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Abstract. We study the essential spectra of formally self-adjoint elliptic systems
on doubly periodic planar domains perturbed by a semi-infinite periodic row of
foreign inclusions. We show that the essential spectrum of the problem consists
of the essential spectrum of the purely periodic problem and another compo-
nent, which is the union of the discrete spectra of model problems in the infinite
perturbation strip; these model problems arise by an application of the partial
Floquet-Bloch-Gelfand transform.
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1. Statement of the problem.

1.1. Introduction. Composite materials are used extensively in the modern engi-
neering practice. They are mathematically interpreted, modelled and treated by
applying the Floquet-Bloch-Gelfand-theory (FBG-theory in the sequel) for ellip-
tic spectral boundary value problems with periodic coefficients in periodic domains.
This approach has led to many important theoretical results and applications in top-
ics like homogenization, diffraction in waveguides, band-gap engineering etc. The
usual setting for the theory concerns purely periodic media (periodic coefficients,
periodic domains), though certain types of perturbations may be allowed as well.
In this paper we introduce and examine quite novel type of perturbations of a
double-periodic medium with semi-infinite rows of foreign inclusions as depicted in
Fig. 1.1, a), b). The perturbation may influence the essential spectrum of the prob-
lem, and the description of this spectrum becomes the main goal of our paper. Such
perturbations of periodic lattices have not been the subject of thorough mathemat-
ical investigation, but in the physical literature they are related, for example, to
defected photonic crystals, cf. [7, Ch. 7].

In the case of homogeneous media, foreign inclusions like infinite or semi-infinite
strips are called open waveguides; we accept the same terminology in the peri-
odic case. The physical meaning of the notion is clear, see [5, 6] for acoustics and
[7, 8, 12, 13] for similar defects of periodic media in solid state physics and optical
systems. Our approach can readily be generalized for different shapes of insertions,
see Fig. 1.3. These types of perturbed periodic media may also appear in applica-
tions like composite materials, because of improper manufacturing or also a specific
feature created on purpose. For technical simplicity we will deal with particular
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a) b)

Figure 1.1. a) Domain Ω (grey) including the open I-shaped waveg-
uide Ω1+ (dark grey). b) Strip ̟+ (dark grey), which coincides with
the open waveguide Ω1+ in the special case ϑ1 = ∅.
Dotted lines indicate in a) the cell ω1 and in b) the cell ω0 .

a) b)

Figure 1.2. a) Purely periodic plane Ω0. b) Plane Ω♯ with infinite
perforated strip Ω1 (dark grey) and the strip Π (between dotted lines).

open waveguides as depicted in Fig. 1.1, but in Section 4 we describe minor modi-
fications of our approach for shapes like in Fig. 1.3 as well as other generalizations,
including smoothness of coefficients and the boundary.

We will consider a general elliptic spectral problem (1.18)–(1.19) in the perturbed
domain Ω ⊂ R2, Fig. 1.1. In the main result of the paper, Theorem 3.6 in Section
3.5, we show that the essential spectrum σes (A) of the main problem is the union
of two components. The first is the essential spectrum σes (A0) of the problem on
the purely periodic domain Ω0, see Fig. 1.2, a). The second component σ♯ is caused
by the perturbation of the domain, the open waveguide Ω1+, see Fig. 1.1, and it
equals the union of the discrete spectra of family of model problems on a domain
Ω♯, Fig. 1.2, b), which is related to Ω1+. We will discuss the structure of σes (A) in
more detail in Section 1.4, after presenting the notation and definitions.

1.2. Purely periodic medium. We consider the geometry of the unperturbed
perforated plane and the related spectral boundary value problem. Let Q = Q1 ⊂
R2 be the unit open square, Qa = (0, a) × (0, a) , and let ϑ0 be an open set in the

plane R2 with closure ϑ0 = ϑ0∪∂ϑ0 ⊂ Q and a smooth boundary ∂ϑ of Hölder class
C2,δ, where δ > 0. Here ϑ0 is a not necessarily connected set describing perforation;
neither the case ϑ0 = ∅ is excluded. We define the periodicity cells (outlined by
dotted line in Fig. 1.1, b)

(1.1) ω0 (α) =
{
x = (x1, x2) : (x1 − α1, x2 − α2) ∈ ω0 := Q \ ϑ0

}
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where α = (α1, α2) ∈ Z2 is a multi-index and Z = {0,±1,±2, ...} . The perforated
plane Ω0 is covered by the periodicity cells (1.1), so it satisfies

(1.2) Ω0 =
⋃

α∈Z2

ω0 (α), Ω0 = R
2 \

⋃

α∈Z2

ϑ0 (α),

where ϑ0 (α) denotes a translation of ϑ0 similarly to (1.1). Assuming ω0 to be a
domain, we observe that ω0 includes the boundary strip

(1.3) {x ∈ Q : dist (x, ∂Q) < d}
with some d > 0 and, thus, Ω0 is a domain and in particular a connected set as well.

We consider the spectral problem

L0 (x,∇) u0 (x) = λu0 (x) , x ∈ Ω0,(1.4)

N0 (x,∇) u0 (x) = 0, x ∈ ∂Ω0,(1.5)

and its variational form

(1.6)
(
A0D (∇) u0, D (∇) v0

)
Ω0 = λ

(
u0, v0

)
Ω0 , ∀v0 ∈ H1

(
Ω0
)n

.

Concerning the notation, by λwe understand a spectral parameter and u = (u1, ..., un)
⊤

is a vector function, realized as a column, so that ⊤ stands for transposition. The
matrix differential operators L0 and N0 in (1.4) and (1.5) take the form

L0 (x,∇) = D (−∇)
⊤
A0 (x)D (∇) ,(1.7)

N0 (x,∇) = D (ν (x))
⊤
A0 (x)D (∇) ,(1.8)

while ∇ = grad, ν = (ν1, ν2)
⊤
is the unit outward normal vector on ∂Ω0 and A0

is a matrix function of size m × m with C1,δ-smooth entries; A0 (x) is Hermitian,
positive definite and 1-periodic in x ∈ R2 (it is convenient to define the coefficient
matrix in the intact plane). Furthermore, D (x) is a matrix function of size m× n
and linear in x = (x1, x2), and D(0, 0) = On×m is the null matrix. The substitution
xj 7→ ∂/∂xj gives an m × n-matrix D (∇) of first order differential operators with
constant complex coefficients, while L0(x,∇) (respectively, N0(x,∇)) is a formally
self-adjoint differential matrix operator in divergence form (resp. the corresponding
Neumann condition operator); the bar in (1.7) and (1.8) indicates complex conju-
gation. Finally, ( , )Ω0 is the natural scalar product in the Lebesgue space L2 (Ω0),
and H1 (Ω0) is the Sobolev space with standard norm

∥∥w;H1
(
Ω0
)∥∥ =

(∥∥∇w;L2
(
Ω0
)∥∥2 +

∥∥w;L2
(
Ω0
)∥∥2
)1/2

.

The last superscript n in the integral identity (1.6) shows the number of components

in the test function v = (v1, ..., vn)
⊤ , however, this index is omitted in the notation

of norms and scalar products. In this way, the left- and right-hand sides of (1.6)
involve scalar products in L2 (Ω0)

m
and L2 (Ω0)

n
, respectively.

We assume that D (x) is algebraically complete [31]: there exists a ̺D ∈ N =
{1, 2, 3, ...} such that for any row p = (p1, ..., pn) of homogeneous polynomials in
ξ = (ξ1, ξ2) ∈ R2 of common degree ̺ ≥ ̺D, one can find a row of polynomials
q = (q1, ..., qn) satisfying

(1.9) p (ξ) = q (ξ)D (ξ) , ∀ξ ∈ R
2.
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According to [31, § 3.7.4], this assumption yields the Korn inequality

(1.10)
∥∥u;H1

(
Ω0
)∥∥2 ≤ cD,ω0

(∥∥D (∇) u;L2
(
ω0
)∥∥2 +

∥∥u;L2
(
ω0
)∥∥2
)

and, hence, the sesquilinear Hermitian positive form a0 (u0, v0) on the left in (1.6) is
closed in H1 (Ω0)

n
. Moreover, the operator L0 is elliptic and the Neumann boundary

operator N0 covers it in the Shapiro-Lopatinskii sense everywhere on ∂Ω0 (see, e.g.,
[26, Thm. 1.9]).

Owing to the above-mentioned properties of a0, the problem (1.4), (1.5) is as-
sociated with a positive self-adjoint operator A0 in L2 (Ω0)

n
with the differential

expression L0 (x,∇) and the domain

(1.11) D
(
A0
)
=
{
u0 ∈ H2

(
Ω0
)
: N0 (x,∇) u0 (x) = 0, x ∈ ∂Ω0

}
;

see [4, Ch. 10] and [35, Ch. 13]. The description of the spectrum σ (A0) is well known
and will be presented in Section 2.

We emphasize that the results of the paper remain valid for other types of bound-
ary conditions, in particular, for the Dirichlet conditions, cf. Section 4.1.(i),(iv).
A description of all admissible boundary conditions can be found in [22] and [26,
§ 1]. Moreover, the C2,δ-smoothness of the boundary was assumed in order to have
the elementary formula (1.11) for the operator domain D (A0) and to simplify the
technical computations. The results of our paper hold true in the case of uniformly
Lipschitz boundaries, but the proofs would require small modifications, cf. Section
4.2.

1.3. Periodic medium with open semi-infinite periodic waveguide. In this
section we describe the geometry of the open waveguide and the full spectral prob-
lem. Let ̟+ be the semi-strip {x : x1 > 0, |x2| < h} with some h ∈ N (overshaded
in Fig. 1.1, b). In the rectangle Qh

1 = (0, 1)× (−h, h) , we introduce an open set ϑ1

with a smooth boundary ∂ϑ1 and closure ϑ1 ⊂ Qh
1 . We define a semi-infinite row of

holes or inclusions as depicted in Fig. 1.1, a) or b), respectively:

ω1 (α1) =
{
x : (x1 − α1, x2) ∈ ω1

}
, α1 ∈ N0 = N∪{0} ,(1.12)

ω1 = Qh
1 \ ϑ1, ϑ1 (α1) =

{
x : (x1 − α1, x2) ∈ ϑ1

}
.

The cell ω1 is outlined in Fig. 1.1, a), by dotted line. We also introduce a smooth
Hermitian matrix function A1+ in R2, entries of which are supported in ̟+ and
become 1-periodic in x1 inside the semi-strip {x ∈ ̟+ : x1 > R} , R ∈ N,

(1.13) A1+ (x) = A1 (x) for x1 > R, A1 (x1 ± 1, x2) = A1 (x1, x2) .

