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a b s t r a c t

The sink strength is an important parameter for the mean-field rate equations to simulate temporal
changes in the micro-structure of materials. However, there are noteworthy discrepancies between sink
strengths obtained by the Monte Carlo and analytical methods. In this study, we show the reasons for
these differences. We present the equations to estimate the statistical error for sink strength calculations
and show the way to determine the sink strengths for multiple traps.

We develop a novel, very fast Monte Carlo method to obtain sink strengths. The results show that, in
addition to the well-known sink strength dependence of the trap concentration, trap radius and the total
sink strength, the sink strength also depends on the defect diffusion jump length and the total trap
volume fraction. Taking these factors into account, allows us to obtain a very accurate analytic expression
for the sink strength of spherical traps.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

To understand and control the changes in the physical and
mechanical properties of materials during ageing or ion irradiation,
requires a long time and length scale simulation technique,
knowledge of the ion irradiation produced defects, and a complete
description of how the formed defects diffuse and interact with
each other.

The only simulation techniques that are able to fulfil the long
time and length scales are the mean-field rate equations (RE) and
kinetic Monte Carlo (KMC) methods. The KMC is a stochastic
simulationmethod, where all the dynamic properties and reactions
for all involved defects have to be known. The strengths of this
method include the ability to take into account expected and un-
expected correlated events, e.g. close Frenkel pair annihilation.
However, the time step for the KMC method is inversely propor-
tional to the sum of frequencies of all processes, which is a disad-
vantage in some cases. For instance in tungsten, where the self-
interstitial atom moves very fast [1], the KMC time step, even
with only one SIA present, might be of the order of 10�11 s. Clearly,
this restricts the accessible time and defect concentrations for the
method.
gren).
In the mean-field rate equations (RE) [2,4,5] the defects and
other objects are treated as concentrations (number/vol) which
interact with each other in space and time. This interaction is
described by a parameter called the sink strength, which de-
termines the probability for mobile defects to interact with any
other point or extended defect in the material. The sink strength
has to be determined for each mobile defect separately and it is
proportional to the square of the inverse mean distance covered by
the defect before it is absorbed, trapped or annihilated. The sink
strength is the single most important parameter in RE simulations
and is a function of the geometry, size and concentration of sinks,
dimensionality of the diffusion, and, as we will show in this study,
the sink strength also depends on the diffusion jump length of the
defect.

Sink strengths have been determined for various symmetric
traps including spherical traps, dislocation lines and loops, and
grain boundaries [6e9]. Monovacancies, vacancy clusters, self-
interstitial atoms and impurities are usually counted as spherical
traps. For arbitrarily shaped traps, methods like the Monte Carlo
(MC)method has to be used to determine the sink strength. TheMC
method seems in principle straight forward to use, but previous
studies have shown some inconsistencies for this method. Malerba
et al. [7] have noticed that the MC method gives smaller sink
strengths than the analytic equation for spherical traps in the low
trap volume fraction region. On the contrary, for large trap volume
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fractions, the sink strengths simulated by the MCmethod are much
larger than the analytical ones. Similar results are observed by Hou
et al. [10], where the analytic equation is modified to give better
agreement with the sink strengths obtained by the MC method.

In this study, we show the reasons for the discrepancy between
sink strengths obtained analytically and by MC. We introduce a
new, much faster MC concept to simulate sink strengths. We
further show how the equation of analytical sink strength can be
modified so that it can be used in defect and micro structure sim-
ulations with any trap volume fraction and defect jump length.
2. Results

The definition of the sink strength includes the inverse mean
distance squared a defect diffuses before it gets trapped. The sink
strength calculatedwith theMonte Carlo (MC)method is expressed
as [11]:

k2 ¼ 2,Dim

l2〈N〉
; (1)

where Dim is the dimension for the defect diffusion, l is the jump
length and 〈N〉 is the mean number of jumps the defect makes
before it is trapped: 〈N〉 ¼PM

i¼1Ni∕M, where M is the number of
defects simulated and Ni is the number of defect i jumps before it is
trapped. In Appendix A, we show how the statistical error for
determining the sink strength by the MC method depends on the
number of defects M simulated as follows:

Dk2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i ð1� Ni∕〈N〉Þ2

q
M

z
k2ffiffiffiffiffi
M

p : (2)

As a rule of thumb, to obtain the sink strength with an error less
than 1% more than 104 defects need to be simulated, and for an
error less than a per mille (1 ‰) more than 106 defects are needed,
see Fig. A.10.

