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Abstract. We construct a family of periodic piezoelectric waveguides Πε, depending on a small
geometrical parameter, with the following property: as ε → +0, the number of gaps in the essential
spectrum of the piezoelectricity problem on Πε grows unboundedly.
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1. Introduction.

1.1. Motivation.

The continuous spectrum of a cylindrical waveguide of any physical nature is always the entire ray
[λ†,+∞), included in the positive closed real axis R+ of the complex plane C. This means that for
the spectral parameter λ above the cut-off value λ†, wave processes occur and propagating waves
may drive energy from the central part of the waveguide to the infinity and vice versa. However, the
structure of the spectrum may be much more complicated in a periodic wavequide: spectral bands,
”passing zones”, allowing wave propagation, may be interleaved with spectral gaps, ”stopping zones”,
which disable wave processes. This distinguishing feature of periodic waveguides is used in the present
day engineering applications including the design of wave filters, dampers, and many devices of nano-
technology. In this context, a most challenging question has become to find waveguides of simplest
shape having a spectral gap with a prescribed position and width. We give in some sense a positive
answer to this question in the case of piezoelectric waveguides, which are examples of ”smart” materials
and devices. Although we shall consider quite exotic geometric shapes, a shape optimization analysis
is omitted here, and it is planned to be the subject of a forthcoming paper.

Examples of periodic quantum, acoustic and elastic waveguides with gaps in their essential spec-
tra have been presented in the literature, see [11, 10, 23, 24, 5, 6, 29], [2, 3], and [22, 8, 28, 7],
respectively. However, the approach of these papers, or the general approach of [21], cannot be ap-
plied to the piezoelectric waveguides of the present paper, because a direct weak formulation of the
piezoelectricity problem does not correspond to a semi-bounded self-adjoint operator; the essential
spectrum of such a problem would be non-physical, covering the whole plane C as shown in Section
1.5. In this paper we apply a reduction scheme from [20], which improves the situation, since it leads
to self-adjoint Hilbert space operators. However, an integral operator introduced in the scheme is not
local, a fact which again prevents the use of the above mentioned papers directly and which makes
the study of the spectrum rather involved.

The approach in the above mentioned works is based on asymptotic methods in regularly or
singularly perturbed domains, cf. [18, Ch.2,4,5]. The method requires the choice of an unperturbed
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Figure 1. Periodic waveguides.
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Figure 2. Thin cylinder and cells.

reference waveguide with explicitly known essential spectrum, like a straight cylinder or an infinite
periodic row of identical bounded cells. In the former case the essential spectrum is the ray [λ†,+∞),
and in the latter an unbounded monotone sequence of eigenvalues with infinite multiplicity. Perturbing
the shape of the waveguide can either open small gaps, cf. [22, 2, 24, 5, 6], or create small bands, cf.
[22, 8, 28, 3].

In this paper we use the second variant of asymptotic analysis and consider a piezoelectric
waveguide Πε, which consists of ”beads” ̟(j), j ∈ Z = {0,±1,±2, . . .} connected by a thin ”needle”
Ωε, Fig. 1.a. With the help of max-min-principle and elaborate estimates we prove that for any J ∈
N = {1, 2, 3, , . . .} there exists εJ > 0 such that the essential spectrum of the waveguide Πε with
ε ∈ (0, εJ) contains at least J gaps, see Theorem 1.5. Multiple needles described in Fig. 1.b can
be treated with the same tools. Notice that the connecting needles disappear as ε → +0 and the
waveguide Πε decomposes into a row of isolated bodies ̟(j), j ∈ Z.

1.2. Notation for the piezoelectricity system.

Let us present the geometry of the waveguide Πε in detail. By ̟ we denote a bounded domain in R3,

̟ ⊂ {x = (y, z) : y = (y1, y2) ∈ R
2, |z| < 1/2}, (1)

having Lipschitz boundary ∂̟, Fig. 2.b. We assume that the points O± = (0, 0,±1/2) are contained
in the boundary and that, in some neighbourhood of them, ∂̟ is of smoothness C3. Let Ωε denote
the thin infinite straight cylinder Ωε = ωε × R, Fig. 2.a, where the boundary of the domain ω ⊂ {y ∈
R2 : |y| < 1} is smooth, and

ωε := εω = {y ∈ R
2 : ε−1y ∈ ω}.

We consider the periodic waveguide Πε (Fig. 1)

Πε = Ωε ∪
⋃

j∈Z

̟(j) (2)

consisting of Ωε and the periodic family of bodies

̟(j) = {x : (y, z − j) ∈ ̟} , j ∈ Z := {0,±1,±2, . . .}. (3)

The set

̟ε = {x ∈ Πε : |z| < 1/2} = ̟ ∪
(
ωε × (−1/2, 1/2)

)
(4)
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is called the periodicity cell of the quasi–cylinder Πε (see Fig. 2.c). We remark that for small enough
ε the domains ̟ε are still Lipschitz with Lipschitz-constants having a bound independent of ε. This
follows from the assumption that ∂̟ is C3 in some neighbourhoods of O±: due to (1), the surface ∂̟
must be tangential to the planes {z = ±1/2} ⊂ R3 at the points O±.

At ε = 0 the set (2) turns into a union of disconnected domains (3).
The following general notation will be used in the sequel. The L2-inner product on a domain

Ω will be denoted by (f, g)Ω, f, g ∈ L2(Ω), and the same notation will be used also in the case of
R

n-valued functions n = 2, 3, . . .. We write the norm of a Banach function space X as ‖f ;X‖. The
letters c, C, C′ etc. denote positive constants, the value of which may change from place to place.
The possible dependence of some parameter like ε is indicated by c(ε) etc. The symbols ∇ and ∆ will
stand for the gradient and Laplacian with respect to the variable x, respectively. We write B(a, r) for
the open ball with center a ∈ R3 and radius r > 0.

As for the piezoelectricity system, the indices M and E will be used for mechanical and electric
characteristics, respectively. We aim to use matrix formulation of the problem with the Mandel-
Voigt-notation, so we denote by Mp×q the space of matrices of size p × q with real valued, possibly
non-constant, entries, and by Op×q the null matrix of size p × q. The unknown vector function u is
written as the column (uM

1 , u
M

2 , u
M

3 , u
E)⊤, where uM = (uM

1 , u
M

2 , u
M

3 )
⊤ is the displacement vector and

uE is the electric potential and ⊤ stands for transposition. The three-dimensional elastic strain column
is εM = (εM11, ε

M

22, ε
M

33,
√
2εM23,

√
2εM13,

√
2εM12)

⊤, where

εMij = εMij(u) =
1

2

(∂uM

i

∂xj
+

∂uM

i

∂xj

)
.

Hence, the vector εM(uM) can be written as DM(∇)uM, where DM(x) ∈ M3×6 is the matrix with linear
dependence on x = (x1, x2, x3)

⊤,

DM(x) =




x1 0 0 0 2−1/2x3 2−1/2x2

0 x2 0 2−1/2x3 0 2−1/2x1

0 0 x3 2−1/2x2 2−1/2x1 0




⊤

.

Moreover, the electric field strength vector εE = (εE1 , ε
E
2 , ε

E
3) is related to uE by εE(uE) = −∇uE. The

piezoelasticity relations are formulated for the Hooke’s tensor (AMM

pqjk)p,q,j,k, where p, q, j, k = 1, 2, 3,

piezoelectric tensor (AME

pqk)p,q,k and dielectric tensor (AEE

pk )p,k as

σMM

pq =

3∑

j,k=1

AMM

pqjkε
M

jk −
3∑

k=1

AME

pqkε
E

k , σE

p =

3∑

j,k=1

AEM

pjkε
M

jk +

3∑

k=1

AE

pkε
E

k.

The piezoelectricity system under investigation is the time-harmonic limit case of the standard
time-dependent piezoelectrity equation. We refer to [32, 30] for the derivation of the system, using
common assumptions like that the electro-magnetic field is controlled by the equations for the electro-
static limit case. So, the formulation of our problem reads as

L(x,∇)u(x) = λ̺(x)Eu(x) , x ∈ Πε, (5)

B(x,∇)u(x) = 0 for almost every x ∈ ∂Πε. (6)

Here ̺ > 0 is the material density, which we assume to be 1-periodic with respect to z, continuous
and positive: ̺(x) ≥ ̺0 for all x ∈ Πε and some constant ̺0 > 0. The operators L,B ∈ M4×4 are
defined by

L(x,∇) = D(−∇)⊤AD(∇) , B(x,∇) = D(n(x))⊤A(x)D(∇),

where n(x) is the unit outward normal vector at x ∈ ∂Πε, and

D(x) =

(
DM(x) O6×1

O3×3 DE(x)

)⊤

, DE(x) =




x1

x2

x3


 , E =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 .
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The absence of the electric component uE on the right of the system (5) means that we deal with
the low and middle frequency range of the spectrum, where the high frequency oscillations of the
electromagnetic field can be neglected, cf. [32, 30].

We shall use the abbreviated notation

DM := DM(∇) , DE := DE(∇).

Moreover, A = A(x) ∈ M9×9 is defined by

A =

(
AMM AME

−AEM AEE

)
(7)

where the matrices AMM ∈ M6×6 = (AMM

pqjk)p,q,j,k and AEE = (AEE

pk)p,k ∈ M3×3 are symmetric, while

AME = (AME

pqk)p,q,k = (AEM)⊤ ∈ M6×3. The minus sign at the bottom of the left-hand block of the

matrix (7) reflects and implies the loose transform of the mechanical energy into the electric one and
vice versa; this accounts for all the exceptional properties of smart materials and devices so useful
for engineering applications. We assume that for some constant C > 0 there holds the positivity
conditions

u⊤AMM(x)u ≥ C|u|2 and v⊤AEE(x)v ≥ C|v|2 (8)

for all x ∈ Πε, u ∈ R6 and v ∈ R3.
Given a domain Ω ⊂ R3, the bilinear form

(
AMMDMu,DMv

)
Ω
, u, v ∈ H1(Ω)3, (9)

is nothing but the energy form associated with the linear elasticity problem in the domain Ω. As well
known, if Ω is Lipschitz, the following Korn inequality holds true for u ∈ H1(Ω)3 (see [13]):

‖u;H1(Ω)‖2 ≤ C(Ω)
((
AMMDMu,DMU

)
Ω
+ ‖u;L2(Ω)‖2

)
. (10)

We shall need to control the dependence of the constant C(Ω) on the domain as stated in the following
lemma. Its proof follows from the comments to Proposition 2.2 and Lemma 2.3 of [26, § 2.3].

Lemma 1.1. The constant C(̟ε) can be chosen in (10) independently of ε for all domains ̟ε.

1.3. Reduction to a self-adjoint problem.

For the weak formulation of the problem (5)–(6) we first define the Sobolev-type space HE(Πε) as the

completion of C∞
c (Π

ε
) with respect to the norm

(
‖f ;L2(̟)‖2 + ‖∇f ;L2(Πε)‖2

)1/2

. (11)

Since ̟ is bounded, this space contains the constant functions, contrary to H1(Πε), and that the
norm (11) is equivalent to the weighted norm

(
‖(1 + z2)−1/2f ;L2(Πε)‖2 + ‖∇f ;L2(Πε)‖2

)1/2

as a consequence of the one-dimensional Hardy inequality

∞∫

−∞

∣∣∣
dV (t)

dt

∣∣∣
2

dt ≥ C
( ∞∫

−∞

1

1 + t2
|V (t)|2dt+

1/2∫

−1/2

|V (t)|2dt
)
.