Furthermore,

(1.14) Ω1+ = ̟+ \
⋃

α1∈N0

ϑ1 (α1), Ω1+ =
⋃

α1∈N0

ω1 (α1),

and the sum

(1.15) A (x) = A0 (x) + A1+ (x)

is assumed to be positive definite in Ω, where

(1.16) Ω =
(
Ω0 \̟+

)
∪ Ω1+.

In other words, we make a perturbation of coefficients and boundary inside the semi-
strip ̟+, see Fig. 1.1. For instance, one may suppose that A1+ is the null matrix
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Om×m and ϑ0 6= ∅, ϑ1 = ∅, h = 1, which means filling in all holes inside ̟+, cf.
Fig. 1.1, b). Vice versa, in the case ϑ0 = ∅, ϑ1 6= ∅, one perforates the plane R2

with a semi-infinite row of holes, see Fig. 1.1, a). Even in the case of absence of holes
we still call (1.14) the perforated strip, and the perforated plane Ω0 in (1.2) can also
contain no holes.

Notice that the Korn inequality

(1.17)
∥∥u;H1 (Ω)

∥∥2 ≤ cD
(
ω0, ω1

) (∥∥D (∇)u;L2 (Ω)
∥∥2 +

∥∥u;L2 (Ω)
∥∥2
)

is still valid and can be derived by summing up inequalities of type (1.10) in the
cells ω0 (α) with α ∈ Z2 (α1 > 0, −h ≤ α2 < h excluded) and ω1 (α1) with α1 ∈ N0.

Replacing A0 (x) with (1.15) in (1.7) still gives an elliptic and formally self-adjoint
matrix operator L (x,∇x) . The same change in (1.8) yields the Neumann boundary
condition operator N (x,∇x) , where ν is regarded as the outward unit normal on
∂Ω. In the domain (1.16) we consider the spectral problem

L (x,∇) u (x) = λu (x) , x ∈ Ω,(1.18)

N (x,∇) u (x) = 0, x ∈ ∂Ω,(1.19)

and the corresponding integral identity

(1.20) a (u, v) := (AD (∇)u,D (∇) v)Ω = λ (u, v)Ω , ∀v ∈ H1 (Ω)n .

Since a remains as a closed positive Hermitian form in H1 (Ω)n , the variational
formulation (1.20) of the problem (1.18), (1.19) supplies it with a positive self-adjoint
operator A in L2 (Ω)n with the differential expression L (x,∇) and the domain

(1.21) D (A) =
{
u ∈ H2

(
Ω0
)n

: N (x,∇) u (x) = 0, x ∈ ∂Ω
}
;

see again [4, Ch. 10] and [35, Ch. 13]. This notation is quite similar to the one used
in Section 1.2.

The main goal of the paper is to describe the essential component σes (A) in the
spectrum of A,

(1.22) σ (A) = σdi (A) ∪ σes (A) .

We emphasize that in general

(1.23) σes (A) 6= σes

(
A0
)
,

and moreover, the discrete spectrum of A0 is empty, thus,

(1.24) σes

(
A0
)
= σ

(
A0
)
.

We will identify the difference

(1.25) σad (A) = σes (A) \ σ
(
A0
)
,

but leave aside two interesting and important questions. First, we are not able to
describe completely the component σdi (A) in a general perturbed problem (1.18),
(1.19), although, of course concrete examples of isolated and embedded eigenvalues
in σpo (A) can be constructed in scalar problems. Second, the existence or absence
of the point spectrum σpo (A0) (eigenvalues of infinite multiplicity) in the purely
periodic problem (1.4), (1.5) remains unknown; note that this question is answered
in the literature only for particular scalar problems (see, e.g., papers [37, 9, 15] and
books [34, 19]). Notice that σpo (A0) can be included in σpo (A), but the latter stays
unknown, too.



6 G.CARDONE, S.A.NAZAROV, AND J. TASKINEN

1.4. Discussion on the main result. In the case of the purely periodic plane
Ω0, Fig. 1.2, a), the spectrum σes (A0) of the problem (1.4)-(1.5) has representation
as a union of spectral bands (see (2.15), (2.16), below), which is a well-known
consequence of the FBG-theory; we refer here to [18, 19, 36]. Consider for a moment
the domain Ω♯ of Fig. 1.2, b) with foreign inclusions or holes, which form a periodic
row, infinite in both directions. Then, the spectrum may be different from the
purely periodic case, and we denote by σ♯ the essential spectrum of the problem on
Ω♯ (cf. (3.4), below). Analogously to [8, 12, 13], the increment σ♯ \ σes (A0) can be
detected by performing the partial FBG-transform in x1-direction (Section 3.1) and
investigating the kernel of the model problem in the perforated strip Π (separated
by dashed lines in Fig. 1.2, b); cf. (3.11), (3.9) ). This problem depends on the
Floquet parameter ζ , and, for certain values of the spectral parameter λ ∈ (0,+∞)
and ζ ∈ [0, 2π) , it can have a solution in the Sobolev space H2(Π)n. Such values λ
form the point spectrum σpo

(
A♯ (ζ)

)
of the model problem (3.30) for the operator

A♯ (ζ).
Our main result in Theorem 3.6 says that the following formula holds true for

the problem (1.18), (1.19) in the periodic plane with the immersed I-shaped open
waveguide, see (1.16) and Fig. 1.1, b):

(1.26) σad (A) = σ♯ \ σes

(
A0
)
=

⋃

ζ∈[0,2π)

σpo

(
A♯ (ζ)

)
\ σes

(
A0
)
.

The last set in this formula requires some comments. First, embedded eigenval-
ues in σem

(
A♯ (ζ)

)
= σpo

(
A♯ (ζ)

)
\ σdi

(
A♯ (ζ)

)
live inside the essential spectrum

σes

(
A♯ (ζ)

)
, which in turn is contained in σes (A0) (compare (3.32) with (2.15)).

Second, σes

(
A♯ (ζ)

)
depends on ζ and therefore some points of the discrete spec-

trum σdi

(
A♯ (ζ)

)
may fall into σes

(
A♯ (ζ ′)

)
with ζ ′ 6= ζ. In any case none of the

indicated points in σpo

(
A♯ (ζ)

)
stays in the increment component (1.25) of σes (A) .

We emphasize that, contrary to the case of Ω♯, the lacking periodicity of the
domain Ω prevents a direct use of the partial FBG-transform, hence, the proof of
(1.26) requires improved mathematical tools. The new procedure of our paper in-
volves the construction of a parametrix and singular Weyl sequences in order to
describe, respectively, the regularity field and the essential spectrum of the oper-
ator A. Moreover, slight modifications, which are discussed in Section 4.5, allow
to apply our procedure also for various joints of semi-infinite open waveguides as
in Fig. 1.3, a)-d). Here, skewed branches of the V- and Y-shaped waveguides must
maintain the periodicity and thus the tangent of tilt angles has to be rational num-
ber. We do not know a formula for the essential spectrum in the irrational case.

1.5. Cranked and branching open waveguides. Fig. 1.3 shows open waveguides
of the shape of the letters V, X and Y, Z. They appear due to perforation and
perturbation of coefficients in overshadowed joints of semi-strips. In Section 4 we
explain how the results of Section 3 for the I-shaped case, Fig. 1.1, a), b), can be
readily adapted to these cranked and branching open waveguides.

We also emphasize that for a clear reason, no relevant perturbation in a disk
BR = {x : r = |x| < R} with radius R > 0 can affect the essential spectrum of the

boundary value problem (1.18), (1.19). Moreover, assume that Ã (x) is a matrix

decaying together with its derivatives at infinity as (1 + |x|)−δ , δ > 0, and that the
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a)

d)

b)

c)

Figure 1.3. V,X and Y,Z-shaped joints of open waveguides (dark grey).

coefficient matrix (1.15)

(1.27) A (x) + Ã (x)

still keeps the above mentioned basic properties of A. This replacement of the
coefficient matrix does not change σes.

All these generalizations and some others will be commented in Section 4. We
have chosen the very particular open waveguide in Section 1.3 in order to simplify
the presentation, to illuminate the main points of our approach and to avoid unim-
portant but cumbersome technical details.

1.6. Structure of the paper. In Section 2 we recall generally known information
on the purely periodic case which will be used later on. The main interest is focused
on the model problem (2.11) in the periodicity cell ̟, which is obtained using the
FBG-transform [10]. The open periodic semi-infinite waveguide will be considered
in Section 3, where we apply the partial (FGB)-transform to formulate another
model problem (3.30) in the perforated infinite strip Π with periodicity conditions
on its lateral sides.

The spectra of those two model problems form the essential spectrum σes (A) of
the original problem (1.20). To verify the corresponding formulas (3.38) and (2.16),
(3.39) we first present two types of singular Weyl sequences for A and on the other
hand construct a right parametrix for the formally self-adjoint problem (1.18), (1.19).
This is the most involved part of our paper. To that end, we follow [24] and also
[30, §3.4], and study an operator family for a second model problem in the weighted
Sobolev spaces (Kondratiev spaces) W l

β (Π) , leading to important conclusions on
exponential decay properties of the solutions in the strip Π. Finally, we glue the
parametrix (3.46) from solutions of the model problems with the help of appropriate
cut-off functions. The parametrix enables to prove that, for any λ ∈ R+ outside the
union of sets (2.16) and (3.39), the operator of the inhomogeneous problem (1.18),
(1.19), cf. (3.40), is Fredholm in the Sobolev-Slobodetskii spaces; therefore such
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points λ form the intersection of the regularity field of A with the semi-axis R+.
This completes the proof of Theorem 3.6, the central assertion in the paper.

We start the last section of the paper by describing several concrete problems
in acoustics, elasticity and piezoelectricity, to which our theory may apply. How-
ever, as mentioned above, the original exact formulation of the spectral problem was
simplified in several aspects, so we comment in the next subsections on certain sup-
plementary issues in order to obtain more generality for further interesting physical
applications. We finish the paper with Section 4.5, where we present small modifi-
cations of the parametrix to be applied to semi-bounded open periodic waveguides
in the shape of the letters V,X and Y,Z as in Fig. 1.3.

