embedding operator

ι : H0 →֒ L2(Q0)

can be represented for all δ > 0 as the sum of the compact operator K : H1
0 (Q0(δ)) →

L2(Q0) and a bounded operator L : H1(R0(δ)) → L2(R0(δ)) with the estimate ‖J‖ =
O(δµ) for its operator norm. In particular ι is a compact operator.

Proof. We use here the ideas and tricks developed in [7]. We divide this proof to
two steps.
Step 1. We first derive a weighted estimate (6). Let us write the Cartesian coordi-
nates y = (y1, y2) in such a way that the peak θ1+ is locally given by the relations

y1 > 0, |y2| < Y0(y1) ≡
1

2
−

∣

∣

∣

∣

1

2µ
− |y1|

µ

∣

∣

∣

∣

1
µ

.

Using the Taylor expansion for y1 = 0, we get

(5) Y0(y1) = c(µ)2µ−1yµ1 +O(y2µ1 ), Y0(y1) ≥ yµ1 .

Note that if U ∈ H0, then U(y1, ·) lies in H1
0 ([−Y0(y1), Y0(y1)]) for almost all y1 > 0.

Thus we can use the one-dimensional Poincaré inequality to get

1

Y0(y1)2

∫ Y0(y1)

−Y0(y1)

|U(y)|2 dy2 ≤ c

∫ Y0(y1)

−Y0(y1)

∣

∣

∣

∣

∂U

∂y2
(y)

∣

∣

∣

∣

dy2, U ∈ H0

We now introduce a smooth positive function ρ on the set Q0 \ {θ
j± : j = 1, 2} such

that ρ coincides with dist(x, ∂Q0) for all x in a neighbourhood of {θj± : j = 1, 2} in
Q0. We then integrate the former equality with respect to y1 to get

(6)

∥

∥

∥

∥

U

ρµ

∥

∥

∥

∥

2

L2(Q0)

≤ c1

∫ 1

0

1

Y0(y1)2

∫ Y0(y1)

−Y0(y1)

|U(y)|2 dy2dy1 ≤ 4cc1‖∇U‖2L2(Q0)
,

where U ∈ H0, and the first inequality is trivial for big y1, whereas for y1 → 0 we
have to use the Taylor expansion (5).
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Step 2. To complete the proof we assume δ > 0 is given and we define for all the
non-negative cut-off function χδ ∈ C∞(R2,R) such that

χδ(x) =

{

1, if |x− θj±| ≤ δ, j = 1, 2,
0, if |x− θj±| > 2δ, j = 1, 2.

Let U ∈ H1(Q0). We write

U = χδU + (1− χδ)U ≡ χδU + g

where g ∈ H1(Q0) has support in Qδ, which is a Lipschitz domain. By the Rellich-
Kondrachov theorem we already know that the embedding of H1(Qδ) in L2(Q0) is
compact. Thus we only need to prove that χδU has L2-norm of order δµ. Note that

‖χδU‖2L2(Q0)
=

∫

Q0

|χδU |2 dx ≤

∫

R0(2δ)

ρ2µ|ρ−µU |2 dx

≤ (2δ)2µ
∫

R0(2δ)

|ρ−µU |2dx ≤ cδ2µ‖U‖2H1(Q0)
≤ Cδ2µ,

which concludes the proof. �

Consequently, the spectrum of the self-adjoint operator associated with the limit
problem (4) is discrete. We denote the unbounded sequence of eigenvalues and the
corresponding eigenfunctions by

(7) (Λ0
n)n∈N , (Un)n∈N,

and keep in mind the orthonormalization (Um, Un)Q0 = δm,n.
The following result can be proven as Proposition 2.1 in [7].

Proposition 2.2. For any n ∈ N and h ∈ R, h ≥ 0, the weighted norms

‖ρ−h∇U0
n‖L2(Q0), ‖ρ−h−µU0

n‖L2(Q0),

are finite. Here ρ is the smooth function introduced in the proof of Proposition 2.1.