The weak formulation of the problem (5)–(6) is to find u ∈ H1(Πε)3 × HE(Πε), u 6= 0, and λ
such that

(
AD(∇)u,D(∇)v

)
Πε = λ(̺uM, vM)Πε , (12)

for all v = (vM, vE) ∈ H1(Πε)3 ×HE(Πε). However, by definition, (7), the matrix A is not symmetric
and hence the operator of the problem (12) is not formally self-adjoint (cf. [9]). We shall reduce the
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problem into a standard spectral problem for a positive self-adjoint operator. To this end we write
(12) componentwise as

(
AMMDMuM, DMvM

)
Πε +

(
AMEDEuE, DMvM

)
Πε

= λ(̺uM, vM)Πε ∀ vM ∈ H1(Πε)3, (13)
(
AEEDEuE, DEvE

)
Πε =

(
AEMDMuM, DEvE

)
Πε ∀ vE ∈ HE(Πε). (14)

Recall that DEvE = ∇vE, hence, the equation (14) is just the weak formulation of the Neumann
problem with homogeneous boundary conditions for the formally positive operator −DEAEEDE (see
(8)). We remark that given F ε ∈ HE(Πε)∗, the compatibility condition for the problem

(
AEEDEuE, DEvE

)
Πε = F ε(vE) ∀ vE ∈ HE(Πε) (15)

reads as F ε(1) = 0, and the solution of (15) is defined up to a constant and becomes unique under
the orthogonality condition

(uE, 1)̟ε = 0. (16)

It is important that
∫

Πε

DEAEMDMuMdx = 0

holds true, see (6). In this way the problem (14) defines a bounded operator

T ε : H1(Πε)3 → HE(Πε) , T ε(uM) = uE (17)

with uE satisfying (16). By definition, T ε is a non-local operator, which is the main qualitative differ-
ence in comparison with the elasticity system (cf. [20]) and also a source of technical difficulties for
the rest of this work.

Denoting

Rε(uM, vM) := (AMEDET εuM, DMvM)Πε
(18)

and inserting (17) turns (13) into the problem
(
AMMDMuM, DMvM

)
Πε +Rε(uM, vM) = λ(̺uM, vM)Πε ∀ vM ∈ H1(Πε)3. (19)

The problem (19) is self-adjoint, which can be seen from the following fact.

Lemma 1.2. The bilinear form Rε is Hermitian and positive in H1(Πε)3 ×H1(Πε)3.

Proof. Let uM, vM ∈ H1(Πε)3 be given and denote uE := T εuM and vE := T εvM. Since (14) holds
with the roles of the pairs (vM, vE) and (uM, uE) interchanged, we can write

Rε(uM, vM) = (AMEDEuE, DMvM)Πε
= (AEMDMvM, DEuE)Πε

= (AEEDEvE, DEuE)Πε
= (AEEDEuE, DEvE)Πε

. (20)

The positivity of Rε follows from the last line and the positivity of AEE, see (8). Furthermore, since

the matrix AEE is symmetric, (20) equals (AEEDEvE, DEuE)Πε
and since the pair (uM, uE) also satisfies

(14), we can reverse the deduction chain (20) to see that Rε(uM, vM) = Rε(vM, uM) holds. ⊠

Let us define the bilinear forms

Aε(uM, vM) :=
(
AMMDMuM, DMvM

)
Πε ,

Bε(uM, vM) := Aε(uM, vM) +Rε(uM, vM) + (̺uM, vM)Πε . (21)

The following coercivity property holds true for Bε, as a direct consequence of (10), Lemma 1.2 and
the assumption ̺ ≥ ̺0 > 0.
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Corollary 1.3. The form Bε satisfies, for some constant C > 0,

‖uM;H1(Πε)‖2 ≤ CBε(uM, uM)

for all uM ∈ H1(Πε)3.

As a consequence of this, the operator Mε : H1(Πε)3 → H1(Πε)3, defined by

Bε(MεuM, vM) = (̺uM, vM)Πε ∀ uM, vM ∈ H1(Πε)3 (22)

is bounded, positive and self-adjoint. The problems (12) and thus (5)–(6) are equivalent to the abstract
equation

MεuM = µuM. (23)

with the new spectral parameter µ = (1 + λ)−1. To be precise, by the spectrum (respectively, point,
continuous or essential spectrum) of the original problem (5)–(6) we mean those numbers λ = µ−1−1,
where µ belongs to the spectrum (respectively, point, continuous or essential spectrum) of the well-
defined spectral problem (23). The spectrum is a disjoint union of discrete and essential components. It
is not known, if the essential and continuous spectra coincide, in other words, if there exist eigenvalues
with infinite multiplicity. The essential spectrum is obviously not empty, due to the unboundedness
of Πε.

1.4. Formulation of the main result and structure of the paper.

The spectral problem (23) concerns a bounded, positive, self-adjoint operator Mε related to an un-
bounded periodic domain, hence, in view of the Floquet-Bloch-Gelfand-theory one expects that the
essential spectrum σess(Mε) of the operator Mε and thus the essential spectrum σess of the original
problem (5)–(6) have band-gap structure,

σess =

∞⋃

p=1

Υε
p, (24)

where Υε
p are closed subintervals of [0,+∞). While this fact indeed holds true, it does not follow

directly from the existing literature due to the complicated structure of Mε; we shall give a proof for
(24) in Theorem 2.3 of Section 2.3. Here, we formulate our main results as follows.

Theorem 1.4. There exist an unbounded non-negative monotone sequence {Λj}∞j=1 and positive se-

quences {cj}∞j=1, {βj}∞j=1 and {εj}∞j=1 such that, for all j,

Υj ⊂ [Λj − cjε
βj ,Λj + cjε

βj ] for ε ∈ (0, εj].

Taking into account the band-gap structure (24) yields the following result.

Theorem 1.5. If Λj < Λj+1 holds for some index j ∈ N, then the essential spectrum σess has a gap

between the segments Υε
j and Υε

j+1 for small enough ε. Consequently, given N ∈ N, one can open at

least N gaps in σess, if ε is small enough.

The sequence {Λj}∞j=1 will just consist of the eigenvalues of the limit problem to be considered
in Section 3.1. Theorem 1.4 follows from Lemmas 3.5 and 4.4 by defining βj = min(β(j), γ(j)) in the
notation of the cited lemmas. To verify Theorem 1.5, we choose a given number N of indices j ∈ N

such that eigenvalues Λj , Λj−1 of the limit problem (78) are distinct. Then, for small enough ε and
for all such j, the spectral bands Υε,η

1 , . . . ,Υε,η
j−1 are contained in the interval [0,Λj−1+Cjε

βj ] and the

bands Υε,η
j , Υε,η

j+1, . . . to the interval [Λj − Cjε
βj ,+∞). Thus, there is a spectral gap between Λj−1

and Λj , for all chosen j.
We explain the contents of the paper. Section 2 concentrates on the Floquet-Bloch-Gelfand-

method, which turns the piezoelectricity problem on the waveguide Πε into a parameter dependent
problem on the bounded domain ̟ε. The self-adjoint reduction is described in Section 2.1, and the
operator theoretic formulation of the spectral problem in Section 2.2. The connection of the spectra of
the original and model problems is clarified in Section 2.3. The limit model problem corresponding to
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the value ε = 0 is dealt with in Section 3.1; in particular, the reference eigenvalues Λp are defined there.
The rest of the section is concentrated on the proof Lemma 3.5, which contains the upper bound for
the spectral bands, cf. above. We apply suitable test functions to the max-min-principle and thus prove
accurate enough upper estimates for the eigenvalues Λε,η

p . To this end, we derive weighted Sobolev
estimates for the eigenfunctions of the limit problem (Section 3.4) and apply these to estimates of the
non-local operators T and T ε,η (Section 3.5).

Section 4 contains the proof for the lower bound of the spectral bands, see Lemma 4.4. The
contents of this section is analogous to Section 3, save a number of inevitable changes.

1.5. On the physical background.

The absence of the spectral parameter λ on the last, ”electric” line of the system (5) is caused by
the fact that the electric potential uE cannot affect the kinetic energy at low and middle frequencies,
which are accepted by the oscillations uM, see [32, 30] for details.

The two above mentioned peculiarities, namely, the non-self-adjointness of L and the absence
of uE on the right of (5), compensate each other in the mathematical formulation so that a vector
eigenfunction u◦ ∈ H1(Πε)4 of the piezoelectricity problem (5)–(6) always corresponds to a real
eigenvalue λ◦ ≥ 0. To see this, one takes the complex conjugation of the electric lines in (5)–(6),
integrates by parts to obtain

(AMMDMu◦M, DMu◦M)Πε + (AMEDEu◦E, DMu◦M)Πε

−(AEMDMu◦M, DMu◦M)Πε + (AMMDMu◦M, DMu◦M)Πε = λ◦(̺u◦M, u◦M)Πε ,

and observes that the second and third scalar products on the left hand side cancel each other.

Also, the changes

u = (uM, uE) 7→ u• = (uM,−uE) , A 7→ A• =

(
AMM AME

AEM −AEE

)
(25)

easily turn the problem (5)–(6) into a formally self-adjoint one with the variational formulation

A•(u•, v•) = (A•Du•, Dv•)Πε = λ(̺u
•
M, v

•
M)Πε . (26)

The sesquilinear form on the left hand side is closely related to the electric enthalpy, cf. [32, 31].
However, it is obviously not positive, due to the minus sign on AEE in (25), and therefore it cannot
keep the ”good” properties of the spectrum of (26). Indeed, since the problem has for any λ ∈ C the
constant solution

u•◦ = (0, 0, 0, 1)⊤, (27)

one can observe by repeating the calculation in Section 2.3 that the operator of the problem (26) is not

a Fredholm operator from H1(Πε)4 into
(
H1(Πε)4

)∗
. In other words, the (essential) spectrum covers

the whole complex plane C. We emphasize that (27) is a parasite solution, because any potential in
mathematical physics is determined up to an additive constant, and indeed, the reduction procedure
in Section 1.3 excludes the subspace of constant electric potentials and produces a self-adjoint positive
operator Mε with a nice spectrum contained in R+ = [0,+∞) ⊂ C.

The Neumann boundary conditions (6) correspond to a waveguide with a traction-free surface in
contact with an absolute electric isolator. If the surrounding medium is an absolute electric conductor,
then the piezoelectricity system (5) has to be supplied with the mixed boundary conditions

EB(x,∇)u(x) = 0 , uE(x) = 0 for almost every x ∈ ∂Πε. (28)

Since the auxiliary Dirichlet problem (14), posed in the subspace H1
0 (Π

ε) = {uE ∈ H1(Πε) : uE =
0 on ∂Πε}, is uniquely solvable, the variational problems (12) and (26) are properly stated inH1(Πε)3×
H1

0 (Π
ε), and in principle the reduction scheme can be avoided. For this reason we do not treat the

problem (5), (28), although all of our results can easily be adapted to this case, too.
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2. Essential spectrum of the piezoelectricity waveguide.

2.1. Floquet-Bloch-Gelfand-transform and model problem in the cell.

The natural approach to the piezoelectricity problem on the periodic waveguide is to apply the Bloch-
Floquet-Gelfand (FBG) -transform, which leads into a parameter dependent problem on the bounded
periodicity cell.

Given the unknown function u, its FBG-transform is defined by (see [12] and, e.g. [19, 14, 27, 15]):

G : u(y, z) 7→ U(y, z; η) =
1√
2π

∑

m∈Z

exp(−iη(z +m))u(y, z +m),

where (y, z) ∈ Πε on the left, (y, z) ∈ ̟ε on the right, and η ∈ [−π, π) is the dual variable (Floquet
parameter). The inverse transform is given by

u(y, z) = (2π)−1/2

π∫

−π

eiηz û(y, z − [z]; η)dη,

where [z] denotes the integer part, [z] = max{ζ ∈ Z : ζ ≤ z}. The Parseval identity takes the form

(u, v)Πε =

π∫

−π

(û, v̂)̟εdη.

The FBG-transform is an isomorphism

G : L2(Πε) → L2(−π, π;L2(̟ε)) and

G : H1(Πε) → L2(−π, π;H1
per(̟

ε)),

where the spaces are complex valued and L2(−π, π;L2(̟ε)) consists of L2(̟ε)–valued L2–functions
on [−π, π], the space L2(−π, π;H1

per(̟
ε)) is defined analogously, andH1

per(̟
ε) is the space of Sobolev–

functions 1–periodic with respect to z. In the case of L2(Πε) the mapping G is even an isometry (see
e.g. [27, § 3.4] and [25, Cor. 3.4.3]).