In this study, we place one trap in the middle of the simulation
cell, which is either spherical or cubic. The trap concentration ct is
controlled by choosing an appropriate simulation cell volume V,
ct ¼ 1/V. The trap volume fraction becomes: VFt ¼ 4pR3t ∕ð3VÞ. One
defect at a time is placed at a random position in the cell, excluding
the trap volume. The defect diffusion jumps are counted until it
jumps inside the trapping radius Rt, then a new defect is inserted in
the cell. At least M ¼ 106 defects are simulated for each sink
strength calculation, resulting in the statistical error of about 1 ‰.
Fig. 1. Comparison of cpu-time per defect for the usual and the developed N-jump MC
methods for two different jump length to trapping radius ratio and trap volume
fractions between 10�7e10�1. The lines are given as guides to the eye.
2.1. Improving MC sink strength simulation speed

The MC method for determining the sink strength of systems
with quite small trap volume fractions is very inefficient [7]. The
reason for this is that the defect can make incredibly large number
of jumps before it finds a trap (k2 ¼ 6∕½〈N〉l2�), see Eq. (1). Thus, to
find the sink strength for a trap with, let's say, a trap radius
Rt ¼ 0.4 nm and concentration of ct ¼ 10�7nm�3 (k2z4pctRt), for a
statistics of 106 defects, with jump length l ¼ 0.1 nm, we would
need about 106,6∕ð4p10�70:4,0:12Þz1015 jumps.

In this study, we develop a new and fast MC method to simulate
sink strengths, the details are given in Appendix B. The method
takes advantage of the fact that if theminimum distance to any trap
for the diffusing defect is known (this has to be checked anyway
during the MC simulation), the defect cannot be trapped during the
following Nj ¼ floorðDmin∕lÞ diffusion jumps, where Dmin is the
minimum distance to any trap and l is the jump length. Thus,
instead of making Nj diffusion jumps, we can make one jump that
gives statistically the same diffusion distance as the Nj individual
diffusion jumps would give. This new concept gives surprisingly
large improvement in the simulation times. To compare the normal
MC with the new (N-jump) MC method, we determine the average
cpu-time per defect during sink strength simulations for seven
different trap volume fractions VFt: 10�1, 10�2, 10�3, 10�4, 10�5, 10�6

and 10�7. The trapping radius Rt is 0.5 nm for all simulations. Two
different jump lengths l ¼ 0.2 and 0.005 nm are chosen for every
simulation. The choice of the latter very small jump length will be
obvious in the next section where we compare the MC results with
analytical sink strengths. Fig. 1 shows the impressive improvement
in the simulation times for the N-jumpMCmethod. For rather large
trap volume fractions VFt above 10�3 and jump length to trapping
radius ratio l∕Rt ¼ 0.4, bothmethods give similar simulation times.
This is expected because the distance to the closest trap is never
very large, thus the N-jumpMCmethod is seldomly used. However,
for smaller trap volume fractions the improvement in simulation
time is remarkable. Smaller l to Rt ratio yields to even more
impressive improvement in computational times. For l to Rt ratio of
5�10�3, the N-jump MC method is faster for all trap volume frac-
tions, being a staggering more than four orders of magnitude faster
at VFt ¼ 10�7. The new method enables sink strength simulations
for smaller trap volume fractions with better statistics. The
resulting sink strengths for both normal and N-jump MC methods
are the same within the statistical error. All the following sink
strengths in this study have been calculated with the developed N-
jump MC method.
2.2. Comparison of the analytical and MC sink strengths

The analytical sink strength for spherical traps under 3D diffu-
sion limit with trap radius Rt and concentration ct is given by the
recursive equation by Brailsford and Bullough [6]:

k2 ¼ 4pRtct
�
1þ Rt

ffiffiffiffiffi
k2

p �
: (3)