2. Spectrum of the purely periodic problem

2.1. Floquet-Bloch-Gelfand-transform. The spectrum of the operatorA0 in the
purely periodic domain Ω0 can be studied with the help of the FBG-transform. This
will lead to the formula (2.16), the main object of Section 2. The FBG-transform is
defined by

(2.1) u 7→ û (x; η) =
1

2π

∑

α∈Z2

e−iη·(x+α)u (x+ α) , x ∈ ω0,

and it establishes the isometric isomorphism

(2.2) L2
(
Ω0
) ∼= L2

(
Y;L2

(
ω0
))

(cf. [10] and, e.g., [36, 19]), where η · x = η1x1 + η2x2,

(2.3) Y = {η = (η1, η2) : η1, η2 ∈ [0, 2π)} , Y = Q2π,

and L2 (Y;B) is the Lebesgue space of abstract functions in η ∈ Y with values in
Banach space B and the norm

(2.4)
∥∥U ;L2 (Y;B)

∥∥ =

(∫ 2π

0

∫ 2π

0

‖U (η) ;B‖2 dη1dη2
)1/2

.

Moreover, the mapping

(2.5) H2
(
Ω0
)n ∋ u 7→ û ∈ L2

(
Y;H2

per

(
ω0
)n)

is an isomorphism, too. Here, H2
per (ω

0)
n
is the subspace of vector functions U ∈

H2 (ω0)
n
satisfying the periodicity conditions

U (0, x2) = U (1, x2) ,
∂U

∂x1
(0, x2) =

∂U

∂x1
(1, x2) , x2 ∈ (0, 1) ,(2.6)

U (x1, 0) = U (x1, 1) ,
∂U

∂x2
(x1, 0) =

∂U

∂x2
(x1, 1) , x1 ∈ (0, 1) .

In what follows we shorten the notation ∂U/∂xj to ∂jU.
The inverse FBG-transform is given by

U = û 7→ u (x) =
1

2π

∫ 2π

0

∫ 2π

0

eiη·xU (x− [x] ; η)dη1dη2,(2.7)

[x] = ([x1] , [x2]) , [t] = max {τ ∈ Z : τ ≤ t} .
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2.2. The model problem on the periodicity cell. Owing to (2.1), we have

(2.8) ∇̂αv (x; η) = (∂1 + iη)α1 (∂2 + iη)α2 v̂ (x; η) , ∇α = ∂α1

1 ∂α2

2

and thus the FBG-transform (2.1) converts the problem (1.4), (1.5) into the following
problem, depending on the parameter η ∈ Y, in the periodicity cell ω0 ,

L0 (x,∇+ iη)U (x; η) = Λ (η)U (x; η) , x ∈ ω0,(2.9)

N0 (x,∇+ iη)U (x; η) = 0, x ∈ γ0 = ∂ω0 ∩Q,(2.10)

together with the periodicity conditions (2.6) on the exterior part ∂Q of the bound-
ary of the cell ω0. The variational formulation of problem (2.9), (2.10), (2.6) amounts
to finding a number Λ (η) ∈ C and a non-trivial vector function U (·; η) ∈ H1

per (ω
0)

n

such that

(2.11)
(
A0D (∇+ iη)U,D (∇ + iη)V

)
ω0 = Λ (η) (U, V )ω0 , ∀V ∈ H1

per

(
ω0
)n

.

In view of the compact embedding H1 (ω0) ⊂ L2 (ω0) in the bounded domain ω0, the
spectrum σ0

η of the variational problem (2.11) and boundary value problem (2.9),
(2.10), (2.6) is discrete and forms the unbounded monotone sequence

(2.12) 0 ≤ Λ1 (η) ≤ Λ2 (η) ≤ ... ≤ Λk (η) ≤ ... → +∞,

where multiplicities are counted. According to the general results of the perturbation
theory for linear operators1, the functions

(2.13) Y ∋ η 7→ Λk (η)

are continuous, see for example [14, 16]. Moreover, they are 2π-periodic in η1 and
η2, because for any eigenpair {Λ (η) , U (x; η)} of the problem (2.9), (2.10), (2.6) at
some η ∈ Y,

(2.14)
{
Λ (η) , e±2πixpU (x; η)

}
, p = 1, 2,

remains an eigenpair of the same problem but at η±2πe(p) where e(p) = (δ1,p, δ2,p)
⊤ ∈

R2 is the unit vector of the ηp-axis.
The above mentioned properties of functions (2.13) ensure that the spectral bands

(2.15) B0
k = {Λk (η) : η ∈ Y} , k ∈ N,

are bounded connected closed segments in R+. The formula

(2.16) σ
(
A0
)
= σes

(
A0
)
=
⋃

k∈N

B0
k

for the spectrum of the problem (1.4), (1.5) is well-known, see, e.g., [18, 36, 19], but
we briefly comment on its proof in Sections 2.3–2.4, since we will need some of these
arguments later.

1A quadratic pencil easily reduces to a linear non-self-adjoint spectral family.
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2.3. Unique solution of the inhomogeneous problem. As regards to (2.16),
we now prove the inclusion σ (A0) ⊂ ∪k∈NB

0
k . Let us consider the boundary value

problem

L0 (x,∇)u0 (x)− λu0 (x) = f 0 (x) , x ∈ Ω0,(2.17)

N0 (x,∇) u0 (x) = g0 (x) , x ∈ ∂Ω0,

with the data

(2.18) f 0 ∈ L2
(
Ω0
)n

, g0 ∈ H1/2
(
∂Ω0

)n

and a fixed parameter λ = λ0 such that

(2.19) λ0 /∈ B0
k , ∀k ∈ N.

In (2.18), H1/2 (∂Ω0) stands for the Sobolev-Slobodetskii space of traces with the
intrinsic norm

(2.20)
∥∥g0;H1/2

(
∂Ω0

)∥∥ = inf
{∥∥G0;H1

(
Ω0
)∥∥ : G0 = g0 on ∂Ω0

}
.

This norm is equivalent to the following one:
(
∥∥g0;L2

(
∂Ω0

)∥∥2 +
∫

∂Ω0

∫

∂Ω0
l
(x)

∣∣g0 (x)− g0 (y)
∣∣2 dsxdsy

|x− y|2

)1/2

.

Here, dsx is the arc length element on ∂Ω0 and ∂Ω0
l (x) = {y ∈ ∂Ω0 : |y − x| < l}

while l ∈ (0,+∞) can be fixed arbitrarily.
Clearly, the mapping

(2.21) H2
(
Ω0
)n ∋ u 7→

{
L0u0 − λ0u0, N0u0

}
∈ L2

(
Ω0
)n ×H1/2

(
∂Ω0

)n

is continuous for any λ0, but in the case (2.19) it becomes an isomorphism. Indeed,
the FBG-transform (2.1) turns (2.17) into the parameter-dependent problem

L0 (x,∇+ iη) û 0 (x; η)− λ0û 0 (x; η) = f̂
0
(x; η) , x ∈ ω0,(2.22)

N0 (x,∇+ iη) û 0 (x; η) = ĝ 0 (x; η) , x ∈ γ0,

with the periodicity conditions (2.6). The right-hand sides meet the estimate
∥∥∥f̂

0
;L2

(
0, 2π;L2

(
ω0
))∥∥∥

2

+
∥∥ĝ 0;L2

(
0, 2π;H1/2

(
γ0
))∥∥2(2.23)

≤ c
(∥∥f 0;L2

(
Ω0
)∥∥2 +

∥∥g0;H1/2
(
∂Ω0

)∥∥2
)
,

while the necessary information about the Sobolev-Slobodetskii space is provided
by the isomorphisms (2.2), (2.4) and the formula (2.8) for derivatives. By the
assumption (2.19), the problem (2.22), (2.6) has for any η ∈ Y a unique solution
denoted by

(2.24) û 0 (x; η) = R0
(
λ0; η

){
f̂

0
(·; η) , ĝ 0 (·; η)

}

and estimated as follows:
(2.25)
∥∥û 0 (·; η) ;H2

(
ω0
)∥∥2 ≤ C

(∥∥∥f̂
0
(·; η) ;L2

(
ω0
)∥∥∥

2

+
∥∥ĝ 0 (·; η) ;H1/2

(
γ0
)∥∥2
)
.
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Since the constant C does not depend on η ∈ Y, it suffices to apply the inverse
FBG-transform (2.7) and to derive from (2.25) and (2.23) the inequality

(2.26)
∥∥u0;H2

(
Ω0
)∥∥2 ≤ c

(∥∥f 0;L2
(
Ω0
)∥∥2 +

∥∥g0;H1/2
(
∂Ω0

)∥∥2
)

for the unique solution u0 ∈ H2 (Ω0)
n
of the problem (2.17) with fixed parameter

(2.19). Thus, mapping (2.21) with this λ0 is indeed an isomorphism, which in
particular means that λ0 belongs to the regularity field of the operator A0 in (1.11).
This coincides with the resolvent set of A0 because the discrete spectrum σdi (A0)
is evidently empty.

Remark 2.1. Dealing with the Sobolev-Slobodetskii norms in (2.23), (2.25) and
(2.26), it is much more convenient to use the definition (2.20) and some extensions

G of g and Ĝ (·; η) of ĝ (·; η) such that
∥∥g;H1/2

(
∂Ω0

)∥∥ ≤ 2
∥∥G;H1

(
Ω0
)∥∥ ,

∥∥ĝ;L2
(
0, 2π;H1/2

(
γ0
))∥∥ ≤ 2

∥∥∥Ĝ;L2
(
0, 2π;H1/2

(
γ0
))∥∥∥ . �

2.4. The singular Weyl sequence. We next show that σ (A0) ⊃ ∪k∈NB
0
k . Let us

assume

(2.27) λ0 ∈ B0
k for some k ∈ N

so that there exist η0 ∈ Y and U0 (·; η0) ∈ H2 (ω0) such that {η0, U0 (·; η0)} is an
eigenpair of the problem (2.9), (2.10), (2.6) with Λ (η0) = λ0. By a direct calculation,
one easily deduces that the Bloch wave

(2.28) u0 (x) = eiη
0·xU0

(
x; η0

)

satisfies the differential equations (1.4) and the boundary conditions (1.5), although
it does of course not fall into the Sobolev space H2 (Ω0)

n
. However, (2.28) is useful

for constructing a singular sequence {u0j}j∈N in D (A0) ⊂ H2 (Ω0)
n
for the operator

A0 at the point λ0, namely a sequence with the following properties:
1o ‖u0j;L2 (Ω0)‖ = 1;
2o u0j ⇁ 0 weakly in L2 (Ω0)

n
as j → +∞;

3o ‖A0u0j − λ0u0j ;L2 (Ω0)‖ → 0 as j → +∞.