Applying G, the problem (5) converts into the following model spectral problem in the periodicity
cell (4):

D(−∇− iηe3)
⊤
A(x)D(∇ + iηe3)U(x; η) = Λη,ε̺(x)U(x; η), x ∈ ̟ε, (29)

D(n(x))
⊤
A(x)D(∇y , ∂z + iη)U(x; η) = 0, x ∈ υε := ∂̟ε \ (ωε,+ ∪ ωε,−), (30)

U(y, 1
2 ; η) = U(y,− 1

2 ; η), ∂zU(y, 12 ; η) = ∂zU(y,− 1
2 ; η), y ∈ ωε, (31)

where U(x; η) also depends on ε. Notice that the periodicity conditions are imposed only on the small
cross–sections ω± = ωε × {±1/2} of the needle. The weak formulation of the problem (29) for the
unknown U ∈ H1

per(̟
ε)4, U 6= 0, and Λε,η reads as

(
AD(∇+ iηe3)U,D(∇+ iηe3)V

)
̟ε = Λε,η(̺UM, V M)̟ε , (32)

for all V ∈ H1
per(̟

ε)4 .
As in the case of the original problem (12), it is necessary to make it self-adjoint using the

reduction scheme; the procedure is the same, although the boundedness of ̟ε allows for a crucial
simplification. So we again write (32) componentwise as

(
AMMDM(∇+ iηe3)U

M, DM(∇+ iηe3)V
M
)
̟ε

+
(
AMEDE(∇+ iηe3)U

E, DM(∇+ iηe3)V
M
)
̟ε

= Λε,η(̺UM, V M)̟ε ∀ V M ∈ H1
per(̟

ε)3, (33)
(
AEEDE(∇+ iηe3)U

E, DE(∇+ iηe3)V
E
)
̟ε

=
(
AEMDM(∇+ iηe3)U

M, DE(∇+ iηe3)V
E
)
̟ε ∀ V E ∈ H1

per(̟
ε) (34)
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with UM ∈ H1
per(̟

ε)3 in the problem (34). For η 6= 0 the problem (34) is uniquely solvable inH1
per(̟

ε),
but for η = 0 the homogeneous Neumann problem has the constant solution. However, the right hand
side of (34) with η = 0 degenerates for the constant test function V E so that the Fredholm alternative
provides a solution, which becomes unique by requiring the orthogonality condition

∫

̟ε

UE(x; 0)dx = 0,

which we assume from now on. In this way, the integral identity (34) defines a continuous mapping

T ε,η : H1
per(̟

ε)3 → H1
per(̟

ε) , T ε,η(UM) = UE (35)

for all η ∈ [−π, π).
With the help of (35) the problem (33) can be reformulated as

(
AMMDM(∇+ iηe3)U

M, DM(∇+ iηe3)V
M
)
̟ε +Rε,η(UM, V M)

= Λε,η(̺UM, V M)̟ε ∀ V M ∈ H1
per(̟

ε)3, (36)

by denoting

Rε,η(UM, V M) := (AMEDE(∇+ iηe3)T
ε,ηUM, DM(∇+ iηe3)V

M)̟ε . (37)

We emphasize that Rε,η depends continuously on η ∈ [−π, π) with respect to the operator
norm, since the operator norms of T ε,η are bounded uniformly in ε and η; this fact will be proven
in Lemma 2.2, below. Also, owing to the special structure of the right and left hand sides of (34),
Rε,η depends 2π-periodically on η ∈ [−π, π). To see this, we have UE(x; η+2π) = e−2πizUE(x; η) and
UM(x; η + 2π) = e−2πizUM(x; η), hence,

T ε,η+2πUE(·; η + 2π) = e−2πizT ε,ηUE(·; η).
Moreover,

(
AMEDE(∇+ i(η + 2π)e3)T

ε,η+2πUE(·; η + 2π), DM(∇+ i(η + 2π)e3)V
M
)
̟ε

=
(
AMEDE(∇+ i(η + 2π)e3)e

−2πizUE(·; η), DM(∇+ i(η + 2π)e3)V
M
)
̟ε

=
(
e−2πizAMEDE(∇+ iηe3)U

E(·; η), DM(∇+ i(η + 2π)e3)V
M
)
̟ε

=
(
AMEDE(∇+ iηe3)T

ε,ηUM(·; η), e2πizDM(∇+ i(η + 2π)e3)V
M
)
̟ε

=
(
AMEDE(∇+ iηe3)T

ε,ηUM(·; η), DM(∇+ iηe3)(e
2πizV M)

)
̟ε .

2.2. Spectrum of the model problem.

The proofs of Lemma 1.2 and Corollary 1.3 show that the sesquilinear form Rε,η is Hermitian and
positive in H1

per(̟
ε)3 ×H1

per(̟
ε)3 and that the sesquilinear form

Bε,η(UM, V M) :=
(
AMMDM(∇+ iηe3)U

M, DM(∇+ iηe3)V
M
)
̟ε

+ Rε,η(UM, V M) + (̺UM, V M)̟ε

=: Aε,η(UM, V M) +Rε,η(UM, V M) + (̺UM, V M)̟ε (38)

defines an inner product in the space H1
per(̟

ε)3. The operator Mε,η : H1
per(̟

ε)3 → H1
per(̟

ε)3,
defined by

Bε,η(Mε,ηUM, V M) = (̺UM, V M)̟ε ∀ UM, V M ∈ H1
per(̟

ε)3

is positive and self-adjoint. Since the domain ̟ε is bounded, the embedding H1
per(̟

ε)3 →֒ L2(̟ε)3

and thus also the operatorMε,η are compact, and the spectrum of the η-dependent problem is discrete.
The problems (32) and thus (29) are equivalent to the following abstract equation in H1

per(̟
ε)3,

Mε,ηUM = M ε,ηUM,
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where the spectral parameters are related by M ε,η = (1 + Λε,η)−1. As a consequence, the eigenvalue
sequence of (32) can be written, counting multiplicities, as

0 ≤ Λε,η
1 ≤ Λε,η

2 ≤ . . . ≤ Λε,η
p ≤ . . . → +∞. (39)

Due to the remarks below (36) and Lemma 2.2, the numbers Λε,η
p depend continuously and 2π-

periodically on η. The corresponding eigenvectors are denoted by Uε,η,M
(p) ∈ H1

per(̟
ε)3, and they are

subject to the orthogonality and normalization conditions

(Uε,η,M
(p) , Uε,η,M

(q) )̟ε = δp,q , p, q = 1, 2, . . . (40)

At the end of this section we complete the study of the model problem by proving a technical
necessity:

Lemma 2.1. The operator norms of T ε,η are uniformly bounded, i.e. there exists a constant C > 0,
independent of ε and η, such that

‖T ε,ηUM;H1(̟ε)‖ ≤ C‖UM;H1(̟ε)‖ ∀ UM ∈ H1
per(̟

ε)3. (41)

This is a consequence of the following Lemma 2.2 concerning the equation
(
AEEDE(∇+ iηe3)U

E, DE(∇+ iηe3)V
E
)
̟ε

= F E(η;V E) ∀ V E ∈ H1
per(̟

ε), (42)

where η ∈ [−π, π) and F E(η; ·) ∈ H1
per(̟

ε)∗. It is obvious that the linear form defined by the right

hand side of (34) satisfies the assumptions on F E of the lemma, since DE1 = DE(∇)1 = 0.

Lemma 2.2. Assume that the functional F E(η; ·) satisfies the bounds ‖F E(η; ·); H1
per(̟

ε)∗‖ ≤ c and

|F E(η; 1)| ≤ c|η| for all η. Then the problem (42) has for any η ∈ [−π, π) a solution UE(·; η) ∈
H1

per(̟
ε), and

‖∇UE(·; η);L2(̟ε)‖+ |η|‖UE(·; η);L2(̟ε)‖
≤ c1

(
‖F E(η; ·);H1

per(̟
ε)∗‖+ |η|−1|F E(η; 1)|

)
≤ C, (43)

where c1 and C do not depend on ε or η.

Proof. For η ∈ [−π, π) with |η| ≥ δ > 0 the statement is obvious, because the problem (42) with
δ 6= 0 is uniquely solvable: it is self-adjoint and DE(∇ + iηe3)U

E = 0 implies UE = 0 (due to the
periodicity in z), and, moreover, the solution depends continuously on η in a compact interval.

It suffices to consider small η. Thus, for |η| < δ we search for a solution in the form

UE(x : η) = a(η)η2(1 + iηφ(x)) + ŨE(x; η), (44)

where φ ∈ H1
per(̟

ε) is a solution of the problem

(AEEDEφ,DEV E)̟ε + (AEEe3, D
EV E)̟ε = 0 ∀ V E ∈ H1

per(̟
ε). (45)

For the last term ŨE in (44) we obtain the problem

(AEEDEŨE, DEV E)̟ε = F E(η;V E) + ηF̃ E(η;V E)

+ a(η)F E

φ (η;V
E) ∀ V E ∈ H1

per(̟
ε), (46)

where

F̃ E(η;V E) = i(AEEDEŨE, e3V
E)̟ε − i(AEEe3Ũ

E, DEV E)̟ε − η(AEEe3Ũ
E, e3V

E)̟ε ,

F E

φ (η;V
E) = (AEEDEφ, e3V

E)̟ε − (AEEe3φ,D
EV E)̟ε

+ (AEEe3, e3V
E)̟ε + iη(AEEe3φ, e3V

E)̟ε
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We note that (45) implies

(AEEDEφ, e3)̟ε − (AEEe3φ,D
E1)̟ε + (AEEe3, e3)̟ε

= (AEEe3, e3)̟ε + 2(AEEDEφ, e3)̟ε − (AEEe3, D
Eφ)̟ε

= (AEEe3, e3)̟ε + 2(AEEDEφ, e3)̟ε + (AEEDEφ,DEφ)̟ε

= (AEE(e3 +DEφ), e3 +DEφ)̟ε = ϕ > 0, (47)

since e3 +DEφ 6= 0 cannot vanish everywhere in ̟ε due to the periodicity of φ in z.

Although the right hand side of (46) depends on ŨE, we regard it for a while as given and write
the combatibility condition for the Neumann problem (46) as

F E(η; 1) + ηF̃ E(η; 1) + a(η)F E(η; 1) = 0,

which in view of (47) turns into

a(η) = −
(
ϕ+ iη(AEEe3φ, e3)̟ε

)−1(
F E(η; 1) + ηF̃ E(η; 1)

)
, (48)

while

|a(η)| ≤ c
(
|F E(η; 1)|+ |η| |F̃ E(η; 1)|

)
. (49)

Now we insert (48) into (46), and using a perturbation argument for small |η|, find a solution ŨE ∈
H1

per(̟
ε) with the estimate

‖ŨE;H1(̟ε)‖ ≤ c
(
‖F ε;H1

per(̟
ε)∗‖+ |a(η)|

)
. (50)

The representation (46) and the estimates (49), (50) yield the desired inequality (43). ⊠

2.3. Essential spectrum of the piezoelectricity waveguide.

It is known for example in the case of the elasticity system that the essential spectrum of the problem
on the periodic waveguide Πε coincides with the union of the parameter dependent spectra on the
bounded periodicity cell ̟ε (see for example [25, Thm. 2.1]). However, the existing results do not
cover the present piezoelectricity case due to the appearance of the non-local operator T ε, and we
thus have to reprove the theorem in this more general setting.

Theorem 2.3. The essential spectrum of the operator Mε, (23), is the union

σess(Mε) =
⋃

p∈N

υε
p, (51)

of the spectral bands

υε
p = {µ : λ = 1− µ−1 ∈ Υε

p}, (52)

where

Υε
p = {λ : λ = Λε,η

p for some η ∈ [−π, π)}. (53)

The complement C \ σess(Mε) of (51) is the resolvent set of the operator Mε.