At the end of this section we give an argument showing that the eigenfunctions U0
n

actually vanish at the vertices θj±. A proof for this can be constructed by following
the references [1], [2], [3], [8], but for the sake of simplicity we collect the details
here. Notice that under our geometric assumptions, the cusps of the limit domain
can become very sharp for large µ. Thus the Sobolev embedding H2(Q0) →֒ C(Q0)
can fail, as pointed out in [4, Thm 8.2.1]. Nevertheless by standard elliptic regularity
theory we know that the eigenfunctions lie in all the spaces Hk(Q0), for all k ∈ N.
This implies that for each µ > 1 there exists a sufficiently big k ∈ N such that the
embedding Hk(Q0) →֒ C(Q0) holds. From this and Corollary 8.2.1 in [4] we deduce
that the eigenfunctions are also in C(Q0).

We continue by the following exponential decay argument. Let the numbers ǫ and
δ be fixed such that 0 < ǫ < 2ǫ < δ < 1, let r(x) = minj± dist(x, θj±) and let E(x)
be the regularized distance function defined by

E(x) =











eβ/ǫ, if r(x) < ǫ,

eβ/r(x), if ǫ ≤ r(x) < δ,

eβ/δ, if r(x) ≥ δ,
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for all x ∈ Q0, β > 0. If u is an eigenfunction of the limit problem (4), it is clear that
the function E2u is an admissible test function in the equality (4) as well. Setting
also U = Eu there we get that

Λ

∫

Q0

E2u2 dx =

∫

Q0

(∇u) · ∇(E2u) dx =

∫

Q0

(∇u) · ∇(EU) dx

=

∫

Q0

E(∇u) · ∇U dx+

∫

Q0

U(∇u) · ∇E dx =

∫

Q0

|∇U |2 dx−

∫

Q0

E(∇u) · ∇U dx

+

∫

Q0

E(∇u) · ∇U dx−

∫

Q0

|∇E|2u2 dx,

Hence,
∫

Q0

|∇U |2 dx =

∫

Q0

|∇E|2
U2

E2
dx+ Λ

∫

Q0

E2u2 dx.

Now we use the easy inequalities |∇E(x)|2 ≤ β2r(x)−4E(x)2 and eβ/δ ≤ E(x) ≤ eβ/ǫ

for all x ∈ Q0, to get
∫

Q0

|∇U |2 dx ≤ β2

∫

Q0

U2

r4
dx+ Λe2β/ǫ

∫

Q0

u2 dx.

The weight inequality (6) and the boundedness of r(x) yield

(c− β2)

∫

Q0

U2

r4
dx ≤ Λe2β/ǫ

∫

Q0

u2 dx

for some constant c > 0 independent of ǫ. In particular, choosing β such that
0 < β2 < c we obtain

e−
2β
ǫ

∫

Q0

U2

r4
dx ≤ cλ < ∞.

Hence, both of the integrals

e−
2β
ǫ

∫

Q0∩{x:r(x)≤e−β/2ǫ}

U2r−4 dx , e−
2β
ǫ

∫

Q0∩{x:r(x)>e−β/2ǫ}

U2r−4 dx,

are bounded for all ǫ > 0. The first one gives
∫

Q0∩{x:r(x)≤e−β/2ǫ}

U2 dx ≤ e−
2β
ǫ

∫

Q0∩{x:r(x)≤e−β/2ǫ}

U2r−4 dx < ∞,

for all ǫ > 0. This implies that u has a very fast exponential decay in L2 norm in
a neighbourhood of the cusps, thus locally pointwise at the cusp vertices. Thus the
eigenfunctions are also in C∞(Q0).