To define the entries of this sequence, we introduce the plateau function

(2.29) χj (t) = χ
(
t− 2j

)
χ
(
2j+1 − t

)
,

where χ ∈ C∞ (R) is a cut-off function such that

(2.30) χ (t) = 1 for t ≥ d, χ (t) = 0 for t ≤ 0, 0 ≤ χ ≤ 1

and d > 0 is taken from (1.3); therefore, in the vicinity of each component γ0 (α) =
∂ϑ0 (α) of the boundary ∂Ω0 the two-dimensional plateau function

(2.31) Xj (x) = χj (x1)χj (x2)

becomes a constant, either 1 or 0.
We set

(2.32) v0j (x) = Xj (x) u
0 (x) , u0j (x) =

∥∥v0j ;L2
(
Ω0
)∥∥−1

v0j (x) .

The above specification of Xj shows that

N0 (x,∇) v0j (x) = Xj (x)N
0 (x,∇)u0 (x) = 0, x ∈ ∂Ω0,
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a) b)

Figure 2.1. Supports of the cut-off functions.

and, hence, u0j ∈ D (A0) .
The property 1o clearly holds true. Furthermore, the weak convergence to 0 in 2o

occurs at least along a subsequence of indices j ∈ N, because, by (2.29) and (2.31),
supp (v0j) ∩ supp

(
v0l
)
= ∅ as j 6= l. It remains to verify the property 3o. Recalling

(2.32) and (2.28), we have

∥∥v0j;L2
(
Ω0
)∥∥2 ≥

∑

α∈Z2∩[2j+1,2j+1−1]

∫

ω0(α)

∣∣U0
(
x; η0

)∣∣2 dx =(2.33)

=
(
2j+1 − 2j − 2

)2 ∥∥U0
(
·; η0

)
;L2

(
ω0
)∥∥2 ≥ c02

2j

with c0 > 0 and j ≥ 2. At the same time, we obtain

f 0j = L0v0j − λ0v0j =
[
L0, Xj

]
u0 +Xj

(
L0u0 − λ0u0

)
=
[
L0, Xj

]
u0

where [L0, Xj] stands for the commutator of the differential operator (1.7) and the
multiplication operator with Xj . Owing to definition (2.29)-(2.31), the plateau func-
tion (2.31) varies only inside the union of four rectangles of size d×2j and the com-
mon area O (2j) (see the overshaded frame in Fig. 2.1, a) ). Hence, due to periodicity
in (2.28), we arrive at the inequality

∥∥f 0j ;L2
(
Ω0
)∥∥2 ≤ c12

j,

which together with (2.33) and (2.32) prove the relation
∥∥A0u0j − λ0u0j ;L2

(
Ω0
)∥∥ ≤ C2−j/2, C = c1/c0

as well as the property 3o.
By the Weyl criterion (cf. [4, Th. 9.12] or [33, Th.VII.12]), the point (2.27) lives

in the essential spectrum σes (A0) . This and the material of Section 2.3 confirm the
formula (2.16).

3. Spectrum of the open waveguide in periodic medium

3.1. Partial Floquet-Bloch-Gelfand-transform. Our aim is to apply the partial
FBG-transform to detect the effect of the open waveguide to the essential spectrum
of the problem (1.18)–(1.19). Due to the lack of periodicity, this cannot be done
directly in Ω, hence, we introduce and study in Sections 3.1–3.3 the problem in the
domain Ω♯, Fig. 1.2, b). The results of Section 3.3 will be applied in Sections 3.4–3.5
to the original problem, which leads to the proof of the main result, Theorem 3.6.
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Similarly to (1.14)-(1.16) we introduce the infinite periodically perforated strip
Ω1 (overshaded in Fig. 1.2, b),

(3.1) Ω1 = ̟ \
⋃

α1∈Z

ω1 (α1), ̟ = R× (−h, h) ,

and the positive definite Hermitian matrix

(3.2) A♯ (x) = A0 (x) + A1 (x)

which happens to be 1-periodic in the variable x1. In the domain

(3.3) Ω♯ =
(
Ω0 \̟

)
∪ Ω1

we consider the auxiliary boundary-value problem

L♯ (x,∇)u♯ (x)− λ♯u♯ (x) = f ♯ (x) , x ∈ Ω♯,(3.4)

N ♯ (x,∇) u♯ (x) = g♯ (x) , x ∈ ∂Ω♯,

where λ♯ is a fixed parameter and the operators L♯, N ♯ are given by (1.7), (1.8) with
the change A0 7→ A♯.

The domain (3.3) is also 1-periodic along the x1-axis, that is

(3.5) Ω♯ =
{
x : (x1 ± 1, x2) ∈ Ω♯

}
,

and we define the perforated strip bounded by dashed lines in Fig. 1.2, b),

(3.6) Π =
{
x ∈ Ω♯ : x1 ∈ (0, 1)

}
.

The periodicity observed in (3.2) and (3.3) allows us to apply the partial FBG-
transform, see e.g. [24],

(3.7) u♯ 7→ U ♯ (x; ζ) =
1√
2π

∑

α1∈Z

e−iζ(x1+α1)u♯ (x1 + α1; x2)

which establishes the isomorphisms

(3.8) L2
(
Ω♯
)
≃ L2

(
0, 2π;L2 (Π)

)
, H2

(
Ω♯
)
≈ L2

(
0, 2π;H2

per♯ (Π)
)

where the first one is isometric (cf. (2.2)), while H2
per♯ (Π)

n is the subspace of func-

tions U ♯ ∈ H2 (Π)n satisfying the periodicity conditions on the lateral sides of the
perforated strip (3.6)

(3.9) U ♯ (0; x2) = U ♯ (1; x2) , ∂1U
♯ (0; x2) = ∂1U

♯ (1; x2) , x2 ∈ R.

The inverse partial FBG-transform is given by

(3.10) u♯ (x1, x2) =
1√
2π

∫ 2π

0

eiζx1U ♯ (x1 − [x1] , x2; ζ) dζ,

see [24] and cf. (2.1), (2.7).
The FBG-transform (3.7) applies to the problem (3.4) and converts it into the

parameter-dependent problem

L♯ (x, ∂1 + iζ, ∂2)U
♯ (x; η)− λ♯U ♯ (x; η) = F ♯ (x; η) , x ∈ Π,(3.11)

N ♯ (x, ∂1 + iζ, ∂2)U
♯ (x; η) = G♯ (x; η) , x ∈ Γ,

with the periodicity conditions (3.9). Here, λ♯ ∈ R+ is fixed, F ♯, G♯ are the FBG-
images of f ♯, g♯ and

(3.12) Γ = {x ∈ ∂Π : 0 < x1 < 1}
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is the interior boundary of the perforated strip Π.

3.2. Second model problem in weighted spaces. To study the problem (3.11),
(3.9), we introduce the weighted Sobolev space W 2

β (Π) (the exponential Kondratiev

space [17]) as a completion of the linear set C∞
c

(
Π
)
(infinitely differentiable functions

with compact supports) with respect to the norm

(3.13)
∥∥v;W 2

β (Π)
∥∥ =

(∥∥∇2v;L2
β (Π)

∥∥2 +
∥∥∇v;L2

β (Π)
∥∥2 +

∥∥v;L2
β (Π)

∥∥2
)1/2

,

where ∇2v is the family of all second-order derivatives of v, β ∈ R is a weight index
and L2

β (Π) stands for the weighted Lebesgue space,

(3.14)
∥∥v;L2

β (Π)
∥∥ =

∥∥eβ|x2|v;L2 (Π)
∥∥ .

Notice thatW 2
β (Π) consists of all functions v ∈ H2

loc

(
Π
)
with finite norm (3.13). The

norm modified by omitting
∥∥∇v;L2

β (Π)
∥∥ on the right in (3.13) remains equivalent

to the original one. For β = 0, we have W 2
0 (Π) = H2 (Π), but in the case β > 0

(β < 0) the Kondratiev space includes functions with an exponential decay (growth)
at infinity with decay (growth) rate controlled by the weight index. By W 2

β,per♯ (Π) ,
we understand the subspace of functions subject to the periodicity conditions (3.9),

and W
1/2
β (Γ) is the weighted Sobolev-Slobodetskii space with the intrinsic norm
∥∥∥v;W 1/2

β (Γ)
∥∥∥ = inf

{∥∥V ;W 1
β (Π)

∥∥

=
(∥∥∇V ;L2

β (Π)
∥∥2 +

∥∥V ;L2
β (Π)

∥∥2
)1/2

: V = v on Γ
}
.(3.15)

We emphasize that W
1/2
β (Γ) does not require periodicity conditions because (3.12)

includes the interior part of the boundary.
Owing to definitions (3.13)-(3.15) and formula (3.8), the partial FBG-transform

establishes the isomorphisms

L2
β

(
Ω♯
)
≃ L2

(
0, 2π;L2

β (Π)
)
, W 2

β

(
Ω♯
)
≈ L2

(
0, 2π;W 2

β,per♯ (Π)
)
,(3.16)

W
3/2
β

(
∂Ω♯

)
≈ L2

(
0, 2π;W

3/2
β

(
Γ♯
))

.

The problem operator for (3.11), (3.9) ,

W 2
β,per♯ (Π)

n ∋ U ♯ 7→ T ♯
β

(
λ♯, ζ

)
U ♯

=
{
L♯ (x, ∂1 + iζ, ∂2)− λ♯, N ♯ (x, ∂1 + iζ, ∂2)

}
∈ L2

β (Π)
n ×W

1/2
β (Γ)n(3.17)

is continuous for any β ∈ R and ζ ∈ C. However, it has better properties under
additional assumptions described in terms of the operator pencil

C ∋ η2 7→ AΛ (ζ, η2) =
{
L0 (x, ∂1 + iζ, ∂2 + iη2)− Λ, N0 (x, ∂1 + iζ, ∂2 + iη2)

}
:

(3.18)

H2
per

(
ω0
)n → L2

(
ω0
)n ×H1/2

(
γ0
)n

which corresponds to the problem (2.9), (2.10), (2.6) with the fixed parameter Λ =
λ♯ ∈ R and the dual FBG-variable

(3.19) η = (ζ, η2) ∈ Y,
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where ζ ∈ [0, 2π) is taken from (3.11). Concerning η2 as a spectral parameter, we
regard (3.18) as a quadratic pencil in η2, which is a particular case of a holomorphic
spectral family, see [11, Ch.1].

The following assertion is proved in [24], see also [30, Thms 3.4.7 and 5.1.4].

Theorem 3.1. The operator (3.17) is Fredholm if and only if the segment

(3.20) Υβ = {η2 ∈ C : Re η2 ∈ [0, 2π) , Im η2 = β}
in the complex plane C is free of the spectrum of the pencil (3.18). If a point of the

spectrum belongs to Υβ, then the range of the operator T ♯
β

(
λ♯, ζ

)
is not closed.