Remark 2.4. The (bounded, closed, connected) intervals (53) must be regarded as spectral bands
of the reduced piezoelectricity problem (19) of the original problem (12) modulo constant electric
potentials.

Proof. I. Assume first that µ does not belong to any band (52) and consider the abstract equation

MεuM − µuM = fM ∈ H1(Πε)3.

In view of (22), (21), this is equivalent to the integral identity

Aε(uM, vM) +Rε(uM, vM)− λ(̺uM, vM)Πε

= 〈fM, vM〉Πε ∀vM ∈ H1(Πε)3, (54)
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where we denote by 〈·, ·〉Ω the inner product of the Sobolev space H1(Ω)k and λ = 1− µ−1 does not
belong to any band (53). Using the FBG-transform and Parseval identity we arrive at a family of
problems depending on η ∈ [−π, π),

Aε,η(UM, V M) +Rε,η(UM, V M)− λ(̺UM, V M)̟ε

= 〈FM, V M〉̟ε ∀V M ∈ H1
per(̟

ε)3,

where UM, V M, and FM are the FBG-images of uM, vM, and fM. The FBG-transform applied to (18)
and (14) also yield the relations (cf. (37), (34))

Rε,η(UM, V M) =
(
AMEDE(∇+ iηe3)U

E, DE(∇+ iηe3)V
M
)
̟ε(

AEEDE(∇+ iηe3)U
E, DE(∇+ iηe3)V

E
)
̟ε

=
(
AEMDE(∇+ iηe3)U

M, DE(∇+ iηe3)V
E
)
̟ε . (55)

Due to our assumption on µ = (1 + λ)−1, the problem (55) has a unique solution UM ∈ H1(̟ε) for
all η ∈ [−π, π). Hence, the estimate

π∫

−π

‖UM(·; η);H1(̟ε)‖2dη ≤ Cλ

π∫

−π

‖FM(η; ·);H1(̟ε)‖2dη

is valid, and the Parseval identity turns this into

‖uM(·; η);H1(Πε)‖2 ≤ Cλ‖fM(·; η);H1(Πε)‖2.
Thus, C \⋃p υ

ε
p is contained in the resolvent set.

II. We shall prove that for all p ∈ N, η ∈ [−π, π), every number µ ∈ υε
p belongs to the essential

spectrum of Mε. To this end we construct a singular Weyl sequence {uM

(N)}N∈N, which by definition

must have the following properties:
1◦. ‖uM

(N);H
1(Πε)‖ = 1,

2◦. uM

(N) → 0 weakly in H1(Πε),

3◦. ‖(Mε − µ)uM

(N);H
1(Πε)‖ → 0 as N → +∞.

By definitions, µ = (1 + λ)−1, where λ = Λε,η
p for some p and η. Let Uε,η,M

(p) be the cor-

responding normalised eigenfunction (40) of the problem (36), so that Uε,η
(p) = (Uε,η,M

(p) , Uε,η,E
(p) ) :=

(Uε,η,M
(p) , T εUε,η,M

(p) ) is the vector eigenfunction of the problem (29)–(31). Then, the Floquet wave

w(y, z) = eiηzUε,η
(p) (y, z; η) (56)

satisfies the homogeneous problem (5)–(6), which means that there holds the integral identity
(
AMMDMwM, DM(χNvM)

)
Πε +

(
AMEDEwE, DM(χNvM)

)
Πε

−
(
AEMDMwM, DE(χNvE)

)
Πε +

(
AEEDEwE, DE(χNvE)

)
Πε

= λ(̺wM, χNvM)Πε ∀v = (vE, vE) ∈ H1(Πε)4, (57)

where for all N ∈ N we denote by XN : R → [0, 1] a smooth cut-off-function XN (z) = χ(z − 2N +
1
2 )χ(2

N+1 + 1
2 − z), where χ : R → [0, 1] is a C∞-function with χ(z) = 0 for z ≤ 0 and χ(z) = 1 for

z ≥ 1. So, XN has compact support and satisfies

XN(z) =

{
1 , z ∈ [2N + 1/2, 2N+1 − 1/2, ]
0 , z /∈ [2N − 1/2, 2N+1 + 1/2]

and also |∂zXN (z)| ≤ C for all z; see Fig. 3.
We set

uM

(N) = ‖XNwM;L2(Πε)‖−1XNwM
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Figure 3. Cut-off-function.

and observe that

‖XNwM;L2(Πε)‖2 ≥ (2N+1 − 2N − 2)‖UεM
p ;L2(̟ε)‖2 (58)

for N ≥ 2. Thus, the properties 1◦ and 2◦ hold true, at least for a subsequence of these functions,
because suppuM

(N) ∩ suppuM

(Q) = ∅ for N 6= Q.

We have, with the notation of (54),

‖(Mε − µ)uM

(N);H
1(Πε)‖ = sup

∣∣〈(Mε − µ)uM

(N), v
M〉Πε

= ‖XNwM;L2(Πε)‖−1µ−1 sup
∣∣Aε(XNwM, vM) +Rε(XNwM, vM)

− λ(̺XNwM, vM)Πε

∣∣, (59)

where the supremum is computed over all vM ∈ H1(Πε)3 such that ‖vM;H1(Πε)‖ = 1. Let us process
the expression within the supremum on the right of (59). To this end, we commute in (57) the cut-off
function XN and the operators DM, DE several times, and a simple but lengthy calculation yields

(
AMMDM(XNwM), DMvM

)
Πε +

(
AMEDE(XNwE), DMvM

)
Πε

= FM0
N (vM) + FM1

N (vM), (60)
(
AEEDE(XNwE), DEvE

)
Πε −

(
AEMDM(XNwM), DEvE

)
Πε

= F E0
N (vE) + F E1

N (vE), (61)

where

FM0
N (vM) = −

(
AMMDMwM +AMEDEwE, [DM, XN ]vM

)
Πε ,

FM1
N (vM) =

(
AMM[DM, XN ]wM +AME[DE, XN ]wE, DMvM

)
Πε ,

and

F E0
N (vE) = −

(
AEEDEwE −AEMDMwM, [DE, XN ]vE

)
Πε ,

F E1
N (vM) =

(
AEE[DE, XN ]wE −AEM[DM, XN ]wM, DEvE

)
Πε . (62)

Since the support of the matrix function [DM, XN ] = DM(∇)XN is contained in the union of the
closures of the two cells ̟ε

k = {x ∈ Πε : z ∈ (k − 1/2, k + 1/2)} with k = 2N and k = 2N+1 − 1, we
have

∣∣FM0
N (vM)

∣∣+
∣∣FM1

N (vM)
∣∣ ≤ C‖vM;H1(Πε)‖, (63)

where C is independent of N and vM. Furthermore, (14), (17) and (61) yield

XNwE = T ε(XNwE)−W E0 −W E1, (64)

where W Eq ∈ HE(Πε) (cf. (11)) is a solution of the Neumann problem
(
AEEDEW Eq, DEvE

)
Πε = F Eq(vE) , vE ∈ HE(Πε).
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The right hand side of (62) involves DEvE only and therefore we obtain similarly to (63)

|F E1(vE)| ≤ C‖wM;L2(̟ε
2N ∪̟ε

2N+1−1)‖ ‖∇vE;L2(Πε)‖ ≤ C‖vE;HE(Πε)‖, (65)

‖DEW E1;L2(Πε)‖ ≤ C. (66)

Since the norm of the space HE(Πε) contains a weight, the estimate (65) does not hold for F E0(vE).
However, using the Poincaré inequality in ̟ε

2N and ̟ε
2N+1−1 we obtain

F E0
N (vE) = F E•

2N (vE)− F E•
2N+1−1/2(v

E) , F E0
2N (vE) =

F E•
2N (vE) =

(
[DE, χ(z − 2N − 1/2)](AEEwE −AEMDMwM), vE

)
̟ε

2n
,

∣∣F E•
2N (vE − vE•2N )

∣∣+
∣∣F E•

2N+1−1(v
E − vE•2N+1−1)

∣∣

≤ C‖∇vE;L2(Πε)‖ ≤ C‖vE;HE(Πε)‖.

Moreover, the estimate

‖DEW E0;L2(Πε)‖ ≤ C (67)

is a consequence of the relation

F E•
2N (vE•2N ) = vE•

2N

∫

̟ε

2N

[DE, χN ]⊤(AEEDEwE −

− AEMDMwM)dx = 0, (68)

which in turn follows from Lemma 2.5, below; we denote χN (z) = χ(z − 2N − 1
2 ) here. Now we can

conclude with the property 3◦: we insert (64) into (60) and use the estimates (63), (65) and (66), (67)
to obtain

∣∣Aε(XNwM, vM) +Rε(XNwM, vM)− λ(̺XNwM, vM)Πε

∣∣ ≤ C.

The property 3◦ follows from this, (59) and (58). ⊠

We are left with the proof of the following

Lemma 2.5. Let w be the Floquet wave (56) corresponding to the eigenvalue Λε,η
p and the eigenfunction

Uε,η,M
(p) of the problem (36). Then w satisfies the formula

∫

Πε

[DE, χ]⊤(AEEDEwE −AEMDMwM)dx = 0, (69)

where χ ∈ C∞(R) is any function which equals one near +∞ and null near −∞, for example, χ(z) = 1
for z > z+ and χ(z) = 0 for z < z− < z+ for some numbers z− < z+.

Proof. This result can be obtained by different arguments, for example, by using the orthogonality
and normalization conditions for Jordan chains of the quadratic pencil η 7→ A(η;λ) generated by the
model problem on the periodicity cell, (29)–(31) (or (32) in the variational form). Accordingly, in
[27, § 5.2–§ 5.4] it was verified that in the case of a formally self-adjoint elliptic problem with smooth
coefficients (see Section 1.5 and the substitutions (25)), one can choose a basis {w0, w2, . . . , wm, . . .}
in the linear span of Floquet waves such that

Q•(χwj , χwk) = (L•χwj , χwk)Πε + (B•χwj , χwk)∂Πε

− (χwj , L•χwk)Πε − (χwj , B•χwk)∂Πε = 0

as j 6= k. We observe that the symmetric Green formula implies

Q•((1− χ)wj , χwk) = 0,
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because (1− χ)wj = 0 for z > z+ and χwk = 0 for z < z−. Thus,

0 = Q•(wj , χwk)

=
(
wj , D(∇)⊤A•D(∇)χwk

)
Πε −

(
wj , D(∇)⊤A•D(∇)χwj

)
Πε

=
(
wj , D(∇)⊤A•[D(∇), χ]wk

)
Πε +

(
wj , [D(∇), χ]⊤A•D(∇)χwk

)
Πε

−
(
wj , D(∇)⊤A•D(∇)χwk

)
Πε

=
(
wj , [D(∇), χ]⊤A•D(∇)wk

)
Πε −

(
A•D(∇)wj , [D(∇), χ]wk

)
Πε . (70)

Notice that this orthogonality condition can be extended for non-smooth coefficients and boundaries
by a completion argument.

The particular Floquet wave w0 = (0, 0, 0, 1) exists for every λ and it differs from the Floquet
waves (56) because of our reduction scheme, which excludes constant electric potentials. Hence, we
derive from (70) the desired equality

0 = −
(
A•D(∇)w, [D(∇), χ]w0

)
Πε =

(
AEEDEwE +AEMDMwE, [DE, χ]

)
Πε .