3. Opening gaps in the spectrum of the Dirichlet problem

We first prove upper and lower estimates, cf. (8) and (17) and Theorem 3.2, for
the endpoints of the spectral bands of the problem (D′) in Qǫ. These will be enough
to verify the existence of the spectral gaps. The idea is to show that the eigenval-
ues Λǫ

n(η) ∈ Υn can be approximated by the limit problem eigenvalue Λn for small ǫ.
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We start by stating an upper bound: the inequality

(8) Λǫ
n(η) ≤ Λ0

n

holds for all n ≥ 1, for all η ∈ [−π, π[2. The proof is similar to the one in [7], but
for the convenience of the reader we sketch the proof.

Recall the max-min formula for the eigenvalues of the ǫ-perturbed problem,

Λǫ
n(η) = max

Hǫ
n(η)

inf
U

(∇U,∇U)Qǫ

(U, U)Qǫ

,

where the infimum is taken over non-zero functions U ∈ Hǫ
n(η) and Hǫ

n(η) is an
arbitrary linear subspace of Hǫ(η) of codimension n− 1.
In view of the remark at the end of the previous section it is possible to extend by zero
the eigenfuctions (U0

k )k of the limit problem in Q0 to the larger domain Qǫ, and with
a little abuse of notation we use the symbols U0

k also for these extensions. It is easy
to verify that U0

k ∈ Hǫ(η) for all k. Since {U0
k : k ≥ 1} was a complete orthonormal

set, the extended functions U0
1 , . . . , U

0
n are still linearly independent. Thus, each

subspace Hǫ
n(η) in the max-min principle contains a non-trivial combination

U =
n

∑

k=1

akU
0
k ,

n
∑

k=1

|ak|
2 = 1,

where the coefficients ak depend on the subspace Hǫ
n(η). We recall that the eigen-

values (Λ0
k)

n
k=1 associated with the eigenfunctions U0

1 , . . . , U
0
n are taken in increasing

order. Using this fact we substitute the functionU in the max-min principle, getting
the following chain of inequalities:

Λǫ
n(η) ≤ max

Hǫ
n(η)

(∇U,∇U)Qǫ

(U,U)Qǫ

= max
Hǫ

n(η)

∑n
k,j=1 akaj(∇U0

k ,∇U0
j )Q0

∑n
k=1 |ak|

2(U0
k , U

0
k )Q0

= max
Hǫ

n(η)

∑n
k=1 |ak|

2Λ0
k

∑n
k=1 |ak|

2
≤ Λ0

n.

Here we have used the normalization condition (U0
k , U

0
k )Q0 = 1 for all k, cf. (7).

This yields the upper bound (8), and we note here that this reasoning is valid for
all µ > 1, according to the regularity remark at the end of the previous Section.

The proof of the lower estimate, see (17), is more complicated. We begin by
writing the Rayleigh quotient for the eigenvalues of the limit problem in Q0:

(9) Λ0
n = max

H0
n

inf
U

(∇U,∇U)Q0

(U0, U0)Q0

.

Again, the infimum is taken over non-trivial functions U in an arbitrary linear sub-
space H0

n of H0 of codimension n− 1.
We want to define appropriate test-functions with domain contained in Q0. Defining

Q̂ǫ ≡ {x ∈ Q : (1 + 2ǫ1/µ)x ∈ Qǫ}

we note that Q̂ǫ ⊂ Q0. (The reader may notice that there is an error at this point
in the definition of the corresponding dilated set in the reference [7]: the previous
inclusion does not hold there. However, this can easily be corrected and it does not
affect the validity of the result of the citation.) Hence, we can consider the function

x 7→ U ǫ
k((1 + 2ǫ1/µ)x, η), x ∈ Q̂ǫ,
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whose domain is now included in Q0. Unfortunately this cannot be extended by
zero to the whole of Q0 because of the quasiperiodicity conditions on Sj±

ǫ ⊂ ∂Qǫ,
although it can be extended by zero to

Q0 ∩

{

x ∈ Q : |xj | <
1

2
−

ǫ1/µ

1 + 2ǫ1/µ
, j = 1, 2

}

,

due to the Dirichlet boundary condition on the curved part of ∂Q̂ǫ. We use the
same name U ǫ

k(x, η) for this extension. We need to multiply these functions by an
appropriate cut-off function. To this end we define the smooth real-valued function
ϕ ∈ C∞(R) such that ϕ(t) = 1, if t ≤ 1, and ϕ(t) = 0, if t ≥ 2, and set

ϕǫ(t) = ϕ
(

tǫ−1/µ(1 + 2ǫ1/µ)
)

,

and

χ(ǫ, x) =
(

1− ϕǫ

(1

2
− |x1|

))(

1− ϕǫ

(1

2
− |x2|

))

.