In the small trap concentration limit the Eq. (3) is usually
truncated to the first order (n ¼ 1), k2 ¼ 4pRtct . For usual trap
concentrations higher order sink strengths (n ¼ 2;3;4;…) are
calculated recursively as k2n ¼ 4pRtctð1þ Rt

ffiffiffiffiffiffiffiffiffiffi
k2n�1

q
Þ. For n ¼ ∞ the

solution can be found directly from Eq. (3) as
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k2 ¼
�
2pR2t ct ½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1∕ðpR3t ctÞ

q
�
�2

. In the case of many traps,

the sink strength in the square root of Eq. (3) is the sum of all the
sink strengths. The derivation of the analytical sink strength above
assumes spherically symmetric cell and much smaller jump length
than the trap radius [6]. Therefore, in our MC method we also use
spherical symmetry by reflecting back the defect when it jumps
past the spherical simulation cell radius. The small jump length
criteria is tested by simulating the sink strength as a function of
jump length for five different trap volume fractions VFt: 10�1, 10�2,
10�3, 10�4 and 10�5, with two different trapping radii. Fig. 2 shows
the k2 decrease as a function of the jump length to trapping radius
ratio (l∕Rt). All the k2 values have been divided by the k2 value
simulated using the smallest l. Consequently the MC simulations
will give smaller k2 than the analytic function if the jump length
compared to the trap radius is not small enough. A similar decrease
of the k2 values have already previously been observed [7,10,11].
Heinisch et al. [11] explain this decrease due to the discrete nature
of the diffusion mechanism in which each defect jump is a fixed
distance. Their correction formula to the sink strength [11], will be
compared in section 2.4. Hou et al. [10] have analyzed in more
depth the small trap sink strength discrepancy. They have
concluded that since the jump distance is not zero, the defects in
MC simulations can penetrate into the sink. The authors have
derived a correction term to the sink strength that depend on the
trap radius and defect jump length, which also will be compared in
section 2.4. Looking closer at Fig. 2, we see that the sink strength
correction besides depending on the jump length to trap ratio, also
depends on the trap volume fraction. In fact, any trap radius with a
constant jump to trap ratio has the same k2 decrease for any fixed
trap volume fraction. This suggests that a defect with smaller jump

length l (with the same diffusion distance squared: Nl2) explores
its closest surrounding volume more thorough and finds traps with
a shorter diffusion distance. This could also be the reason why the
correction is larger for larger trap volume fractions.

To ensure that the small jump length criteria is fulfilled, we
choose the jump length to trap radius ratio to be 1/1000 (see Fig. 2)
for all the following MC simulations.

The discrepancy between the analytical and MC sink strengths
at large trap volume fractions, VFt, arises partly from the fact that
the analytical result is derived for small trap volume fraction. To
Fig. 2. The decrease in the MC sink strength as a function of jump length l to trap
radius Rt ratio for different trap volume fractions VFt and trap radii. For l/Rt ratio
smaller than about 10�2 the k2 values do not change much anymore. Note that the
decrease in the k2 values depend only on the trap volume fraction and on the l∕Rt
ratio, and not on the trapping radius.
extend the theory approach to large VFt, we revisit the sink strength
theory in Appendix C. Including the trap volume in the mean defect
concentration calculations, results in the following sink strength
equation derived by Wiedersich [2,3]:

k2 ¼
ct
h
1� R3t ∕L

3
i
4pRth

1� 9Rt∕ð5LÞ þ R3t ∕L
3 � R6t ∕

�
5L6
�i; (4)

where Rt and ct are, as previously noted, the trap radius and the trap
concentration, respectively, and L is the spherical cell radius. There
is one trap in the center of the spherical cell, giving the trap con-
centration: ct ¼ 1∕ð4∕3pL3Þ. Fig. 3 compares the analytical sink
strengths calculated by Eqs. (3) and (4) with the ones from MC
simulations. The classical Eq. (3) result is calculated using the n ¼ ∞
solution. We can observe that all results agree for the smallest trap
volume fractions. For larger trap volume fractions only the volume
corrected analytic equation, Eq. (4), agrees with the MC results. To
recap, the discrepancies between the sink strength theory and the
MC simulations are removed if in the MC simulations the jump
length compared to the trapping radius is small enough and a
spherical simulation cell is used, and in the theory the trap volume
fraction is taken into account. However, to simulate a real system,
the boundary conditions are periodic (no spherical cell), and the
jump length is given by the underlying lattice. Therefore a new and
practical sink strength formulation is needed, that is presented in
the following sections.
2.3. Sink strengths with periodic boundary conditions