Let us describe another way to conclude with (69) in the case of the same cut-off function χN (z)
as in (68). We again assume that the coefficients are smooth and obtain

∫

̟ε

[DE, χN ]
(
AEEDEwE −AEMDMwE

)
dx

=

∫

̟ε

χNDE
(
AEEDEwE −AEMDMwE

)
dx+ I(1), (71)

where

I(t) =

∫

G(t)

DE(e3)
⊤
(
AEEDEwE −AEMDMwE

)
dy, (72)

and G(t) := {(y, z) ∈ ̟ε : z = t}. The first integral on the right side of (71) vanishes, due to the
”electricty” line in the system (5), and the integral (72) is independent of t ∈ [0, 1] by the Green
formula. Moreover, we have

I(1) = eiηt
∣∣∣
t=1

∫

G(t)

DE(e3)
⊤
(

AEEDE(∇+ iηe3)U
ε,η,E
(p)

− AEMDM(∇+ iηe3)U
ε,η,E
(p)

)
dy = eiηI(0).

We thus see that for η ∈ [−π, π) \ {0} the independence property is possible in the case I(1) = 0 only,
that is, (69) is true. The case η = 0 follows by a continuity argument. ⊠

3. Upper bound for spectral bands.

In this section we prove an upper bound for the spectral bands. The proof of the lower bound is
partially similar and it is given in Section 4. However, there are some differences, and in particular the
proof of Lemma 4.1 in Section 4 uses in an essential way the upper bound obtained in this section.

We start in Section 3.1 with a review of the spectrum of the limit problem in the isolated cell.
Moreover, we shall need a number of preparatory results. In [28], standard local elliptic estimates were
used to derive pointwise estimates for the eigenfunctions of the limit problem near points corresponding
to O± of this paper, and similar estimates will also be used here, see Lemma 3.1. However, the
piezoelectricity case contains more terms to be estimated, in particular those related with the non-local
operators, and following the scheme of [28] would also require pointwise estimates of the eigenfunctions
of the η-dependent problem. These are not available, since the boundary of the domain ̟ε is not
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smooth around the points O±, but that problem can be circumvented by using the weighted Sobolev
estimates of Lemma 3.2 and 4.1.

3.1. Spectrum of the limit model problem.

We next consider the problem (29)–(31) at ε = 0 (fig.2, b)), in which case the ligaments of Πε vanish.
Indeed, the periodicity conditions (31) cannot be stated any more, and the remaining problem for
the unknown function U on ̟ consist of the equation (29) on ̟ and the condition (30) on the entire
boundary ∂̟. We observe that for any η this problem has the same eigenvalues as the case η = 0: if
u is a solution to the problem (73), below, with the eigenvalue Λ, then U = exp(−iηz)u solves (29)
on ̟ with the same eigenvalue Λ. We thus led to consider the standard piezoelectricity problem for
the isolated bounded body ̟ corresponding to the case η = 0 only (see fig. 3, c):

D(−∇)
⊤
A(x)D(∇)u = ̺Λu , x ∈ ̟,

D(n(x))
⊤
A(x)D(∇)u = 0 , x ∈ ∂̟.

(73)

By the remark above, we can now proceed similarly to Section 2.1 by setting η = 0, ε = 0. The weak
formulation is written as

(AD(∇)u,D(∇)v)̟ = Λ
(
̺uM, vM

)
̟

∀v ∈ H1(̟)4. (74)

The reduction scheme once more yields a self-adjoint problem with variational formulation similar to
(12). We only need to fix some notation here. First, the operator T : H1(̟)3 → H1(̟), TuM = uE is
defined by the equation

(
AEEDETuM, DEvE

)
̟ε =

(
AEMDMuM, DEvE

)
̟ε ∀ vE ∈ H1(̟ε).

The compatibility condition is treated in the same way as in (35), and the operator T is thus uniquely
defined up to an additive constant. This we determine by requiring

∫

̟

TuMdx =

∫

̟

uEdx = 0.

The sesquilinear form R : H1(̟)3 ×H1(̟)3 → C is defined as the form Rε in (18) with the help of
the operator T :

R(uM, vM) := (AMEDETuM, DMvM)̟. (75)

Let us also set for uM, vM ∈ H1(̟)3,

A(uM, vM) :=
(
AMMDMuM, DMvM

)
̟

,

B(uM, vM) := A(uM, vM) +R(uM, vM) + (̺uM, vM)̟ (76)

The proofs of Lemma 1.2 and Corollary 1.3 again imply that the form R is Hermitian, positive in
H1(̟); moreover, it is coercive:

‖uM;H1(̟)‖2 ≤ CB(uM, uM) (77)

for a constant C > 0, for all uM ∈ H1(̟)3.
The equation

B(MuM, vM) = (̺uM, vM)̟ ∀ uM, vM ∈ H1(̟)3

defines a positive, self-adjoint, compact operator M : H1(̟)3 → H1(̟)3. The problem (73) is
equivalent to the abstract equation

MuM = νuM,

and the spectral concepts are defined via the connection ν = (1+Λ)−1 in the same way as above. The
operator M has a decreasing sequence of positive eigenvalues converging to 0, and the problem (73)
has the increasing eigenvalue sequence (counting multiplicities)

0 = Λ1 = . . . = Λ6 < Λ7 ≤ Λ8 ≤ . . . ≤ Λp ≤ . . . → +∞ . (78)
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For every p, let uM

(p) ∈ H1(̟)3 be the eigenfunction corresponding to Λp, normalized and orthogonal

in L2(̟)3:

(uM

(p), u
M

(q))̟ = δp,q , p, q = 1, 2, . . . . (79)

We recall that by the max–min principle (see, e.g., [4, Th.10.2.2])

Λj = max
Hj

inf
U∈Hj\{0}

B(U ,U ;̟)

‖U ;L2(̟)‖2 , (80)

where Hj stands for any subspace in H1(̟)3 of codimension j − 1, in particular, H1 = H1(̟)3.

3.2. Some technical tools.

We need to define some cut-off functions. First, fix the geometric parameters 0 < r1 < r2 < r3 such
that the surfaces ∂̟ ∩B(O±, rj) are C3 (see Section 1.1), and we denote

̟±(r
j) := ̟ ∩B(O±, rj) , j = 1, 2, 3. (81)

It follows from the basic geometric setting that, for a constant ρ ≥ 1,

̟ε \
⋃

±

B(O±, ρε/4) ⊂ ̟

for all ε > 0. In the following we always consider ε small enough: ρε < r1/3. Let χε be a C∞ cut-off
function which vanishes in the sets B(O±, ρε) and equals 1 outside the sets B(O±, 2ρε), and satisfies
|∇χε| ≤ Cε−1. As a consequence, functions defined on ̟ can be extended to ̟ε by multiplying them
with χε. We also define Xε to be a C∞ cut-off function with a slightly bigger support: Xε = 1 in
B(O±, ρε) and Xε = 0 in B(O±, ρε/2) with ∇Xε ≤ Cε−1.

For x ∈ R3, let us define the distance function

δ(x) = min(|x −O+|, |x−O−|)

and, for all θ, 0 < θ < r1, the truncated distance function

δθ(x) =

{
θ , if δ(x) < θ
δ(x) , if δ(x) ≥ θ.

(82)

The following Hardy-type inequality is well-known:
∥∥∥δ−1−β

θ f ;L2(̟′)
∥∥∥ ≤ C

∥∥∥δ−β
θ ∇f ;L2(̟′)

∥∥∥ , f ∈ H1(̟′), (83)

where ̟′ equals ̟ or ̟ε, and the constant C > 0 can be chosen independently of ε, θ and β, when
0 ≤ β < 1/2− c for some constant 0 < c < 1. We sketch the proof for the convenience of the reader,
replacing the domain by R3 and the function δ(x) by |x| in (82), and assuming β > 0 (the case β = 0
is easier). Indeed, let (ρ, σ) be the spherical coordinates of R3 with ρ ∈ [0,∞), σ ∈ [−π, π] × [0, π].
For every fixed σ, the classical Hardy inequality for g(·, σ) ∈ C∞

0 [0,∞) reads as

∞∫

a

|g(r, σ)|2dr ≤ 4

∞∫

a

r2|g′(r, σ)|2dr,

where originally a = 0, but obviously any a > 0 can also be used. Changing the integration variable by
r = ϕ(ρ) := ρ1−2β and choosing a properly lead to the following inequality for the function f = g ◦ϕ,

∞∫

θ

ρ−2β |f(ρ, σ)|2dρ ≤ C

∞∫

θ

ρ2−2β |f ′(ρ, σ)|2dρ (84)
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where we take C := sup 4(1 − 2β)−2 < ∞ (see the choice of β above). Assuming f ∈ C∞
0 (R3) and

integrating over the sphere ∂B(0, ρ) with respect to the surface measure dsρ, using the Fubini theorem
and taking into account dx = Cρ2dρdsρ, (84) implies (with usual abuse of notation in the variables)

∫

R3\B(0,θ)

|x|−2−2β |f(x)|2dx ≤ C

∫

R3\B(0,θ)

|x|−2β |∇f(x)|2dx. (85)

On the other hand,
∫

B(0,θ)

θ−2|f(x)|2dx ≤
∫

R3

|x|−2|f(x)|2dx ≤ C

∫

R3

|∇f(x)|2dx. (86)

where the second step is just a standard Hardy inequality, see for example [17], formula (1.3.3) with
p = 2, s = 2, m = 3. Multiplying (86) by θ−2β and combining with (85) yields

∫

R3

(
max(|x|, θ)

)−2−2β|f(x)|2dx ≤ C

∫

R3

(
max(|x|, θ)

)−2β |∇f(x)|2dx.

Passing to the Lipschitz domain ̟′ can be done by rectifying the boundary.

Next we derive pointwise estimates for the eigenfunctions u(p). Here, it is essential that the

boundaries of ∂̟±(r
j) are sufficiently smooth (see (81)).

Lemma 3.1. The pointwise estimates

|u(p)(x)| ≤ c̟(1 + Λp) , |∇u(p)(x)| ≤ c̟(1 + Λp)
3/2 (87)

hold for all x ∈ ̟±(r
1).

Proof. We apply the local estimates [1, Ch. 10] to the problem (73) with v := u(p) and f := Λpu(p).
We thus find for every l = 0, 1, 2 a constant C = C̟,l,j such that

‖u(p);H
l+1(̟±(r

j))‖

≤ C
(
Λp‖u(p);H

l−1(̟±(r
j+1))‖+ ‖u(p);L

2(̟±(r
j+1))‖

)
(88)

for j = 1, 2. Moreover, ‖u(p);L
2(̟±(r

j+1))‖ ≤ 1, by the normalization (79), and applying (77) yields

‖u(p);H
1(̟±(r

j))‖2 ≤ ‖u(p);H
1(̟)‖2

≤ CB(u(p), u(p)) = CΛp(u(p), u(p))̟ = CΛp.

Taking l = 1, j = 2 in (88) we obtain

‖u(p);H
2(̟±(r

2))‖

≤ Cl

(
Λp‖u(p);L

2(̟±(r
3))‖ + ‖u(p);L

2(̟±(r
3))‖

)
≤ C1(Λp + 1) (89)

and for l = 2, j = 1,

‖u(p);H
3(̟±(r

1))‖ ≤ Cl

(
Λp‖u(p);H

1(̟±(r
2))‖+ ‖u(p);L

2(̟±(r
2))‖

)

≤ C2

(
Λ2
pC1(Λp + 1)2 + 1) (90)

In view of the standard embeddings H2(̟±(r
2)) ⊂ CB(̟±(r

1)) and H3(̟±(r
1)) ⊂ C1

B(̟±(r
1)), the

estimates (87) follow from (89) and (90). ⊠
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3.3. Weighted Sobolev estimates.

The following weighted Sobolev estimates will be used for treating the difficulties caused by the non-
local operators T and T ε,η.

Lemma 3.2. For every j ∈ N there exist numbers β = β(j) > 0 and Cj such that for all ε > 0
∥∥∥δ−β∇uM

(j);L
2(̟)

∥∥∥+
∥∥∥δ−1−βuM

(j);L
2(̟)

∥∥∥ ≤ Cj , (91)
∥∥∥δ−β∇(χεu

M

(j));L
2(̟)

∥∥∥+
∥∥∥δ−1−βχεu

M

(j);L
2(̟)

∥∥∥ ≤ Cj , (92)
∥∥∥δ−β∇T (χεu

M

(j));L
2(̟)

∥∥∥+
∥∥∥δ−1−βT (χεu

M

(j));L
2(̟)

∥∥∥ ≤ Cj . (93)

Lemma 3.2 implies the following estimates.