Notice that this cut-off function χ vanishes, if one of the coordinates xj satisfies
|xj | ≥ 1/2 − s(ǫ), whereas it takes the value 1, if |xj | < 1/2 − 2s(ǫ) for all j. Here
we have set

s(ǫ) =
ǫ1/µ

1 + 2ǫ1/µ
.

In particular χ vanishes on the segments of the boundary of Q̂ǫ, where the quasiperi-
odicity conditions for U ǫ

k hold. Thus the new function Uǫ
k with domain Q̂ǫ, defined

by

Uǫ
k(x, η) = χ(ǫ, x)U ǫ

k((1 + 2ǫ1/µ)x, η),

can be extended by zero to the Sobolev class H1
0 (Q0).

Let us state a weighted estimate for the eigenfunctions of the new problem; we
skip the proof since the calculations are very similar to the proof of [7, Lemma 3.1].

Proposition 3.1. For all n ∈ N there exist positive constants Cn and ǫn such that

the eigenfuctions U ǫ
n of the problem (1) satisfy the inequality
∥

∥

∥

∥

∇U ǫ
n(·, η)

(ρ+ ǫ1/µ)µ

∥

∥

∥

∥

L2(Qǫ)

+

∥

∥

∥

∥

U ǫ
n(·, η)

(ρ+ ǫ1/µ)2µ

∥

∥

∥

∥

L2(Qǫ)

≤ Cn

for all ǫ ∈]0, ǫn] and η ∈ [−π, π[2, where ρ is the weight in the estimate (6).

Turning back to the Rayleigh quotient (9), we want to verify that the functions
Uǫ

1, . . . ,U
ǫ
n are linearly independent for any n > 1, so that each subspace Hn ap-

pearing in the max-min principle (9) contains their linear combination

Vǫ =

n
∑

k=1

aǫkU
ǫ
k,

n
∑

k=1

|aǫk|
2 = 1.

We set

(10) χ1(ǫ, x) = χ(ǫ, (1 + 2ǫ1/µ)−1x)

for all x ∈ Q0, and for the sake of simplicity, we omit the explicit reference to ǫ for
the functions in the following calculations. Recalling the orthonormality conditions
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on the eigenfunctions Un, a change of the integration variable yields

(Uk,Um)Q0 =

∫

Q̂ǫ

χ2(x)Uk((1 + 2ǫ1/µ)x)Um((1 + 2ǫ1/µ)x) dx

=
1

(1 + 2ǫ1/µ)2

∫

Qǫ

χ2
1Uk(·, η)Um(·, η) dx

=
1

(1 + 2ǫ1/µ)2
(χ2

1Uk, Um)Qǫ

=
1

(1 + 2ǫ1/µ)2
δk,m −

1

(1 + 2ǫ1/µ)2
((1− χ2

1)Uk, Um)Qǫ.

From this we deduce that the functions U1, . . . ,Un form an “almost orthonormal”
set in L2(Q0). Indeed, setting

Q∗
ǫ = {x ∈ Qǫ : ρ(x) < cs(ǫ)},

we have (1− χ1(x)) 6= 0 only, if x ∈ Q∗
ǫ and we deduce that

|((1− χ2
1)Uk, Um)Qǫ| ≤ ‖Uk‖L2(Q∗

ǫ )‖Um‖L2(Q∗

ǫ )

≤ (‖ρ‖L∞(Q∗

ǫ ) + ǫ1/µ)4µ
∥

∥

∥

∥

Uk

(ρ+ ǫ1/µ)2µ

∥

∥

∥

∥

L2(Q∗
ǫ )

∥

∥

∥

∥

Um

(ρ+ ǫ1/µ)2µ

∥

∥

∥

∥

L2(Q∗
ǫ )

≤ Cnǫ
4,(11)

where we used Proposition 3.1. Hence, for k 6= m the estimate (11) implies

|(Uk,Um)Q0| = (1 + 2ǫ1/µ)−2|((1− χ2
1)Uk, Um)Qǫ| ≤ Cnǫ

4.