Next, the sink strengths are simulated with MC by placing one
trap in the middle of a cubic simulation cell using periodic
boundary conditions (a defect jumping outside the cell re-appears
at the other side of the cell). As already noted, the jump length to
trap radius ratio l∕Rt is chosen to be 1/1000 for all MC simulations.
Fig. 4 compares the results using a cubic and a spherical cell (see
previous section) in the simulations. The sink strengths for the two
different simulation cells agree for trap volume fraction below
about 10�2. The reason for the larger k2 in the spherical cell case for
large trap volume fractions is clear: when the defect crosses the
boundary, it is, after the appropriate boundary condition, in most
Fig. 3. Analytical and MC sink strengths as a function of trap volume fractions. Eq. (4)
agrees perfectly with the MC simulations throughout the whole trap volume fraction
region. The presently accepted and widely used classical expression by Brailsford and
Bullough, Eq. (3) n ¼ ∞ solution, consistently underestimates the sink strength and is
about an order of magnitude too small for trap volume fraction of about 0.5.



Fig. 4. Sink strengths calculated by MC using either a cubic cell with periodic
boundary condition or a spherical cell with reflective boundary condition. Shown is
also the analytic expression by Brailsford and Bullough, Eq. (3). The inset shows the
difference between the spherical and cubic cell results. The spherical cell gives more
than 1% larger sink strengths than the cubic one for trap volume fractions larger than
about 0.01.

Fig. 5. MC sink strengths as a function of trap volume fractions and concentrations for
cubic cell using periodic boundary conditions. The solid line is the fit given by Eq. (5)
and the dashed line is the classical expression by Brailsford and Bullough, Eq. (3).

Fig. 6. Analytical and MC sink strengths for a two-trap system with constant con-
centration for trap A and increasing concentration for trap B. Eq. (5), solid line, agrees
fairly well with the simulations. The classical expression by Brailsford and Bullough,
Eq. (3), is shown by dashed lines.
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cases slightly closer to the central trap in the spherical cell case
compared to the cubic cell. Shorter distance means less diffusion
jumps before trapping, i.e. larger sink strength. For large simulation
cells (small trap volume fractions) the difference becomes negli-
gible as shown in Fig. 4.

Because the cubic and spherical cell simulations do not give the
same sink strengths, Eq. (4) cannot be used. Moreover, Eq. (4) does
not include the possibility to have more than one kind of trap in the
system.

The following equation, modified from Eq. (3), describes the MC
cubic box sink strength data accurately:

k2 ¼ 4pctRt

�
1þ a,Rt

ffiffiffiffiffiffiffiffi
k2tot

q �
exp

	
b,VFgtot



; (5)

where Rt and ct are the trap radius and trap concentration,
respectively, k2tot ¼

P
jk

2
j is the sum of all sink strengths and VFtot ¼P

jVFj is the sum of all trap volume fractions. The fitting parameters
are: a ¼ 0:6812067, b ¼ 1:3821147 and g ¼ 0:3238967. Fig. 5
confirms that this relatively simple equation accurately fits the
MC data.

To convince ourselves that Eq. (5) is quite general, it is compared
to simulations where we have two different traps simultaneously.
Trap A, Rt ¼ 3 nm, with a constant concentration of 10�4 traps/nm3,
and trap B, Rt ¼ 2 nm, with increasing concentration from 10�5 to
5�10�3 traps/nm3. The jump length l is 0.002 nm and the number
of defects simulated in each case is 2�106.

The MC sink strength for each trap type j becomes:

k2j ¼ 2,Dim

l2N∕Mj

; (6)

where N ¼PM
i¼1Ni is the sum of the jumps all the M number of

defects make until they are trapped in any trap, and Mj is the
number of defects trapped in trap type j. Note that M ¼PQ

j¼1Mj,
where Q is the number of different traps. From this definition, we
see that the total sink strength is the sum of all sink strengths:

k2tot ¼
PQ

j¼1k
2
j ¼ 2,Dim

l
2N

PQ
j¼1Mj ¼ 2,Dim

l
2N∕M

¼ 2,Dim
l
2〈N〉

. Fig. 6 shows that Eq.