Let us assume that λ♯ = λ0 satisfies (2.19) and, in particular, that the segment Υ0

is free of the spectrum of Aλ♯ (ζ, ·) for all ζ ∈ [0, 2π) . Indeed, if η2 ∈ Υ0 belongs to the
spectrum, then λ♯ = Λ (ζ, η2) becomes an eigenvalue of the problem (2.9), (2.10),
(2.6) and therefore falls into some spectral band Bk. By the analytic Fredholm
alternative, see, e.g., [11, Thm. 1.5.1] or [33, Thm.VI.14], we conclude that the
spectrum of the pencil (3.18) consists of a countable set of (normal) eigenvalues
without finite accumulation points. For η2 ∈ C, the spectrum is invariant with
respect to the shifts η2 7→ η2 ± 2π along the real axis, by the same argument as in
(2.13) and (2.14). Moreover, it is mirror symmetric with respect to the real axis
because, for fixed real λ♯ and ζ, the problems (2.9), (2.10), (2.6) with η2 and η2
are formally adjoint. Finally, under the assumption (2.19), there exists a positive
continuous 2π-periodic function

(3.21) [0, 2π) ∋ ζ 7→ β0

(
λ♯; ζ

)
∈ R+

such that the rectangle

(3.22)
{
η2 ∈ C : Re η2 ∈ [0, 2π) , |Im η2| < β0

(
λ♯; ζ

)}

does not contain any eigenvalue of the pencil Aλ♯ (ζ, ·), but the segments Υ±β0(λ♯;ζ)
surely do. We further put

(3.23) β0

(
λ♯
)
= min

{
β0

(
λ♯; ζ

)
: ζ ∈ [0, 2π)

}
> 0.

When λ♯ and ζ are real, the problem (3.11), (3.9) in the infinite strip Π is formally
self-adjoint, which just means the validity of the Green formula

(
L♯ (x, ∂1 + iζ, ∂2)U − λ♯U, V

)
Π
+
(
N ♯ (x, ∂1 + iζ, ∂2)U, V

)
Γ

(3.24)

=
(
U, L♯ (x, ∂1 + iζ, ∂2) V − λ♯V

)
Π
+
(
U,N ♯ (x, ∂1 + iζ, ∂2) V

)
Γ

for all U, V ∈ H1
per♯ (Π)

n. Hence, our assumption (2.19) and Theorem 3.1 assure that

the operator T0

(
λ♯; ζ

)
in the Sobolev space H1

per♯ (Π)
n is Fredholm of index zero.

The next theorem follows from a general result in [24] (see also [30, §3.4 and §5.1])
and it concerns the finite-dimensional subspace

ker Tβ

(
λ♯; ζ

)
=
{
U ♯ ∈ W 1

β,per♯ (Π)
n : U ♯ satisfies the homogeneous(3.25)

problem (3.11), (3.9) with F ♯ = 0, G♯ = 0
}
.

Theorem 3.2. Under the condition (2.19) with λ♯ = λ0, the subspace ker Tβ

(
λ♯; ζ

)

is independent of the weight index β ∈
(
−β0

(
λ♯; ζ

)
, β0

(
λ♯; ζ

))
, where β0

(
λ♯; ζ

)
is

determined in (3.21)-(3.22).
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Theorem 3.3. Let λ♯ satisfy (2.19) and let β ∈
(
−β0

(
λ♯; ζ

)
, β0

(
λ♯; ζ

))
where

β0

(
λ♯; ζ

)
is taken from (3.21). For any fixed ζ ∈ [0, 2π), the problem (3.11), (3.9)

with the right-hand side

(3.26)
{
F ♯, G♯

}
∈ L2

β (Π)
n ×W

1/2
β (Γ)n

has a solution U ♯ ∈ W 2
β,per♯ (Π)

n, if and only if the compatibility conditions

(3.27)
(
F ♯, V

)
Π
+
(
G♯, V

)
Γ
= 0, ∀V ∈ ker T−β

(
λ♯; ζ

)

is met. This solution is defined up to an addendum in ker T0

(
λ♯; ζ

)
= ker T±β

(
λ♯; ζ

)

and, if it is subject to the orthogonality condition

(3.28)
(
U ♯, V

)
Π
= 0, ∀V ∈ ker T0

(
λ♯; ζ

)
,

then it becomes unique and meets the estimate

(3.29)
∥∥U ♯;W 2

β (Π)
∥∥ ≤ c (β)

(∥∥F ♯;L2
β (Π)

∥∥+
∥∥∥G♯;W

1/2
β (Γ)

∥∥∥
)
.

In the case |β| < β0(λ
♮) the constant c(β) can be chosen independently of ζ ∈ [0, 2π).

These theorems mean that any solution U ♯ ∈ H2
per♯ (Π)

n of the homogeneous
problem (3.11), (3.9) has exponential decay at infinity. Moreover, such solutions
form the set of all defect functionals (3.27) of the operator Tβ

(
λ♯; ζ

)
with |β| <

β0

(
λ♯; ζ

)
. Finally, assume that U ♯

(0) ∈ H2
per♯ (Π)

n and U ♯
(β) ∈ W 2

β♯,per♯ (Π)
n , β♯ ∈(

0, β0

(
λ♯; ζ

))
, are solutions of the problem (3.11),(3.9), and the right-hand side{

F ♯, G♯
}
satisfies (3.26) for both β = 0 and β = β♯. Then, clearly, U ♯

(0) and U ♯
(β)

may differ by an element of subspace (3.25) only, and if the orthogonality condition

(3.28) holds true for both, then U ♯
(0) = U ♯

(β).

3.3. The spectrum of the model problem in the strip. Let us consider the
spectral problem in Π, which is the homogeneous (F ♯ = 0, G♯ = 0) problem (3.11),
(3.9) for the spectral parameter λ♯. Its variational formulation is: find a number
λ♯ ∈ C and a non-trivial vector function U ♯ ∈ H1

per♯ (Π)
n such that

(3.30)(
A♯D (∂1 + iζ, ∂2)U

♯, D (∂1 + iζ, ∂2)V
♯
)
Π
= λ♯

(
U ♯, V ♯

)
Π
, ∀V ♯ ∈ H1

per♯ (Π)
n .

The sesquilinear Hermitian form on the left of (3.30) is evidently positive and
closed as a consequence of Korn’s inequality (1.10) in the finite cells ω0 and {x ∈ Π : |x2| < h} .
Thus, the problem (3.30) is associated [4, §10.1] with a positive self-adjoint operator
A♯ (ζ) which has the differential expression L♯ (x, ∂1 + iζ, ∂2) and the domain

(3.31) D
(
A♯ (ζ)

)
=
{
U ♯ ∈ H2

per♯ (Π)
n : N ♯ (x, ∂1 + iζ, ∂2)U

♯ (x) = 0, x ∈ Γ
}
.

According to Theorem 3.1, the essential spectrum of the operator A♯ (ζ) and there-
fore of problem (3.30) equals

(3.32) σes

(
A♯ (ζ)

)
=
⋃

k∈N

B♯
k (ζ) , B♯

k (ζ) = {Λk (η) : η = (ζ, η2) ∈ Y} ,

while according to (2.15)

(3.33) B0
k =

⋃

ζ∈[0,2π)

B♯
k (ζ) .



SPECTRA OF OPEN WAVEGUIDES IN PERIODIC MEDIA 17

O 2

Figure 3.1. Graphs of eigenvalues of the problems in ̟0 and Π with
continuous and dotted lines, respectively. The spectral bands are the
boldface vertical segments on the λ-axis.

If

λ♯ /∈ B♯
k (ζ0) , ∀k ∈ N,(3.34)

κ♯ = dimker T0

(
λ♯; ζ0

)
> 0,(3.35)

hold for some ζ0 ∈ [0, 2π) , then λ♯ is an eigenvalue in the discrete spectrum
σdi

(
A♯ (ζ0)

)
and ker T0

(
λ♯; ζ0

)
is the corresponding eigenspace. By the continuity

of functions (2.13), we have

(3.36) λ /∈ B♯
k (ζ) , ∀k ∈ N, λ ∈

(
λ♯ − δ0, λ

♯ + δ0
)
, ζ ∈

(
ζ ♯ − ε0, ζ

♯ + ε0
)
,

where ε0 and δ0 are positive and the points ζ and ζ − 2π are identified due to
the evident 2π-periodicity. Hence, by general results of the perturbation theory of
linear operators (cf. [14, Ch.XIII], [16, Ch. 9]) the point

(
ζ ♯, λ♯

)
∈ [0, 2π) × R+ is

the intersection of κ♯ continuous curves λ = λ♯
k (ζ), which can be extended either

periodically onto the whole semi-interval [0, 2π) ∋ ζ or have endpoints
(
ζ ♯k, λ

♯
k

)
at

the edges of the spectral bands (3.32), see Fig. 3.1. Thus, we have obtained an at
most countable family of bounded, connected and closed sets, that is, segments with
endpoints included,

(3.37) B♯
k =

{
λ = λk (ζ) : ζ ∈

[
ζ−k , ζ

+
k

]
⊂ [0, 2π]

}
⊂ R+.

The segment (3.37) may be covered by a spectral band (2.15)=(3.33), or may in-
tersect a spectral gap and in this case be contained in the additional part (1.25)
of the essential spectrum σes (A) of the problem (1.18), (1.19); this fact has been
mentioned in Section 1.4 and will be of interest later.

3.4. The regularity field for the open waveguide. We aim to verify the formula

(3.38) σes (A) = σes

(
A0
)
∪ σ♯,

and to this end we take a point λ ∈ R+, which does not belong to set (3.38). Here,
(3.38) contains the essential spectrum (2.16) of the purely periodic problem (1.4),
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(1.5) and also the union (cf. formula (1.26))

(3.39) σ♯ =
⋃

ζ∈[0,2π)

σdi

(
A♯ (ζ)

)

of the discrete spectra of the operator family
{
A♯ (ζ)

}
ζ∈[0,2π)

, (3.31). As explained

above, the set (3.39) consists of a union of at most countably many segments (3.37).
Let the inhomogeneous problem (1.18), (1.19), namely

L (x,∇) u (x)− λu (x) = f (x) , x ∈ Ω,(3.40)

N (x,∇) u (x) = g (x) , x ∈ ∂Ω,

have the right-hand sides

(3.41) {f, g} ∈ L2 (Ω)n ×H1/2 (∂Ω)n .