On the other hand, if k = m, then

|(Uk,Uk)Q0| = (1 + 2ǫ1/µ)−2|(1− (1− χ2
1Uk, Uk)L2(Qǫ))|

≤ (1 + 2ǫ1/µ)−2(1 + Cnǫ
4) ≤ (1 + Cnǫ

4).

In particular, for ǫ small enough, the functions Uǫ
1, . . . ,U

ǫ
n are linearly independent

for all n > 1.

Putting the test-function V in the Rayleigh quotient (9) we get

Λ0
n ≤ sup

H0
n

(∇V,∇V)Q0

(V,V)Q0

= sup
H0

n

∑n
k,j=1 a

ǫ
ka

ǫ
j(∇Uǫ

k,∇Uǫ
j)Q0

∑n
k,j=1 a

ǫ
ka

ǫ
j(U

ǫ
k,U

ǫ
j)Q0

.(12)

The inner product in the numerator on the right-hand side is explicitly given by

(13) (∇Uǫ
k,∇Uǫ

j)Q0 =
(

χ1∇U ǫ
k + (∇χ1)U

ǫ
k, χ1∇U ǫ

j + (∇χ1)U
ǫ
j

)

Qǫ
.

Here, we first use an estimate like (11), where we replace Uk and Um by ∇Uk and
∇Um. This, together with the eigenvalue and orthogonality properties of the func-
tions Uk, Um, yield

|(χ1∇U ǫ
k, χ1∇U ǫ

j )Qǫ| = |(∇U ǫ
k,∇U ǫ

j )Qǫ + ((1− χ2
1)∇U ǫ

k,∇U ǫ
j )Qǫ|

≤ |δk,jΛ
ǫ
k(η)(U

ǫ
k, U

ǫ
j )Qǫ|+ Cnǫ

4 = δk,jΛ
ǫ
k(η) + Cnǫ

4.

Next we recall that

‖χ1∇Uk‖L2(Qǫ) ≤ ‖∇Uk‖L2(Qǫ) ≤ (Λǫ
k(η))

1/2,



10 FRANCESCO FERRARESSO AND JARI TASKINEN

and also that |∇χ1| ≤ Cǫ−1/µ (cf. (10)). Hence, using the boundedness of the
weighted norms in Proposition 3.1 we get

‖(∇χ1)Uk‖L2(Qǫ) ≤
c

ǫ1/µ
‖Uk‖L2(Q∗

ǫ ) =
c

ǫ1/µ

∥

∥

∥

∥

(ρ+ ǫ1/µ)2µ

(ρ+ ǫ1/µ)2µ
Uk

∥

∥

∥

∥

L2(Q∗
ǫ )

≤
c′ǫ2

ǫ1/µ

∥

∥

∥

∥

Uk

(ρ+ ǫ1/µ)µ

∥

∥

∥

∥

L2(Q∗
ǫ )

≤ Cnǫ
2µ−1

µ .(14)

Thus, by the Cauchy-Schwartz inequality,

(15) |(χ1∇Uk, (∇χ1)Uj)Qǫ| ≤ ‖χ1∇Uk‖L2(Qǫ)‖Uj∇χ1‖L2(Qǫ) ≤ Cnǫ
2µ−1

µ .