(5) also gives the sink strengths for multiple traps. Note how the
sink strength for trap A (with constant concentration) increases due
to the other trap B. The classical expression by Brailsford and Bul-
lough, Eq. (3) is determined with n ¼ 10 recursive iterations. The
trap volume fractions are quite high (> 0.01) which is the reason
why the Brailsford and Bullough approach does not work so well.

The slight overestimation of the sink strengths by Eq. (5)
compared to the MC simulations most likely arises from the fact
that the equation is fitted to a trap system where the traps are
located at a maximum distance from each other (a cubic system
with one trap in the middle with periodic boundary conditions). In
reality and in the case of the two trap MC simulations, the traps are
distributed randomly in the simulation cell. Thus, the distance
between the traps is not constant but varies from the possible
minimum of two times the trap radius to the theoretical maximum
of the cell size. When defects are inserted randomly in the simu-
lation cell the individual number of jumps Ni for the defects to be
trapped changes. In case the defect happens to be initially placed in
a locally higher trap concentration region, it makes fewer diffusion
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jumps before it is trapped, compared to a defect initially located in a
lower trap concentration region. However, the mean increased
number of jumps for defects in lower trap concentration region is
larger than the mean decrease in the number of jumps in a region
with higher trap concentration. The result is that the sum number
of jumps N ¼PM

i¼1Ni is higher for systems with varying trap dis-
tances compared to the equidistant trap system, giving a slightly
smaller sink strength in the varying trap distance case. This effect,
judging from Fig. 6, is relatively small making Eq. (5) an accurate
estimation.
Fig. 7. The fraction of sink strength with variable jump length to sink strength
calculated with jump length divided by Rt equal to 10�4. The sink strengths by MC are
given by markers. Eq. (7), solid lines, agrees well with the MC data.

Fig. 8. Errors for analytical sink strengths compared to MC data. This study refers to
the combination of Eqs. (5) and (7).
2.4. Sink strengths for a system with periodic boundary conditions
for any jump length

The simulation of a real system has to deal with the defect
diffusion jump length that is given by the underlying lattice.
Therefore, we have to determine the way to correct the sink
strength, Eq. (5), calculated with a very small jump length, to sink
strengths with any jump length. This is done in a similar way as in
the earlier section where the sink strengths are simulated by MC as
a function of jump lengths for different trap volume fractions. In
this case, we use periodic boundary conditions and a cubic simu-
lation cell. The number of defects simulated for each jump length is
106. The results show, like in section 2.2, that the larger the jump
length divided by trapping radius is, the smaller is the resulting
sink strength. The following equation is observed to reproduce the
MC results:

k2ðlÞ
k2l/0

¼ exp

 
�A,l∕Rt

1� B,VFCtot

!
; (7)