We introduce a cut-off function X0 ∈ C∞ (R2) such that

X0 (x) = 1 for either |x2| > h + d, or x1 < −1 − d,(3.42)

X0 (x) = 0 for |x2| < h and x1 > −1, 0 ≤ X0 ≤ 1.

The function X0 is equal to 1 outside the semi-strip (−1 − d,+∞)× (−h− d, h+ d)
but vanishes inside the smaller semi-strip (−1,+∞) × (−h, h) which contains ̟+

and thus also the open waveguide. Putting

(3.43) f 0 = X0f, g0 = X0g

gives us vector functions defined in Ω0 and ∂Ω0, respectively. Moreover,

(3.44)
∥∥f 0;L2

(
Ω0
)∥∥ ≤

∥∥f ;L2 (Ω)
∥∥ ,

∥∥g0;H1/2
(
∂Ω0

)∥∥ ≤
∥∥g;H1/2 (∂Ω)

∥∥ .
The first inequality (3.44) is evident, while the second one is a consequence of the
following observation: in view of (3.42) and (1.3) the function X0 equals either one
or zero on each connected component of the boundary ∂Ω0. This also shows that
the commutator [N,X0] will be null the in second formula of (3.49).

Since λ stays out of the set (3.38) by assumption, the condition (2.19) is met and,
according to Section 2.3, the problem (2.19) gets a unique solution u0 ∈ H2 (Ω0)

n

with the estimate
∥∥u0;H2

(
Ω0
)∥∥ ≤ c

(∥∥f 0;L2
(
Ω0
)∥∥+

∥∥g0;H1/2
(
∂Ω0

)∥∥) ≤(3.45)

≤ c
(∥∥f ;L2 (Ω)

∥∥+
∥∥g;H1/2 (∂Ω)

∥∥) .
This solution forms the first component in the representation (notation will be in-
troduced later step by step)

(3.46) u = R (λ) {f, g} = X0u
0 + X♯u

♯ + Xbu
b

of a parametrix for the boundary-value problem (3.40); a parametrix is by definition
a continuous operator

(3.47) R (λ) : L2 (Ω)n ×H1/2 (∂Ω)n → H2 (Ω)n

such that the mapping

(3.48) {L,N}R (λ)− I : L2 (Ω)n ×H1/2 (∂Ω)n → L2 (Ω)n ×H1/2 (∂Ω)n

is compact, where I stands for the identity.
We have

L
(
X0u

0
)
= X0f

0 + [L,X0] u
0 = X 2

0 f +
[
L0,X0

]
u0,(3.49)
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N
(
X0u

0
)
= X0g

0 = X 2
0 g,

where the term with the commutator [L0,X0] admits the estimate
∥∥[L,X0] u

0;H1 (Ω)
∥∥ =

∥∥[L0,X0

]
u0;H1

(
Ω0
)∥∥ ≤(3.50)

≤ c
(∥∥f ;L2 (Ω)

∥∥+
∥∥g;H1/2 (∂Ω)

∥∥) .
The difference u1 = u− u0 is to be sought from the problem

L (x,∇) u1 (x) = f 1 (x) =
(
1− X0 (x)

2) f (x)− [L,X0]u
0 (x) , x ∈ Ω,(3.51)

N (x,∇) u1 (x) = g1 (x) =
(
1−X0 (x)

2) g (x) , x ∈ ∂Ω,

where the supports of the right-hand sides are located in the closed semi-infinite
strip

(3.52) [−1 − d,+∞)× [−h− d, h+ d] .

We now introduce the cut-off function

(3.53) X♯ (x) = χ (x1 − R) ,

where χ and R are taken from (2.30) and (1.13), respectively. The products

(3.54) f ♯ = X♯f
1, g♯ = X♯g

1

are defined in the domain Ω♯, see (3.3), and its boundary ∂Ω♯.Moreover, the estimate
∥∥f ♯;L2

β

(
Ω♯
)∥∥+

∥∥∥g♯;W 1/2
β

(
∂Ω♯

)∥∥∥ ≤ c
(∥∥f 1;L2 (Ω)

∥∥+
∥∥g1;H1/2 (∂Ω)

∥∥)(3.55)

≤ c
(∥∥f ;L2 (Ω)

∥∥+
∥∥g;H1/2 (∂Ω)

∥∥)

is valid with any weight index β ∈ R, because eβ|x2| ≤ cβ in the strip (3.52), where
the supports of f 1 and g1 are contained in.

We now make use of our assumption that λ does not belong to the set (3.38). As
a consequence, the operator Tβ (λ; ζ) of the problem (3.11), (3.9) is an isomorphism
between the weighted spaces in (3.17) for all

(3.56) ζ ∈ [0, 2π) and β ∈ [0, β0 (λ)) ,

where β0 (λ) > 0 is determined in (3.23). In this way we apply the partial FBG-
transform to the boundary-value problem (3.4) with the right-hand sides (3.54);
this yields a problem of the form (3.11), (3.9), and we find a unique solution
U ♯ ∈ W 2

β,per♯ (Π)
n for it. The above mentioned isomorphism property of Tβ (λ; ζ)

guarantees the estimate
∫ 2π

0

∥∥U ♯;W 2
β,per♯ (Π)

∥∥2 dζ ≤ C

∫ 2π

0

(∥∥F ♯;L2
β (Π)

∥∥2 +
∥∥∥G♯;W

1/2
β (Γ)

∥∥∥
2
)
dζ(3.57)

≤ c

(∥∥f ♯;L2
β

(
Ω♯
)∥∥2 +

∥∥∥g♯;W 1/2
β

(
∂Ω♯

)∥∥∥
2
)
,

where the latter inequality is based on (3.16) (and (3.4)). We then employ the
inverse transform (3.10) and obtain a solution u♯ ∈ W 2

β

(
Ω♯
)n

together with the
relation

(3.58)
∥∥u♯;H2

(
Ω♯
)∥∥2 ≤ cβ

∥∥u♯;W 2
β

(
Ω♯
)∥∥2 ≤ Cβ

∫ 2π

0

∥∥U ♯;W 2
β,per♯ (Π)

∥∥2 dζ.

As a result, we have defined the second component in representation (3.46).
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Remark 3.4. The same cut-off function (3.53) multiplies u♯ in (3.46) as well as
f 1 and g1 in (3.54). In Section 4.4 we explain how the second term in (3.46) must
be corrected in the case of the L,V- and Y,Z-shaped waveguides (see Fig. 1.3 and
Section 1.5).

The estimates (3.58), (3.59) and (3.55) show that the product X♯u
♯ in (3.46)

cannot prevent the continuity of the parametrix (3.47). Furthermore, we have

L
(
X♯u

♯
)
= X♯f

♯ + [L,X♯] u
♯ = X 2

♯ f
1 +

[
L♯,X♯

]
u♯,(3.59)

N
(
X♯u

♯
)
= X♯g

♯ = X 2
♯ g

1

where
(3.60)∥∥[L,X♯] u

♯;W 1
β

(
Ω♯
)∥∥ ≤ c

∥∥u♯;W 2
β

(
Ω♯
)∥∥ ≤ c

(∥∥f ;L2 (Ω)
∥∥+

∥∥g;H1/2 (∂Ω)
∥∥) .

Since the supports of the coefficients in the operator
[
L♯,X♯

]
are located in the

vertical strip {x : x1 ∈ [R,R + d] , x2 ∈ R} , the exponential weight in the norm on
the left-hand side of (3.60) helps to prove that the mapping

(3.61) L2 (Ω)n ×H1/2 (∂Ω)n ∋ {f, g} 7→
[
L♯,X♯

]
u♯ ∈ L2 (Ω)n

is compact. Indeed, the mapping can be presented as a sum of a compact operator
(due to the compact embedding H1 ⊂ L2 in a bounded domain, the rectangle
[R,R + d] × [−t, t]), and a small operator with norm O

(
e−tβ

)
(due to the weight

which grows exponentially as |x2| > t and t → +∞).
All terms with the compact embedding property, e.g. (3.61), can be excluded

from forthcoming considerations. Hence, owing to the inequality (3.50) and formulas
(3.58), (3.59), it remains to deal with the problem (3.40) with compactly supported
right-hand sides

f b =
(
1−X 2

0

) (
1− X 2

♯

)
f, gb =

(
1− X 2

0

) (
1−X 2

♯

)
g.

Since this problem is elliptic, recall Section 1.2, classical results in [1, 2] give a vector
function ub ∈ H2 (Ω)n such that

L
(
Xbu

b
)
= Xbf

b + [L,Xb] u
b = f b + [L,Xb]u

b,

N
(
Xbu

b
)
= Xbg

b = gb,
∥∥ub;H2 (Ω)

∥∥+
∥∥[L,Xb] u

b;H1 (Ω)
∥∥ ≤ c

(∥∥f b;L2 (Ω)
∥∥+

∥∥gb;H1/2 (∂Ω)
∥∥) ≤

≤ c
(∥∥f ;L2 (Ω)

∥∥+
∥∥g;H1/2 (∂Ω)

∥∥) ,
where the cut-off function Xb can be chosen as

Xb (x) =
∏

±

∏

p=1,2

(1− χ (±x1 ∓ ρ))

and ρ ∈ N is sufficiently large.
So we have constructed the parametrix R (λ) with all necessary properties, see

(3.47) and (3.48). Since the problem (3.40) is formally self-adjoint, we also have
proved the following assertion which, in particular, shows that the given point λ
belongs to the regularity field of the operator A of Section 1.3.

Theorem 3.5. Assume λ ∈ R+ \ σes (A), cf. (3.38). The homogeneous problem
(1.4), (1.5) has a finite-dimensional space ker (A− λ) of solutions in H2 (Ω)n . The
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inhomogeneous problem (3.40) admits a solution u ∈ H2 (Ω)n, if and only if the
right-hand side (3.41) satisfies the compatibility conditions

(f, v)Ω + (g, v)∂Ω = 0, ∀v ∈ ker (A− λ) .

This solution is defined up to an addendum in ker (A− λ), and if in addition the
orthogonality conditions

(u, v)Ω = 0, ∀v ∈ ker (A− λ)

hold true, then it becomes unique and meets the estimate
∥∥u;H2 (Ω)

∥∥ ≤ c
(∥∥f ;L2 (Ω)

∥∥+
∥∥g;H1/2 (∂Ω)

∥∥) .
3.5. The essential spectrum of the open waveguide. We now conclude with
the main result of the paper.

Theorem 3.6. The essential spectrum of the operator A of the problem (1.18),
(1.19) equals σes (A) = σes (A0)∪σ♯, see (3.38), where the components σes (A0) and
σ♯ are defined in Sections 2.2 and 3.3 by the formulas (2.16), (3.39), respectively.