Corollary 3.3. We have, with β = β(j) as in Lemma 3.2,

‖(1− χε)u
M

(j);H
1(̟)‖ ≤ Cεβ, (94)

‖(1−Xε)T (χεu
M

(j));H
1(̟)‖ ≤ Cεβ, (95)

‖(∇Xε)T (χεu
M

(j));L
2(̟)‖ ≤ Cεβ . (96)

Proof. By the results of Section 3.2 we note that |∇χε| ≤ Cε−1 and that in the support of 1−χε

there holds δ(x) ≤ 2ρε, hence, (94) follows from (91):

‖(1− χε)u
M

(j);H
1(̟)‖2 ≤

∫

B(O±,2ρε)

(
(1 + |∇χε|2)|uM

(j)|2 + |∇uM

(j)|2
)
dx

≤ Cε2β
∫

B(O±,2ρε)

(
δ−2−2βδ2ε−2|uM

(j)|2 + δ−2β |∇uM

(j)|2
)
dx

≤ Cε2β
∫

B(O±,2ρε)

(
δ−2−2β|uM

(j)|2 + δ−2β|∇uM

(j)|2
)
dx ≤ C′ε2β .

The inequality (95) is proven in the same way with the help of (93).

The proof of (96) is similar: we use the position of the support of ∇Xε, the estimate |∇Xε| ≤
Cε−1 and the weights in the inequality (93). ⊠

Proof of Lemma 3.2. 1◦ To verify (91) we start by writing (cf. (74))
(
AD(∇)u,D(∇)v

)
̟

=
(
AMMDMuM, DMvM

)
̟
+
(
AMEDEuE, DMvM

)
̟

−
(
AEMDMuM, DEvE

)
̟
+
(
AEEDEuE, DEvE

)
̟
, (97)

where u = (uM, uE), v = (vM, vE) ∈ H1(̟)4. If v = u, then, since AME = (AEM)⊤ (see the lines after
(7)), the sum of the terms with AME and AEM of (97) is imaginary, while the terms with AMM and
AEE are real (the matrices AMM and AEE are symmetric positive definite, see (8)). We obtain

Re
(
AD(∇)u,D(∇)u

)
̟

≥
(
AMMDMuM, DMuM

)
̟

(98)

for all u = (uM, uE) ∈ H1(̟)4

Let δθ be as in (82) and let us define the operator Qθf = δ−β
θ f , where the number β > 0 is to

be fixed later. Writing, as before, D = D(∇) and also ũ := Qθu
M

(j) we notice that the commutator

[D,Qθ] is the same as the multiplication with the matrix function Dδ−β
ε , which has the estimate

|Dδ−β
θ | ≤ Cβδ−β−1

θ . (99)
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Hence, we have
(
ADuM

(j), DQ2
θu

M

(j)

)
̟

=
(
QθADuM

(j), Dũ
)
̟
+
(
QθADuM

(j), Q
−1
θ [D,Qθ]ũ

)
̟

=
(
ADũ,Dũ

)
̟
−
(
Q−1

θ A[D,Qθ]ũ, Dũ
)
̟

+
(
ADũ,Q−1

θ [D,Qθ]ũ
)
̟
−
(
AQ−1

θ [D,Qθ]ũ, Q
−1
θ [D,Qθ]ũ

)
̟

=
(
ADũ,Dũ

)
̟
+ I(ũ, ũ

)
, (100)

where (99) yields the estimate
∣∣ReI(ũ, ũ)

∣∣ ≤ cβ‖δ−1
θ ũ;L2(̟)‖

(
‖∇ũ;L2(̟)‖ + β‖δ−1

θ ũ;L2(̟)‖
)

(101)

By (98) and the Korn inequality (10),

(ũ, ũ)̟ +Re(ADũ,Dũ)

≥ (ũ, ũ)̟ + (AMMDMũ, DMũ)̟ ≥ c‖∇ũ;L2(̟)‖. (102)

Choosing V = Q2
θu(j) in (100), the integral identity (74) can be written as

A(Dũ,Dũ)̟ + I(ũ, ũ) = Λj

(
̺δ−β

θ uM

(j), δ
−β
θ uM

(j)

)
̟

= Λj(̺ũ, ũ)̟. (103)

The right hand side is real and positive, and due to the Hardy inequality (83), it is bounded by a
constant Cj , since ‖uM

(j);H
1(̟)‖ is bounded by a constant depending on j only. This, (101), and (102)

imply

‖ũ;L2(̟)‖2 + ‖∇ũ;L2(̟)‖2 ≤ CReA(Dũ,Dũ) + C(ũ, ũ)̟

≤ C′
j

(
1 + |ReI(ũ, ũ)|

)

≤ C′
j + cjβ‖δ−1

θ ũ;L2(̟)‖
(
‖∇ũ;L2(̟)‖ + β‖δ−1

θ ũ;L2(̟)‖
)
.

On the right hand side we use (83) to bound ‖δ−1
θ ũ;L2(̟)‖ by C‖ũ;H1(̟)‖. Choosing a small enough

β and moving terms from the right to the left yield

‖ũ;L2(̟)‖2 + ‖∇ũ;L2(̟)‖2 ≤ C.

By this and (83),

‖δ−1−β
θ uM

(j);L
2(̟)‖ = ‖δ−1

θ ũ;L2(̟)‖ ≤ ‖∇ũ;L2(̟)‖ ≤ C, (104)

hence, (99) and δ−β
θ ∇uM

(j) = −[D,Qθ]u
M

(j) +∇ũ give us

‖δ−β
θ ∇uM

(j);L
2(̟)‖ ≤ C

(
‖δ−1−β

θ u;L2(̟)‖+ ‖∇ũ;L2(̟)
)
‖ ≤ C′, (105)

Passing to the limit θ → 0, (104) and (105) imply (91).

2◦. We compare (92) with (91) and note that since |χε| ≤ 1, the only new term requiring an
estimate is ‖δ−β(∇χε)u

M

(j);L
2(̟)‖. But we have |∇χε| ≤ Cε−1 ≤ Cδ−1 for x belonging to the support

of χε, hence, this bound also follows from (91).

3◦. Proof of (93). We write V := χεu
M

(j) and let the operator Qθ be as above. First, by the Hardy

inequality (83), we have
∥∥∥δ−1−β

θ TV ;L2(̟)
∥∥∥ ≤ C

∥∥∥δ−β
θ ∇TV ;L2(̟)

∥∥∥ (106)

The definition of T gives for the test function vE := Q2
θTV ∈ H1(̟),

(AEEDETV , DEQ2
θTV)̟ = (AEMDMV , DEQ2

θTV)̟. (107)

The left hand side equals

(AEEQθD
ETV , QθD

ETV)̟ + (AEEQθD
ETV , Q−1

θ [DE, Q2
θ]TV)̟,
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and the right hand side

(AEMQθD
MV , QθD

ETV)̟ + (AEMQθD
MV , Q−1

θ [DE, Q2
θ]TV)̟,

while the commutator [DE, Q2
θ] is multiplication with a matrix function satisfying

|[DE, Q2
θ]| ≤ Cβδ−1−2β

θ . (108)

Combining (107)–(108) and using the positive definiteness of AEE and the Cauchy-Bunyakovski-
Schwartz (=CBS)-inequality yield

‖δ−β
θ ∇TV ;L2(̟)‖2 = ‖QθD

ETV ;L2(̟)‖2

≤ C(AEEQθD
ETV , QθD

ETV)̟
≤

∣∣(AEEQθD
ETV , Q−1

θ [DE, Q2
θ]TV)̟

∣∣

+
∣∣(AEMQθD

MV , QθD
ETV)̟

∣∣+
∣∣(AEMQθD

MV , Q−1
θ [DE, Q2

θ]TV)̟
∣∣

≤ Cβ‖δ−β
θ ∇TV ;L2(̟)‖‖δ−β−1

θ TV ;L2(̟)‖
+ ‖δ−β

θ ∇V ;L2(̟)‖
(
‖δ−β

θ ∇TV ;L2(̟)‖+ ‖δ−β−1
θ TV ;L2(̟)‖

)

≤ Cβ‖δ−β
θ ∇TV ;L2(̟)‖2 + C′‖δ−β

θ ∇TV ;L2(̟)‖, (109)

where we used (106) for the last inequality and also (92) to evaluate the norm ‖δ−β
θ ∇V ;L2(̟)‖.

Dividing by ‖δ−β
θ ∇TV ;L2(̟)‖ and choosing a small enough β > 0 we obtain ‖δ−β

θ ∇TV ;L2(̟)‖ ≤ C
and (93) follows by combining this with (106) and taking the limit θ → 0. ⊠

3.4. Estimates for the non-local operators.

We next prove a lemma which allows to control the expression of the non-local operator T ε,0 when it
acts on ”wrong” eigenfunctions. This will be needed in the use of the max-min principle, (128), when
eigenfunctions of the limit problem have to be used as approximate eigenfunctions for the η-dependent
problem.

Lemma 3.4. For all j ∈ N there exist numbers β := β(j) > 0 and Cj such that
∥∥∥XεT (χεu

M

(j))− TuM

(j);H
1(̟)

∥∥∥ < Cεβ and (110)
∥∥∥DE

(
T ε,0(χεu

M

(j))−XεT (χεu
M

(j))
)
;L2(̟ε)

∥∥∥ < Cεβ . (111)

Here the function χεu
M

(j) is extended to ̟ε as null, see Section 3.2.

Proof. Let us denote u = uM

(j), and V := χεu
M

(j).

1◦. Since the operator T is bounded in the norm of H1(̟), (110) follows from (94) and (95):

‖XεTV − Tu;H1(̟)‖
≤ ‖(Xε − 1)TV ;H1(̟)‖+ ‖T (V − u);H1(̟)‖ ≤ Cεβ .

2◦. Let us prove (111). We denote by ϕ ∈ H1(̟ε) a test function with ‖ϕ;H1(̟ε)‖ ≤ 1. We
observe by (96) that

‖DEXεTV −XεD
ETV , L2(̟ε)‖ = ‖(∇Xε)TV ;L2(̟)‖ ≤ Cεβ . (112)

Next, since the support of 1−Xε is contained in B(O±, ρε), we have
∣∣(AEEXεD

ERV , DEϕ
)
̟
−
(
AEEDETV , DEϕ

)
̟

∣∣

≤
∫

B(O±,ρε)

∣∣AEEDERV
∣∣ ∣∣∇ϕ

∣∣dx ≤ C

( ∫

B(O±,ρε)

∣∣∇RV
∣∣2
)1/2

‖ϕ;H1(ω)‖2 ≤ C′εβ, (113)

where, as before, the last integral was estimated using the information on the integration domain and
the inequality (93) of Lemma 4.1.
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We now combine (113) and the definitions of the operators T and T ε,0 to argue as follows (here,
it is important to observe the supports of the given functions)

∣∣∣
(
AEE(XεD

ETV −DET ε,0V), DEϕ
)
̟ε

∣∣∣

=
∣∣∣
(
AEEXεD

ETV , DEϕ
)
̟
−
(
AEEDET ε,0V , DEϕ

)
̟ε

∣∣∣

=
∣∣∣
(
AEEDETV , DEϕ

)
̟
−
(
AEEDET ε,0V , DEϕ

)
̟ε

∣∣∣+O(εβ)

=
∣∣∣
(
AEMDMV , DEϕ

)
̟
−
(
AEMDMV , DEϕ

)
̟ε

∣∣∣+O(εβ)

=
∣∣∣
(
AEMDMV , DEϕ

)
̟
−
(
AEMDMV , DEϕ

)
̟

∣∣∣+O(εβ) = O(εβ). (114)

We replace ϕ by XεTV − T ε,0V . By Lemma 2.1, there exists a constant C > 0, independent of
ε, such that ‖XεTV − T ε,0V ;H1(̟ε)‖ ≤ C. This, (8), and (114) imply

C‖DE(XεTV − T ε,0V);L2(̟)‖2

≤
∣∣∣
(
AEEDE(XεTV − T ε,0V), DE(XεTV − T ε,0V)

)
̟

∣∣∣

≤
∣∣∣
(
AEE(XεD

ETV −DET ε,0V), DE(XεTV − T ε,0V)
)
̟

∣∣∣+O(εβ) = O(εβ),

where we also used (112) to commute the cut-off function and the derivative on the left hand side. ⊠

3.5. Proof for the upper estimate for the spectral bands.

In this section we produce upper estimates for the endpoints of spectral bands. More precisely, we
show for small ε that for every j, the eigenvalues Λε,η

j , η ∈ [−π, π) are bounded from above by Λj plus

a term of order at most εβ(j), see Lemma 3.5. A corresponding lower bound is produced in the next
section, Lemma 4.4. These lead to the main results, Theorems 1.4 and 1.5.