Finally, (14) and the Cauchy-Schwartz equality imply

|((∇χ1)Uk, (∇χ1)Uj)Qǫ| ≤ Cnǫ
2(2µ−1)

µ .(16)

Substituting the estimates (14)–(16) to (13) and coming back to the Rayleigh quo-
tient (12) we get the estimate

Λ0
n ≤ sup

H0
n

(∇V,∇V)Q0

(V,V)Q0

≤ sup
H0

n

∑n
k,j=1 a

ǫ
ka

ǫ
j(δk,jΛ

ǫ
k(η) + Cnǫ

2(2µ−1)
µ )

(1 + 2ǫ1/µ)−2
∑n

k,j=1 a
ǫ
ka

ǫ
j(δk,j − (1− (χ2

1U
ǫ
k, U

ǫ
j )Qǫ))

≤ sup
H0

n

(1 + 2ǫ1/µ)2
∑n

k=1 |a
ǫ
k|

2Λǫ
k(η) + Cnǫ

2(2µ−1)
µ

(
∑n

k=1 |a
ǫ
k|

2 − cnǫ2)

≤ sup
H0

n

(1 + 2ǫ1/µ)2
Λǫ

n(η)
∑n

k=1 |a
ǫ
k|

2 + Cnǫ
2(2µ−1)

µ

(
∑n

k=1 |a
ǫ
k|

2 − cnǫ2)

≤ (1 + 2ǫ1/µ)2CnΛ
ǫ
n(η)(17)

for a sufficiently big constant Cn > 1 and sufficiently small ǫ.

The two bounds (8) and (17) yield the following result.

Theorem 3.2. For any n ∈ N there exist numbers ǫn > 0 and cn ∈]0, 1[ such that

for all ǫ ∈]0, ǫn] and η ∈ [−π, π[2 the eigenvalues Λǫ
n(η) of the Dirichlet problem (D′)

in Qǫ, see (2), are bounded by

cn
Λ0

n

(1 + 2ǫ1/µ)2
≤ Λǫ

n(η) ≤ Λ0
n,

where Λ0
n are the eigenvalues of the limit problem, see (4), (7).

We can now summarize the main result of the paper in the following statement,
which also includes Theorem 1.1.

Corollary 3.3 (Opening spectral gaps). Let n ∈ N, n ≥ 2, and let the numbers cn
and ǫn be as in the above theorem. Assume that the eigenvalue of the limit problem

Λ0
n, see (4), (7), has multiplicity κn ≥ 1 so that

(18) Λ0
n−1 < Λ0

n = · · · = Λn+κn−1 < Λ0
n+κn

.
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Then, for ǫ so small that ǫ ≤ min{ǫn−1, ǫn} and

(1 + 2ǫ1/µ)2Λ0
n−1 < cnΛ

0
n,

the spectrum σ of the original problem (D) has a gap between the bands Υǫ
n−1 and

Υǫ
n, see (3).
Consequently, given N ∈ N, the spectrum σ has at least N gaps, if ǫ is sufficiently

small.

The last statement follows by choosing N different eigenvalues Λ0
n as in (18).

References

[1] V. G. Maz’ya, B. A. Plamenevskij, On the asymptotic behavior of solutions of differential
equations in Hilbert space (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 36, No. 5, 1080–1113
(1972); Letter to Edtior, ibid 37, No. 3. 709–710 (1973)). English transl.: Math. USSR, Izv. 6,
1067-1116 (1972).

[2] V. G. Maz’ya, B. A. Plamenevskij, On the asymptotics of the solution of the Dirichlet
problem near the isolated singularity of a boundary (Russian), Vestn. Leningr. Univ. Ser. 1 No.
13, 60–66 (1977).

[3] V. G. Maz’ya, B. A. Plamenevskij, Estimates in Lp and in Hölder classes and the Mi-
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Università degli Studi di Padova, Dipartimento di Matematica, Via Trieste 63,

35101 Padova, Italy

E-mail address : francesco.ferraresso@studenti.unipd.it

Department of Mathematics and Statistics, University of Helsinki, P.O.Box 68,

FI-00014 Helsinki, Finland

E-mail address : jari.taskinen@helsinki.fi