Proof. Thanks to Theorem 3.5, it suffices to construct singular Weyl sequences
for the operator A at all points in the set (3.38). If λ ∈ σes (A0) , we may take such
a sequence from Section 2.4, because the support [2j , 2j+1]× [2j , 2j+1] of the cut-off
function (2.31) and the entries (2.32) of the sequence do not touch the semi-strip
{x : x1 > 0, |x2| < h}, where the open waveguide lies in.

Let λ belong to the interior of segment (3.37), and recall that the endpoints live in
σes (A0), if they exist. By definition, there exists a ζ ∈ [0, 2π) such that the problem
(3.11), (3.9) admits a non-trivial solution U ♯ ∈ H2

per♯ (Π)
n; this generates a Floquet

wave in the x1-direction

(3.62) u♯ (x) = eiζx1U ♯ (x)

satisfying the homogeneous (f ♯ = 0, g♯ = 0) problem (3.4) in the periodic domain
(3.3). By the constructions in Sections 1.3 and 3.1, this domain coincides with Ω
in the half-plane {x : x1 > 0}, where the matrices A and A♯ become equal to each
other, see (1.16), (2.33), (3.1) and (1.15), (3.2). We localize the wave (3.62) by a
cut-off function similar to (2.31), namely

(3.63) X♯
j (x) = χj (x1)χ

(
x2 + 2j+1

)
χ
(
2j+1 − x2

)

where χj and χ are taken from (2.29) and (2.30). The function X♯
j vanishes outside

the rectangle [2j , 2j+1]× [−2j+1, 2j+1] and we will deal with indices j ∈ N such that
2j > R, cf. (1.13). We set

(3.64) v♯j (x) = X♯
j (x) u

♯ (x) , u♯j (x) =
∥∥v♯j ;L2 (Ω)

∥∥−1
v♯j (x)

and observe that, according to our choice of cut-off functions, both vector functions
in (3.64) satisfy the boundary conditions (1.5).

Recall that by Theorem 3.2 the function u♯ (x) decays exponentially as x2 → ±∞,
so we can compute the L2 (Ω)-norm of v♯j as follows, cf. (2.33),

∥∥v♯j;L2 (Ω)
∥∥2 ≥

2j+1−1∑

j=2j+1

∫ 1

0

∫ 2j+1−1

−2j+1+1

∣∣U ♯ (x)
∣∣2 dx1dx2 ≥

(3.65)
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≥
(
2j+1 − 2j − 2

) (∥∥U ♯;L2 (Π)
∥∥2 − C exp

(
−2β2j+1

))
≥ c♯2

j, c♯ > 0.

We also obtain

(3.66) f ♯j = Lv♯j − λv♯j = L♯v♯j − λv♯j =
[
L♯, X♯

j

]
u♯

and notice that the supports of the coefficients in the commutator
[
L♯, X♯

j

]
belong

to the union of two horizontal and two vertical rectangles of sizes d×2j and 2j+2×d
respectively (they are overshadowed in Fig. 2.1, a). Due to the exponential decay of
u♯, the horizontal rectangles only cause an infinitesimal input into the L2 (Ω)-norm
of (3.66) as j → +∞, and the input of the vertical ones stays uniformly bounded in
j. These mean that

∥∥Au♯j − λu♯j;L2 (Ω)
∥∥ =

∥∥v♯j;L2 (Ω)
∥∥−1 ∥∥f ♯j ;L2 (Ω)

∥∥ ≤ c2−j/2.

An application of the Weyl criterion finishes the proof. �

Remark 3.7. As was commented in Section 1.4, the set (3.39) in the representation
(3.38) of σes (A) can have a non-empty intersection with the essential spectrum
σes (A0) of the problem (1.4), (1.5) in the purely periodic perforated plane Ω0.

4. Possible generalizations of the results

4.1. Concrete problems in mathematical physics. (i) Scalar equations. Let
D (∇) = ∇ and let A be a Hermitian, positive definite 2 × 2-matrix function pos-
sessing the properties described in Section 1.3. Then n = m = 2 and

(4.1) L (x,∇x) = −∇⊤A (x)∇
becomes an elliptic second-order differential operator in the divergence form. The
algebraic completeness is evident, and in (1.9) we have ̺∇ = 1. We consider the
following boundary conditions and problems: the Neumann condition

(4.2) ν (x)⊤ A (x)∇u (x) = 0, x ∈ ∂Ω,

which is nothing but (1.5) with the co-normal derivative (1.8), and the Dirichlet
boundary condition

(4.3) u (x) = 0, x ∈ ∂Ω,

for the generalized Helmholtz equation

(4.4) −∇⊤A (x)∇u (x) = λρ (x) u (x) , x ∈ Ω,

and the Steklov spectral problem

−∆u (x) = 0, x ∈ Ω,(4.5)

∂νu (x) = λu (x) , x ∈ ∂Ω,

where the spectral parameter λ appears in the boundary condition while ∂ν =
ν (x)⊤∇ and ∆ = ∇⊤∇ denote the outward normal derivative and the Laplace
operator. The problem (4.4), (4.2) occurs in acoustics, and the problem (4.4), (4.3)
with L = ∆ and A (x) = I in the theory of quantum waveguides, see Remark 4.1.
Moreover, (4.5) is related to the linear theory of water waves, cf. [21] and Remark
4.2.
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(ii) Elasticity. Let n = 2, m = 3 and

(4.6) D (∇) =

(
∂1 0 2−1/2∂2
0 ∂2 2−1/2∂1

)⊤

, ∂j =
∂

∂xj
, j = 1, 2.

Interpreting u = (u1, u2)
⊤ as a displacement vector, we employ the Voigt-Mandel

matrix notation in elasticity and introduce the strain and stress columns

ε (u; x) =
(
ε11 (u; x) , ε22 (u; x) , 2

1/2
ε12 (u; x)

)⊤
= D (∇) u (x) ,(4.7)

σ (u; x) = A (x) ε (u; x) = A (x)D (∇) u (x) ,

which are composed from the Cartesian components εjk (u) = 2−1 (∂juk + ∂kuj)
and σjk (u) of the strain and stress tensors, respectively. Here, A (x) stands for the
Hooke matrix of elastic moduli, and it is real, symmetric, uniformly bounded and
positive definite. The matrix D (∇) in (4.6) is algebrically complete and ̺D = 2 in
(1.9), see [31, § 3.7.5] and, e.g., [26, Example 1.12]. We assume that A (x) meets all
requirements listed in Section 1.3.

Time harmonic elastic waves with frequency κ > 0 satisfy the system of differential
equations

(4.8) −∂1σj1 (u; x)− ∂2σj2 (u; x) = κ2ρ (x) uj (x) , j = 1, 2, x ∈ Ω.

If ρ (x) = const > 0 and λ = κ2, system (4.8), in view of (4.7) and (4.6), takes form
(1.4) while the traction-free boundary condition on ∂Ω reads as (1.5).

The problem on the oscillations of a homogeneous (constant A), perforated elas-
tic plane is surely interesting for the engineering applications. To include composite
elastic materials into our considerations, we must deal with the variable piecewise
smooth Hooke matrix A (x) and material density ρ (x) . Notice that the same modi-
fication can be applied to (4.4) as well. In the next section we will show how to get
rid of the smoothness assumptions made until now when adapting our method to the
variational formulation of the elasticity problem. Finally, as a possible application
we also mention the Dirichlet problem (4.3) for the elastic displacement vector u,
which has in the two-dimensional case a clear mechanical interpretation meaning
that the boundaries of the holes in a thin elastic plate are rigidly clamped.

(iii) Piezoelectricity. We set n = 3, m = 5 and

(4.9) D (∇)⊤ =

(
DM (∇)⊤ O2×2

O1×3 DE (∇)⊤

)
, E =




1 0 0
0 1 0
0 0 0


 = diag {1, 1, 0} ,

where the 3 × 2-block DM (∇) is taken from (4.6) and DE (∇) = ∇. The column

u =

(
uM

uE

)
consists of the displacement vector uM = (u1, u2)

⊤ and the electric

potential uE = u3 so that the superscripts M and E indicate mechanical and electric
fields, respectively. The so-called smart piezo-devises are able to couple these fields
of different physical nature, and this phenomenon is described by the following
system of three differential equations, see [32, 23],

(4.10) D (−∇)⊤ A (x)D (∇) u (x) = λρ (x)Eu (x) , x ∈ Ω.

Here, ρ (x) > 0 is the material density and the matrix A (x) is written blockwise as

(4.11) A (x) =

(
AMM (x) AME (x)
AEM (x) −AEE (x)

)
,
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where AMM (x) denotes the elastic Hooke matrix, AEE (x) the dielectric matrix and

AME (x) = AEM (x)⊤ the piezoelectric moduli. All matrices are real and AMM (x) and
AEE (x) are symmetric positive definite, hence also the matrix (4.11) is symmetric,
but it is not positive definite due to the minus sign in the bottom right-hand block.
This reflects the intrinsic transformation of the elastic energy into the electric one
and vice versa in a piezoelectric body. At the same time, the electric potential uE

does not affect the kinetic energy at low and middle frequencies and therefore it is
absent on the right-hand side of (4.10), cf. structure of the diagonal matrix E in
(4.9). We emphasize that in spite of the minus sign in (4.11) the piezoelectricity
system (4.10) is elliptic in the Douglis-Nirenberg sense (cf. [26, Example 1.13]).

In Section 4.3 we demonstrate a reduction scheme from [27], which allows us
to apply the above results to the piezoelectricity system with various boundary
conditions.

(iv) Plates. Let n = 3, m = 6 and

(4.12) D (∇)⊤ =




∂1 0 2−1/2∂2 0 0 0
0 ∂2 2−1/2∂1 0 0 0
0 0 0 ∂2

1 ∂2
1 21/2∂1∂2


 =

(
DM (∇)⊤ O2×3

O1×3 ∇⊤DM (∇)⊤

)
.

The Dirichlet problem (4.10), (4.3) with matrices (4.12) and

(4.13) A (x) =

(
AMM (x) AMB (x)
ABM (x) ABB (x)

)
, E =




0 0 0
0 0 0
0 0 1




describes the Kirchhoff model of an anisotropic inhomogeneous plate Ω with rigidly
clamped boundaries of holes, which means

(4.14) u (x) = 0 ∈ R
3, ∂νu3 (x) = 0, x ∈ ∂Ω.