Lemma 3.5. There exists a decreasing sequence 0 < εj < εj−1 and a constant C = C(j,̟,A, ̺), such
that

Λε,η
j ≤ Λj + Cεβ(j) (115)

for all j ∈ N, ε ≤ εj and η ∈ [0, 2π).

Proof. Let us start by defining approximate eigenfunctions for the η-dependent problem with
the help of the eigenfunctions uM

(j) of the limit problem. For all j, η and ε, we write Vε
(j) = χεu

M

(j).

The product can be extended to ̟ε with the help of the cut-off function χε, see the beginning of
Section 3.2. The above choices of parameters guarantee that the extension becomes smooth and that
the following holds:

suppVε
(j) ⊂ ̟ and

supp
(
Vε
(j)

∣∣
̟
− uM

(j)

)
⊂ ̟ ∩ ∪±B(O±, 2ρε) ⊂ ∪±̟±(r

1). (116)

Using (87) we can thus bound

‖uM

(j) − Vε
(j);L

2(̟)‖2 ≤ C

∫

̟∩∪±B(O±,2ρε)

(1 + Λj)
2dx ≤ C′ε3(1 + Λj)

2, (117)

‖∇uM

(j) −∇Vε
(j);L

2(̟)‖2 ≤
∫

̟∩∪±B(O±,2ρε)

(
|∇uM

(j)|2 + |∇χε|2|uM

(j)|2
)
dx

≤ C
(
ε3(1 + Λj)

3 + ε(1 + Λj)
2
)
. (118)

since the volume of the set ̟ ∩ ∪±B(O±, 2ρε) is of order ε3.
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We remark that the above defined approximate eigenfunctions preserve a linear independence
property: one can find for every j ∈ N a number εj > 0 such that the functions Vε

(1), . . . ,Vε
(j) are

linearly independent in the space L2(̟)3 (hence also in L2(̟ε)3), if ε ≤ εj . This follows for example
from general results in functional analysis: a small enough perturbation of a Schauder basis of a
Banach space is again a Schauder basis, hence, any finite collection of the perturbed basis elements
must be linearly independent, cf. [16, Prop1.a.9]. A detailed proof of this statement can also be found
e.g. in [28], Section 4.

Fixing j, let (bp)
j
p=1 be any sequence of numbers normalized so that

∑j
p=1 |bp|2 = 1, and let

Wε
(j) =

j∑

p=1

bpVε
(p) , Wj :=

j∑

p=1

bpu
M

(p), (119)

hence, by (79),

‖Wj;L
2(̟)‖ = 1. (120)

Due to the eigenvector property, cf. (76)–(79), and (120) there holds

|B(Wj,Wj)| ≤ Λj. (121)

Moreover, we denote

W
ε,η
(j)(x, η) = e−iηzWε

(j)(x). (122)

Since the supports of these functions are contained in ̟ (see (116)), the first estimate (117) and (119),
(120) imply

‖Wε,η
(j) , L

2(̟ε)‖ = ‖Wε
(j), L

2(̟)‖ ≥ 1− cε3/2. (123)

We shall also soon check that the following relation holds true:
∣∣∣Bε,η(Wε,η

(j) ,W
ε,η
(j) )− B(Wj ,Wj)

∣∣∣ ≤ Cεβ . (124)

This and the max-min principle for the sesquilinear form Bε,η, (38), will complete the proof. Indeed,
by [4, Th.10.2.2],

Λε,η
j = max

Hj

inf
V∈Hj\{0}

Bε,η(U ,U)
‖U ;L2(̟ε)‖2 ,

where Hj stands for any subspace in H1
per(̟

ε) of codimension j − 1. Since the sequence of functions

(Vε
(p))

j
p=1 is linearly independent we can find from any Hj an element Wε,η

(j) of the form (122). This,

(121), (123), and (124), imply

Λε,η
j ≤

Bε,η(Wε,η
(j) ,W

ε,η
(j) )

‖Wε,η
(j) ;L

2(̟ε)‖2 ≤ B(Wj,Wj) + Cεβ

1− cε3/2
≤ Λj + C′εβ .

So, there only remains to prove (124). Since the support of Wε,η
(j) is contained in ̟ (see (116)),

we have
(
̺Wε,η

(j) ),W
ε,η
(j)

)
̟ε =

(
̺Wε

(j),Wε
(j)

)
̟
,

hence,
∣∣∣
(
̺Wε,η

(j) ,W
ε,η
(j)

)
̟ε −

(
̺Wj ,Wj

)
̟

∣∣∣ ≤ Cε3/2 (125)

follows from (117), (119), (120) and the CBS-inequality. Also, by direct differentiation and taking into
account the support and (38),

Aε,η(Wε,η
(j) ,W

ε,η
(j) ) = Aε,0(Wε

(j),Wε
(j)) = (AMMDMWε

(j), D
MWε

(j))̟,
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hence,
∣∣∣Aε,η(Wε,η

(j) ,W
ε,η
(j) )−A(Wj ,Wj ;̟)

∣∣∣ ≤ Cε1/2, (126)

by (76), (118), and a similar argument as above. Finally,

Rε,η(Wε,η
(j) ,W

ε,η
(j) ) = Rε,0(Wε

(j),Wε
(j))

and this consists of terms like

Rε,0(Vε
(j),Vε

(k)) =
(
AMEDET ε,0Vε

(j), D
MVε

(k)

)
̟ε

By (117) and (118) we have

‖Vε
(j) − uM

(j);H
1(̟)‖ ≤ Cεβ , (127)

hence, ‖DMVε
(j);L

2(̟)‖ = ‖DMVε
(j);L

2(̟ε)‖ is bounded by a constant depending on j only, and

Lemma 3.4 and (127) thus imply (recall Vε
(j) = χεu

M

(j))

(
AMEDET ε,0Vε

(j), D
MVε

(k)

)
̟ε

=
(
AMEDEXεTVε

(j), D
MVε

(k)

)
̟ε +O(εβ)

=
(
AMEDEXεTVε

(j), D
MVε

(k)

)
̟
+O(εβ)

=
(
AMEDETuM

(j), D
MVε

(k)

)
̟
+O(εβ)

=
(
AMEDETuM

(j), D
MuM

(k)

)
̟
+O(εβ)

= R(uM

(j), u
M

(k)) +O(εβ), (128)

where also the supports were taken into account. We obtained
∣∣Rε,0(Vε

(j),Vε
(k))−R(uM

(j), u
M

(k))
∣∣ ≤ Cεβ

which yields
∣∣Rε,0(Wε,η

(j) ,W
ε,η
(k))−R(Wj ,Wj)

∣∣ ≤ Cεβ

This, (125) and (126) imply (124). ⊠

4. Lower estimate for the spectral bands.

To prove the lower estimate one can proceed as with the upper estimate, exchanging the roles of
the eigenvalues of the limit and η-dependent problems. However, there are some complications: one
of them is that the boundary of the periodicity cell ̟ε cannot be assumed smooth near the points
O±, hence, the local elliptic estimates cannot be used to prove L∞-bounds like Lemma 3.1 for the
eigenfunctions Uε,η

(j) . Moreover, the weight exponents β(j) in Section 3 depended on the eigenvalues

Λj, so, applying the same proof here would yield exponents depending on ε and η, which might be
useless. In order to obtain weighted Sobolev estimates with weight exponents independent of ε and η
we shall use the already proven upper bound (115) for the eigenvalues Λε,η

j . In particular, we can fix
for every j the number Lj > 0 such that

sup
ε,η

Λε,η
j ≤ Lj. (129)

We keep the notation introduced in Section 3.2 throughout this section.
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4.1. Weighted Sobolev estimates.

For the lower bound we shall need the following versions of the weighted Sobolev estimates.

Lemma 4.1. For every j ∈ N, there exist constants γ = γ(j) > 0 and Cj > 0 such that for all ε > 0

∥∥∥δ−γ∇Uε,η,M
(j) ;L2(̟ε)

∥∥∥+
∥∥∥δ−1−γUε,η,M

(j) ;L2(̟ε)
∥∥∥ ≤ Cj , (130)

∥∥∥δ−γ∇χεU
ε,η,M
(j) ;L2(̟ε)

∥∥∥+
∥∥∥δ−1−γχεU

ε,η,M
(j) ;L2(̟ε)

∥∥∥ ≤ Cj , (131)
∥∥∥δ−γ∇T ε,η

(
χεU

ε,η,M
(j)

)
;L2(̟ε)

∥∥∥

+
∥∥∥δ−1−γT ε,η

(
χεU

ε,η,M
(j)

)
;L2(̟ε)

∥∥∥ ≤ Cj (132)
∥∥∥δ−γ∇T

(
χεU

ε,η,M
(j)

)
;L2(̟)

∥∥∥+
∥∥∥δ−1−γT

(
χεU

ε,η,M
(j)

)
;L2(̟)

∥∥∥ ≤ Cj (133)

We emphasize that the last inequality is special in the sense that it contains the limit case
operator T acting on eigenfunctions of a ”wrong”, ε-dependent operator. This estimate will be crucial
for the proof of the lower bound in Section 4; it is used to prove the most difficult step, interchanging
the operators T and T ε,0 which happens in the inequality (142).

The following inequalities (134)–(137) are proven in the same way as in Corollary 3.3 with the
help of (130), (132), and (133).

Corollary 4.2. We have

‖(1− χε)U
ε,η,M
(j) ;H1(̟ε)‖ ≤ Cεγ , (134)

‖(1−Xε)T
ε,0(χεU

ε,η,M
(j) );H1(̟ε)‖ ≤ Cεγ , (135)

‖(∇Xε)T
ε,0(χεU

ε,η,M
(j) );L2(̟)‖ ≤ Cεγ (136)

‖(∇Xε)T (χεU
ε,η,M
(j) );L2(̟)‖ ≤ Cεγ . (137)

Proof of Lemma 4.1. 1◦. We prove (130). Let us fix the numbers j, ε and η, and denote in this

proof U := (UM, UE) :=
(
Uε,η,M
(j) , T ε,ηUε,η,M

(j)

)
. In addition to the normalization (40), we also need a

bound for ‖U ;H1(̟ε)‖. For this we write the eigenfunction property (32), or (33)–(36) as

(
ADM(∇+ iηe3)U,D(∇+ iηe3)V

)
̟ε

=
(
AMMDM(∇+ iηe3)U

M, DM(∇+ iηe3)V
M
)
̟ε

+
(
AMEDE(∇+ iηe3)U

E, DM(∇+ iηe3)V
M
)
̟ε

−
(
AEMDM(∇+ iηe3)U

M, DE(∇+ iηe3)V
E
)
̟ε

+
(
AEEDE(∇+ iηe3)U

E, DE(∇+ iηe3)V
E
)
̟ε

= Λε,η
j (̺UM, V M)̟ε ∀ V = (V M, V E) ∈ H1

per(̟
ε)4. (138)

We proceed as before choosing V := U . The identity AME = (AEM)⊤ again imply that the sum of
the second and third lines of (138) is imaginary, while the first, fourth, and fifth lines are real. As a
consequence of (40) we obtain the estimate

(
AMMDM(∇+ iηe3)U

M, DM(∇+ iηe3)U
M
)
̟ε

+
(
AEEDE(∇+ iηe3)U

E, DE(∇+ iηe3)U
E
)
̟ε

= Λε,η
j (̺UM, UM)̟ε ≤ CΛε,η

j ,
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thus, using (9), (10), DM = DM(∇) and ‖UM;L2(̟ε)‖ = 1,

CΛε,η
j ≥

(
AMMDM(∇+ iηe3)U

M, DM(∇+ iηe3)U
M
)
̟ε

=
(
AMMDMUM, DMUM

)
̟ε +

(
AMMDMUM, DM(iηe3)U

M
)
̟ε

+
(
AMMDM(iηe3)U

M, DMUM
)
̟ε +

(
AMMDM(iηe3)U

M, DM(iηe3)U
M
)
̟ε

≥ C‖UM;H1(̟ε)‖2

− C′
(
‖∇UM;L2(̟ε)‖‖UM;L2(̟ε)‖ + ‖UM;L2(̟ε)‖2

)

= C‖UM;H1(̟ε)‖2 − C′
(
‖∇UM;L2(̟ε)‖+ 1

)
.