where k2ðlÞ is the sink strength given by any jump length l and k2l/0
is the sink strength calculated by the smallest jump length to trap-
ping radius ratio (l∕Rt ¼ 10�4). The three fitting parameters are:
A ¼ 0.299299, B ¼ 1.180907 and C ¼ 0.251801. Fig. 7 shows the
decrease in the k2ðlÞ∕k2l/0 ratio as the l∕Rt ratio increases. We can
see that for traps with small trap radius, for example, monovacancy
where the l∕Rt ratio might be about 0.5, gives an approximate
reduction of 15% in the sink strength for trap volume fractions up to
about 10�3. For larger trap volume fractions the decrease in the sink
strength values as a function of l∕Rt ratio is even more significant.
Finally, the sink strength using arbitrary jump length and trap vol-
ume fractions, is given by combining Eqs. (5) and (7), where k2l/0 in
Eq. (7) is given by k2 in Eq. (5). To compare the existing analytical sink
strengths with the sink strengths obtained in this study, Eqs. (5) and
(7), we simulate sink strengths for spherical traps with different trap
volume fractions and trap radii. The defect jump length is 0.112 nm
and number of defects is 2�106 for all the simulations with cubic
box and periodic boundary conditions. Fig. 8 shows the percentage
error, 100� ðk2ðanalyticalÞ � k2ðMCÞÞ∕k2ðMCÞ, for all the analytic
equations. The equations presented in this study, Eqs. (5) and (7),
show nearly zero error, while the commonly used recursive equation
by Brailsford and Bullough [6], Eq. (3) with n ¼ ∞ recursion, over-
estimates the sink strength bymore than 10% for small trap radius of
Rt ¼ 0.274 nm, at trap volume fraction 10�6. For large trap volumes
fractions close to 0.1, the Brailsford and Bullough equation un-
derestimates the sink strength by about 30% for all trap radii. The
analytic equation proposed by Hou et al. [10] shows improved ac-
curacy compared to Brailsford and Bullough at small trap volume
fractions, but still underestimates the sink strength substantially for
large trap volumes fractions, as seen in Fig. 8. The correction formula,
Eq. (2), by Heinisch et al. [11] (not plotted here) has larger negative
errors than Hou et al. [10] equation in all the graphs in Fig. 8. To
conclude, Eq. (7) should be used if the jump length to trap radius
ratio is larger than about 0.01, which for a usual diffusion jump
length of 0.1 nm means that the correction is needed for all traps
with radii smaller than about 10 nm. The reason why the usually
used Brailsford and Bullough (B&B) equation sometimes works well
can be seen in Fig. 8a) and b). In Fig. 8 a) the (B&B) equation has no
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error for trap radius 0.274 nm at trap volume fraction of about
2�10�3. The jump length error that gives too large sink strength is
exactly balanced by the trap volume fraction error that decreases the
sink strength. In Fig. 8 b) this crossover happens for trap radius
1.0 nm at trap volume fraction of about 2�10�5.

3. Discussion

The results of this study show how to obtain reliable sink
strength values that have far-reaching consequences for simulating
defect dynamics with mean-field rate equations. As Fig. 8 shows,
the commonly accepted and used sink strength values by Brailsford
and Bullough [6] might be 10% too large for small trap volume
fractions, and more than 30% too small for large trap volume frac-
tions. Consequently, the results of the RE simulations are inevitably
influenced by these large errors in the sink strengths.

Further, the observation that the MC sink strength is smaller
than theory predicts at small trap volume fractions, and larger than
given by theory at large trap volume fractions might be a quite
general trend. Similar sink strength discrepancies have been
observed by Jansson et al. [8] for dislocation sink strength simula-
tions in the 1D case. This discrepancy can be partly explained by the
results in this study: the quite large jump length affects the results
for small trap volume fractions, and the trap volume starts to have
an effect at large trap volume fractions.

Thus, it seems to be quite difficult to determine the sink
strengths theoretically. For instance, in the spherical trap case the
spherical simulation cell with reflective boundary conditions is not
a good approximation for the correct cubic cell with periodic
boundary conditions. To determine the analytical sink strength, like
in Appendix C for a cubic system, needs a concentration solution in
three dimensions, which anyway would lead to numerical ap-
proximations. Moreover, the relatively long defect jump length
compared to usual point defect trapping radii, cannot easily be
taken into account in the theoretical approach.

Apparently the best way to obtain sink strengths seems to be
using different MC methods, where the trap geometry, defect jump
length and any simulation cell requirements are easily taken into
account. Even the statistical error for the sink strength can now be
estimated by Eq. (2). The MC method became more appealing now
due to the N-jumpMCmethod developed in this study. It takes sink
strength simulations to a new level, with faster simulations sta-
tistics can be improved and sink strengths at smaller trap volume
fractions become available. The N-jump method can be used to
determine the sink strength for any kind of trap as long as the
diffusion is three dimensional (3D). Further, it should be quite
straight forward to extend the N-jumpmethod to also cope with 1D
and mixed 1D/3D diffusion with occasional direction changes.