The vector u = (u1, u2, u3)
⊤ includes the longitudinal displacement (u1, u2)

⊤ and
the deflection u3. The matrix A (x) is real symmetric and positive definite, but in

the case of elastic symmetry it becomes block-diagonal, i.e. AMB =
(
ABM

)⊤
= O3×3.

In this case the Douglis-Nirenberg system (4.10) decouples into two second-order
equations and a fourth-order equation. In Section 4.3 we show that our scheme
works also in the case of high-order differential equations including the Kirchhoff
plate.

4.2. Operator formulation of the variational problem. The integral identity
(1.20) corresponding to the spectral problem (1.18), (1.19) makes sense even in the
case the matrix A and scalar ρ are just bounded, measurable, and the boundary ∂Ω
is Lipschitz. It is important that all results on the solvability of model boundary
value problems in Section 4.1 are easily adapted to their weak formulations in the
Sobolev and Kondratiev spaces (see [22, Ch.2], and for the periodic case [28]). It is
straightforward to include into our consideration any type of boundary conditions,
which are covered by the symmetric Green formula (cf. [22, §2,2]), for example, the
Dirichlet conditions (4.3) or mixed boundary conditions.

Remark 4.1. Lipschitz domains occur for example in the grating of quantum waveg-
uides with long-haul thickening as in Fig. 4.1, a). Notice that the domain of the
operator A differs from H2 (Ω) ∩H1

0 (Ω) , cf. [3] and, e.g., [30, Ch.2].
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a) b)

Figure 4.1. Other periodic geometries suitable for the present method.

If the density ρ is not a constant, it is useful to change the operator formulation
of the problem

(4.15) (AD (∇)u,D (∇) v)Ω = λ (ρu, v)Ω , ∀v ∈ H1 (Ω)n

in order to apply the theory of self-adjoint operators in Hilbert space. Namely,
having in mind the Korn inequality (1.17), we introduce in H = H1 (Ω)n the specific
scalar product

(4.16) (u, v)
H
= a (u, v; Ω) + (ρu, v)Ω ,

and then define the continuous, positive, symmetric, hence self-adjoint, operator S
in H by

(4.17) (Su, v)
H
= (ρu, v)Ω , ∀u, v ∈ H.

This turns the problem (4.15) into the abstract equation

(4.18) Su = ςu in H

with the new spectral parameter

(4.19) ς = (1 + λ)−1 .

The above-mentioned theory readily applies to the equation (4.18).

Remark 4.2. In the perforated plane Ω (where ϑ0 is not empty in (1.1) and (1.2))
also the Steklov problem (4.5) reduces to the equation (4.18) with parameter (4.19).
According to [29] we endow in this case the space H1 (Ω) with the scalar product
(u, v)

H
= (∇u,∇v)Ω + (u, v)∂Ω and define the ”trace operator” S by (Su, v)

H
=

(u, v)∂Ω .

4.3. Reduction to integro-differential equations. Concerning the piezoelec-
tricity problem with matrices (4.11), (4.9) or the plate problem with matrices (4.13),
(4.12), we first mention that the results of the papers [24, 25] can be applied here,
since they deal with general boundary value problems for Douglis-Nirenberg elliptic
systems. However, the degenerate matrix E on the right-hand side of (4.10) hampers
the use of the theory of self-adjoint operators in Hilbert space.

For the perforated Kirchhoff plate (ϑ0 6= ∅), the above mentioned trick works with
the new scalar product and operator S,

(u, v)
H
= (AD (∇) u,D (∇) v)Ω + (ρEu,Ev)Ω ,(4.20)

(Su, v)
H
= (ρEu,Ev)Ω , ∀u, v ∈ H



26 G.CARDONE, S.A.NAZAROV, AND J. TASKINEN

where matrices are taken from (4.13) and (4.12). Indeed, owing to the Dirich-
let clamping condition (4.14) the bilinear form (4.20) is a scalar product in H =

H1
0 (Ω)

2 ×H2
0 (∂Ω) .

The piezoelectricity problem (4.10), (1.5) requires a much more elaborate process.
Following [27], we reduce the corresponding variational problem

(
AMMDM (∇)uM, DM (∇) vM

)
Ω
+
(
AMEDE (∇)uE, DM (∇) vM

)
Ω

+
(
AEMDM (∇)uM, DE (∇) vE

)
Ω
−
(
AEEDE (∇)uE, DE (∇) vE

)
Ω

=
(
ρuM, vM

)
Ω
, ∀v ∈ H1 (Ω)3

to
(4.21)(

AMMDM (∇) uM, DM (∇) vM
)
Ω
+ E

(
uM, vM

)
=
(
ρuM, vM

)
Ω
, ∀vM ∈ H1 (Ω)2 ,

where

(4.22) E
(
uM, vM

)
=
(
AMEDE (∇)RuM, DM (∇) vM

)
Ω

and uE = RuM ∈ H1 (Ω) is a solution of the scalar Neumann problem
(
AEEDE (∇) uE, DE (∇) vE

)
Ω

=
(
AEMDM (∇)uM, DE (∇) vE

)
Ω
, ∀vE ∈ H1 (Ω) .(4.23)

Here, the space H1 (Ω) is defined as a completion of C∞
c

(
Ω
)
in the norm

(∥∥∇uE;L2 (Ω)
∥∥2 +

∥∥uE;L2 (K)
∥∥2
)1/2

and K is a compactum in Ω of positive area. Since constants fall into H1 (Ω) , the
problem (4.23) includes one compatibility condition, which is obviously met because
the functional on the right-hand side of (4.23) degenerates on constants. In this way,
the bilinear form (4.22) is well-defined, symmetric and positive, see [27] for details.

Now the trick with a new scalar product in H = H1 (Ω)2 applies again.
Similar modifications work for other types of boundary conditions in piezoelec-

tricity and plates as well.

4.4. Other geometries. To simplify the notation we have always used the covering
of the plane with unit squares. The cells can as well be rectangles or parallelograms,
because an affine transform does not change the crucial properties of the matrices
D (∇) , A (x) and operators (1.7), (1.8). We mention that according to [20], the
elasticity problem in Section 4.1 (ii) preserves its matrix form under any affine
change of coordinates, though some special (non-physical!) columns of strains and
stresses will then appear. A similar procedure applies to piezoelectricity and plates
in Section 4.1 (iii) and (iv).

Other types of planar coverings can be treated in a similar manner, for instance,
the diamond and honeycomb shapes, see [36]. We do not touch upon this general-
ization, which would require a total modification of the notation.

The purpose of the restriction (1.3) was solely to simplify the definitions of cut-
off functions in (2.29)-(2.32) etc., but other settings of holes, cf. Fig. 4.2, a), can be
treated by our method as well. We remark here that the homogeneous boundary
conditions (1.5) and (1.19) are naturally included into the definitions of the domains
(1.11) and (1.21) of the operators A0 and A, and hence one has to take care that
multiplication with the plateau functions (2.31) and (3.63) does not spoil these
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b)a)

Figure 4.2. a) Perforation of another type. b) E-shaped open waveguide.

conditions, otherwise the arising discrepancies must be compensated. A simplest
way to avoid the discrepancies is to construct cut-off functions, which respect the
geometry and surround all holes, like indicated in Fig. 4.2, a), where the support
of |∇Xj| is shaded: no serious change of calculations would follow. Of course, no
modification of cut-off functions is needed in the case of an intact periodic medium
and Dirichlet conditions (4.3).

Our methods are sufficiently general to study the essential spectrum of the prob-
lem (1.18), (1.19) in the layer {x = (y, z) : y = (y1, y2) ∈ R2, |z| < H} perforated
periodically and perturbed inside the semi-infinite cylinder R+×(−h, h)×(−H,H) ,
see Fig. 4.1, b). As in two-dimensional case, in this three-dimensional problem there
again appear only two model spectral problems, one in a cell and another one in an
infinite perforated prism, which can be examined with results in [36, 19] and [24, 30].
In particular our approach applies to elastic infinite three-dimensional plates, which
are perforated or have periodic bases. On the other hand, our approach does not
yet help to examine a problem in the space R3 with a triple-periodic perforation and
with an open periodic waveguide inside a semi-infinity circular cylinder.

4.5. Joints of open waveguides. The waveguides depicted in Fig. 1.3 must keep
the periodicity along all their branches so that axes of inclined branches in Fig. 1.3, a), c),
cross the x1-axis at angle φ with a rational tanφ. Then each branch gives rise to
its own model problem of type (3.11), (3.9) in a perforated strip Πq which is per-
pendicular to the branch axis and may have width different from the main period
1; here q = 1, ..., Q and Q is the number of branches. In this way the essential spec-
trum of problem (1.18), (1.19) for the joint of open waveguides becomes the union

of σes (A0) and the sets σ♯
1, ..., σ

♯
Q defined in (3.39) through the discrete spectra of

the model problem in Π1, ...,ΠQ respectively. Theorem 3.6 remains true with this
modification, but let us next comment the minor changes required for its proof.

First, let us reconsider the Weyl sequence in Section 2.4. Since there exists an
unbounded angular opening between adjacent open waveguides, we can choose for
any j ∈ N a point P j =

(
P j
1 , P

j
2

)
such that the support of the plateau function

(4.24) Xj (x) = χj

(
x1 − P j

1

)
χj

(
x2 − P j

2

)

intersects neither the open waveguides, nor supports of X1, ..., Xj−1. Using (4.24),
the entries (2.32) of the Weyl singular will have all the properties listed in Section
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2.4. Similarly, in Section 3.5 we shift the ”center” of the plateau function (3.63)
along the branch axis and so obtain the Weyl sequence elements (3.64).

Second, the construction (3.46) of the parametrix (3.47) now involves the solu-

tions u♯
(q) of (3.4) in the domains Ω♯

j with the periodicity ”cell” Πq; here q = 1, ..., Q.

These solutions should be located near their branches with the help of some cut-off
functions X q

♯ . However, the definition (3.53) does not work properly, since suppX q
♯

may intersect other branches of the joint and therefore new discrepancies may ap-
pear. To avoid these discrepancies one may place the plateau function between two
neighboring branches as indicated in Fig. 2.1, b) by overshading. Since supp

∣∣∇X q
♯

∣∣
is located in a ρ-neighborhood of the sides of an angle domain, the exponential
weight in the Kondratiev space still leads to compact mappings of type (3.61) and
as a consequence the mapping (3.48) remains compact. Other steps in our proof of
Theorem 3.6 remain unchanged.

We finally mention that in our notation the E-shaped joint of open waveguide of
Fig. 4.2, b), only has one branch, and therefore it is directly covered by Theorem 3.6.
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