Dividing this by ‖UM;H1(̟ε)‖ yields

‖UM;H1(̟ε)‖ ≤ CΛε,η
j (139)

Notice that by the remark below (10), the constant C can be chosen here independently of ε.
From now on we follow the considerations (99)–(104): we recall the definition of δθ in (82) with

Qθf = δ−γ
θ f , and write D := D(∇+ iηe3) and replace u(j) by U = (Uε,η

(j) , T
ε,ηUε,η

(j) ), ̟ by ̟ε, Λj by

Λε,η
j . The number γ = γ(j) > 0 is fixed as in (99)–(104), where the bound (139) is needed after (103).

These arguments again yield

‖Ũ ;L2(̟ε)‖2 + ‖∇Ũ ;L2(̟ε)‖2 ≤ C

for Ũ = δ−γ
θ Uε,η

(j) . The only essential difference to the argument in Section 3.3 is that in (103), the

eigenvalue Λε,η
j appears, but in order to get here a bound independent of ε, η, we have to use the

bound (129). Finally, (130) follows by passing to the limit in the same way as after (104).

2◦. The bound (131) follows from (130) in the same way as (92) follows from (91) in Section 3.3.

3◦. The proof of (132) and (133) is similar to that of (93) in Section 3.3, where we take V :=

χεU
ε,η,M
(j) . Moreover, in the case (132), we consider the operator T ε,η and the domain ̟ε instead of T

and ̟, respectively. In the case (133) we consider T and ̟. In (109) we use (131) instead of (92). ⊠

4.2. Estimates for nonlocal operators.

We state the following result, which is analogous to Lemma 3.4. Let us denote U := χεU
ε,η,M
(p) ∈

H1(̟ε)3 for this section.

Lemma 4.3. We have

R(U ,U) = (AMEDEXεTU , DMU)̟, (140)
∥∥XεT

ε,0U − T ε,0Uε,η,M
(p) ;H1(̟ε)

∥∥ ≤ Cεγ , (141)
∥∥DE(XεTU −XεT

ε,0U);L2(̟)
∥∥

=
∥∥DE(XεTU −XεT

ε,0U);L2(̟ε)
∥∥ ≤ Cεγ (142)

Proof. 1◦. The statement (140) follows from the observation that the cut-off function Xε equals
1 in the support of DMU , see the definition (75),

2◦. The proof of (141) is the same as that of (111), once one replaces ̟ by ̟ε, H1(̟) by
H1

per(̟
ε), T by T ε,0, V by U , and u by Uε,η

(p) . In addition one has to take into account that by (41),

the operator norms of T ε,0 : H1
per(̟

ε)3 → H1
per(̟

ε) are uniformly bounded .
3◦. The proof of (142) is slightly different from (110), so let us give the details. In the following

the test function ϕ is assumed to be equal to Xεϕ̃ for some ϕ̃ ∈ H1(̟), hence, ϕ ∈ H1(̟ε). Also we
require ‖ϕ;H1(̟)‖ ≤ 1. Moreover, all inner products will be well defined both in L2(̟) and L2(̟ε).

The estimate (136) implies

‖DEXεT
ε,0U −XεD

ET ε,0U , L2(̟)‖ = ‖(∇Xε)T
ε,0U ;L2(̟)‖ ≤ Cεγ (143)
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In the same way, using (137) instead of (136), we find that

‖DEXεTU −XεD
ETU , L2(̟)‖ ≤ Cεγ

Combining this with (143) we obtain

‖DEXε(TU − T ε,0U)−XεD
E(TU − T ε,0U), L2(̟)‖ ≤ Cεγ (144)

Since the support of 1 −Xε is contained in B(O±, ρε), we also have by (132) and by the same
reasons as in (113),

∣∣(AEEXεD
ET ε,0U , DEϕ

)
̟
−
(
AEEDET ε,0U , DEϕ

)
̟

∣∣

≤
∫

B(O±,ρε)

∣∣AEEDET ε,0U
∣∣ ∣∣∇ϕ

∣∣dx

≤ C

( ∫

B(O±,ρε)

∣∣∇T ε,0U
∣∣2
)1/2

‖ϕ;H1(ω)‖2 ≤ C′εγ . (145)

In the same way, using (133) instead of (132), we prove that
∣∣(AEEXεD

ERU , DEϕ
)
̟
−
(
AEEDETU , DEϕ

)
̟

∣∣ ≤ Cεγ , (146)

Keeping in mind the choice of the support of ϕ ∈ H1(̟ε) in the beginning of 3◦, we use (146),
(145) and argue as in (114), to get

∣∣∣
(
AEEXεD

E(TU − T ε,0U), DEϕ
)
̟

∣∣∣

=
∣∣∣
(
AEEXεD

ETU , DEϕ
)
̟
−
(
AEEXεD

ET ε,0U , DEϕ
)
̟

∣∣∣

=
∣∣∣
(
AEEDETU , DEϕ

)
̟
−
(
AEEDET ε,0U , DEϕ

)
̟ε

∣∣∣+O(εγ)

=
∣∣∣
(
AEMDMU , DEϕ

)
̟
−
(
AEMDMU , DEϕ

)
̟ε

∣∣∣+O(εγ) = O(εγ). (147)

At the end we used the choice of the support of ϕ a second time to conclude that the difference on
the last row is null. As a consequence of (8) and (147) with ϕ = Xε(TU − T ε,0U),

C‖Xε(TU − T ε,0U);H1(̟)‖2

≤
∣∣∣
(
AEEDEXε(TU − T ε,0U), DEXε(TU − T ε,0U)

)
̟

∣∣∣

=
∣∣∣
(
AEEXεD

E(TU − T ε,0U), DEXε(TU − T ε,0U)
)
̟

∣∣∣ +O(εγ) = O(εγ),

where we also used (144) to commute the derivative and the cut-off function in the left side factor.
So, the result (142) follows. ⊠

4.3. Proof of the lower estimate for spectral bands.

We prove the following estimate.

Lemma 4.4. For every j, there exist a constant Cj > 0 and a number ε̃j > 0, ε̃j ≤ εj, such that for

all 0 < ε < ε̃j we have

Λε,η
j ≥ Λj − Cεγ ,

where the number γ = γ(j) is as in Lemma 4.1.

Proof. Given j, ε and η, we denote Uε,η
(j) = χεU

ε,η
(j) ∈ H1(̟ε)3 ⊂ H1(̟)3. It should be clear

(cf. the remarks in the proof of Lemma 3.5) that we can pick up for every j a small enough number
ε̃j > 0, ε̃j ≤ εj , such that ε̃j < ε̃j−1 and such that the functions Uε,η

(1) , . . . ,U
ε,η
(j) still remain linearly

independent in L2(̟)3 for all ε ≤ ε̃j and η; we require

‖Uε,η
(j) − Uε,η

(j) ;L
2(̟)‖ ≤ 2−j−3.
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We recall that by (115) in Lemma 3.5, every Λε,η
j can be bounded by a positive number Lj

depending only on j. We now fix j, η ∈ [−π, π] and ε ≤ ε̃j . Also the sequence (eiηzUε,η
(p) )

j
p=1 is linearly

independent in L2(̟)3, hence, any subspace Hj ⊂ L2(̟)3 of codimension j − 1 contains a linear
combination

W =

j∑

p=1

bpe
iηzUε,η

(p) , such that

j∑

p=1

|bp|2 = 1; (148)

clearly, ‖W ;L2(̟)‖ = 1. We denote

W =

j∑

p=1

bpUε,η
(p) . (149)

We make the following observations on the form Bε,η: First, since Uε,η
(p) are the eigenvectors of

the operator Mε,η and (39) holds, we have, also by (40), (149), and Bε,η(Uε,η
(p) , U

ε,η
(p) ) = Λε,η

p , that

|Bε,η(W,W )| ≤ Λε,η
j . (150)

Second, |Bε,0(eiηzW , eiηzW)| = |Bε,η(W ,W)|. We next show that

B(eiηzW , eiηzW) ≤ Bε,η(eiηzW, eiηzW ) + Cεγ(j). (151)

To this end we recall from (76) and (149) that

B(eiηzW , eiηzW) = A(eiηzW , eiηzW) + (̺eiηzW , eiηzW)̟

+

j∑

p,q=1

bpb̄qR(eiηzUε,η
(p) , e

iηzUε,η
(q) ). (152)

Here,

A(eiηzW , eiηzW) ≤ (AMMDMeiηzW , DMeiηzW)̟ε = Aε,0(eiηzW , eiηzW)

= Aε,0(eiηzW, eiηzW ) +O(εγ),

(̺eiηzW , eiηzW)̟ ≤ (̺eiηzW , eiηzW)̟ε = (̺eiηzW, eiηzW )̟ε +O(εγ) (153)

by the positivity of the matrix AMM in the definitions of A and Aε,0, cf. (76), (9), (38), and by (148),

(149), (134). Thus it remains to consider the R-term. Let us fix a p = 1, . . . , j and denote U = Uε,η,M
(p) ,

U = χεU as in Lemma 4.3. Since Xε = 1 in the supp (χε) and supp (χε) ⊂ ̟, we have

R(U ,U) = (AMEDETU , DEU)̟ = (AMEDEXεTU , DEU)̟ε .

Hence, Lemma 4.3 and (134) imply

R(U ,U) = (AMEDEXεTU , DEU)̟ε

= (AMEDEXεT
ε,0U , DEU)̟ε +O(εγ) = (AMEDET ε,0U,DEU)̟ε +O(εγ)

= (AMEDET ε,0U,DEU)̟ε + O(εγ) = Rε,0(U,U) +O(εγ).

Applying this to all terms of the last sum of (152) and using (153) yields (151), in view of (148) and
(149).

By (134), (148), (149), we can also estimate

‖eiηzW ;L2(̟)‖ = ‖W ;L2(̟ε)‖

≥ ‖W ;L2(̟ε)‖ −
j∑

p=1

bp‖(1− χε)U
ε,η
(p) ;L

2(̟ε)‖ ≥ 1− Cjε
γ(j). (154)
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Putting together (150)–(154) yields

B(eiηzW , eiηzW)

‖eiηzW ;L2(̟)‖2 ≤ Bε,0(eiηzW, eiηzW ) + Cεγ(j)

= Bε,η(W,W ) + Cεγ(j) ≤ Λε,η
j + Cεγ(j).

SinceHj was an arbitrary (j−1)–codimensional subspace of L2(̟), we get from the max–min–principle

(80) that Λj ≤ Λε,η
j + Cεγ(j). ⊠
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