4. Conclusions

We have now explained the reasons for the discrepancies be-
tween the sink strengths obtained with MC simulations and
analytical studies. At low trap volume fractions, i.e., for small trap
radii, the MC results are smaller than the analytical solution
because of the large jump length compared to the trapping radius.
For large volume fractions the explanation is twofold: firstly the
analytic equation is derived for spherically symmetric cell, while
the MC simulations are done for a cell with periodic boundary
conditions. The second factor: the analytic expression is derived
assuming small trap volume fraction. When the diffusion jumps,
boundary conditions and the trap volume fraction is taken into
account in the defect concentration, the sink strengths by the an-
alytic and MC method show good agreement. We have presented a
new method for much faster sink strength calculations with MC
and showed a way to obtain the statistical error for the sink
strengths. The developed N-jump method improves the statistical
accuracy and opens possibilities to simulate sink strengths at lower
trap volume fractions. The MC method can now also be used to
determine the sink strengths for many traps simultaneously.
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Appendix A. Statistical error estimate for sink strengths
calculated by the MC method

The statistical error for the sink strength as a function of the
mean number of jumps 〈N〉 is obtained from Eq. (1) as:

dk2

d〈N〉
¼ �2,Dim

l2
1

〈N〉2
(A.1)

0

�����Dk2
����� ¼ 2,Dim

l2
D〈N〉

〈N〉2
; (A.2)

where the minus sign comes due to the fact that when 〈N〉 de-
creases k2 increases. Dim is the dimension for the defect diffusion, l
is the jump length. 〈N〉 ¼PM

i¼1Ni∕M, where M is the number of
defects simulated and Ni is the number of jumps the defect imakes
before it is trapped. The usual standard deviation for the number of
jumps is:

D〈N〉 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i ð〈N〉� NiÞ2
q

M
;

(A.3)

which, together with Eq. (A.2), gives the standard deviation sta-
tistical error for the sink strength:

Dk2 ¼ 2,Dim

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i ð〈N〉� NiÞ2

q
〈N〉2M

: (A.4)

The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i ð〈N〉� NiÞ2
q

might become unmanageably large if
Ni and M is large. An equivalent, but numerically friendlier form of
Eq. (A.4) is:

Dk2 ¼ 2,Dim

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i ð1� Ni∕〈N〉Þ2

q
〈N〉M

: (A.5)

The error calculation for the sink strength is tested in Fig. A.9,
where the sink strength k2 is determined with thousand different
MC simulations with the same parameters. Fig. A.9 b) shows that
the error is described well by Eq. (A.5). The error or the standard
deviation of the sink strength in Eq. (A.5) can also be written as a
function of the sink strength, Eq. (1), as:

Dk2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i ð1� Ni∕〈N〉Þ2

q
M

¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i ð1� Ni∕〈N〉Þ2

M

s
1ffiffiffiffiffi
M

p :

(A.6)

The expression ½PM
i ð1� Ni∕〈N〉Þ2�∕Mz1 in the square root
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term, giving a surprisingly simple rule to estimate the percentage
error for simulated sink strengths as:

100Dk2

k2
¼ 100ffiffiffiffiffi

M
p : (A.7)

To obtain sink strength with error less than 1% you need more
than 104 defects, and for error less than a per mille (1 ‰) you need
more than 106 defects, see Fig. A.10.

Fig. A.9. a) The sink strengths for thousand different MC simulations with the same
parameters and number of defects, M ¼ 1000, for each simulation. b) The distribution
density for the obtained sink strengths. Red lines show the mean sink strength
calculated from Eq. (1) and the dashed lines show the standard deviation for the
simulated sink strengths from Eq. (A.5). We see that the k2 distribution is indeed
Gaussian, where about three points out of four are inside the error estimate.

Fig. A.10. The statistical error for the sink strength in percent as a function of the
number of trapped defects simulated. The markers are calculated using Eq. (A.6), and
the line using the simple rule in Eq. (A.7).
〈r〉 ¼ E
	
r1

 ¼ 2ðA∕pÞ1∕2 ¼ 4ðDt∕pÞ1∕2 ¼ l

�
8Nj∕½3p�

�1∕2
Appendix B. Fast MC method to obtain the defect position
after many diffusion jumps

The MC method of determining the sink strengths for systems
with low trap volume fraction is very inefficient [7] due to the
extremely large number of jumps a defect might diffuse before it
finds a trap. To try to reduce the computational burden we look
closer at the solution of the three dimensional diffusion equation:

dPðx; y; z; tÞ
dt

¼ D
�
d2Pðx; y; z; tÞ

dx2
þ d2Pðx; y; z; tÞ

dy2
þ d2Pðx; y; z; tÞ

dz2

�
(B.1)

The solution to Eq. (B.1) with an initial (time t¼ 0) delta function
at origin P ¼ dðrÞ (the defect is at the origin at time zero) is:

Pðx; y; z; tÞ ¼
exp
	� �x2 þ y2 þ z2

i
∕A
�

ðp,AÞ3∕2
¼ exp

	�r2∕A



ðp,AÞ3∕2
;

(B.2)

where P is the normalized probability density, see Fig. B.11 a), for
the diffusing defect (

R∞
0 4pr2Pdr ¼ 1), A ¼ 4Dt, D is the diffusion

coefficient, t the diffusion time and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the dis-

tance the defect has diffused from its initial position at time t ¼ 0.
The diffusion coefficient in a cubic lattice is D ¼ 1∕6,l2,G, where l

is the diffusion length and G the jump frequency
(G ¼ n,expð�Em∕kBTÞ, n is the attempt frequency and Em is the
migration barrier). The number of diffusion jumps Nj ¼ Gt, gives an
alternative way of expressing parameter A as:

A ¼ 4Dt ¼ 2∕3,l2,Nj: (B.3)

The radial position probability for the defect after Nj jumps is
given by:

FðrÞ ¼ 4pr2
exp
	�r2∕A



ðp,AÞ3∕2

; (B.4)

which is illustrated in Fig. B.11 b). The mean diffusion distance 〈r〉
and its standard deviation SD, marked as lines in the figure, are
given by Eqs. (B.7) and (B.8), respectively. To calculate the distri-
bution moments of Eq. (B.4) we define the integral:
EðrnÞ ¼ R∞0 rn,FðrÞdr, which for n ¼ 0,1,2,3,4 becomes:

E
	
r0

 ¼ 1; E

	
r1

 ¼ 2ðA∕pÞ1∕2; E

�
r2
�
¼ 3A∕2;

(B.5)

E
	
r3

 ¼ 4A3∕2∕p1∕2; E

�
r4
�
¼ 15A2∕4: (B.6)

The distribution moments of Eq. (B.4) can now be calculated as:
(B.7)



SD ¼
�
E
�
ðr � 〈r〉Þ2

��1∕2 ¼
�
E
�
r2
�
� Eð�2〈r〉rÞ þ E

�
〈r〉2

��1∕2
¼

�
E
�
r2
�
� 2〈r〉EðrÞ þ 〈r〉2

�1∕2 ¼
�
E
�
r2
�
� 〈r〉2

�1∕2
¼ ðA∕2½3� 8∕p�Þ1∕2 ¼ ð2Dt½3� 8∕p�Þ1∕2 ¼ l

�
Nj½1� 8∕ð3pÞ�

�1∕2 (B.8)

Skewness ¼ E
�
ðr � 〈r〉Þ3

�
∕SD3 ¼

h
E
�
r3
�
� 3E

�
r2
�
〈r〉þ 2〈r〉3

i
∕SD3 (B.9)

Kurtosis ¼ E
�
ðr � 〈r〉Þ4

�
∕SD4 ¼

h
E
�
r4
�
� 4E

�
r3
�
〈r〉þ 6E

�
r2
�
〈r〉2 � 4〈r〉4

i
∕SD4: (B.10)
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The probability that the defect has diffused a distance r from its
initial position after Nj jumps is proportional to the integral of Eq.
(B.4):

IntðrÞ ¼
Z

FðrÞdr ¼ erf
�
X1∕2

�
� 2∕B,r,expð�XÞ; (B.11)

where X ¼ r2/A, B ¼ ðp,AÞ1∕2, and erf is the error function defined
as: erf ðyÞ ¼ 2∕

ffiffiffi
p

p R y
0 expð�t2Þdt. Fig. B.11 c) shows the integral.

The aforementioned theory can now be used to calculate sink
strengths faster as follows: we first place a defect in a random
position in the simulation cell containing traps in random posi-
tions. We then check the closest distance (MinD) for the defect to
any trap. Thus, the defect cannot be trapped within
Nj ¼ floorðMinD∕lÞ diffusion jumps. We then use Eq. (B.11) with
rmax ¼ Nj,l to calculate the maximum integral value IntðrmaxÞ. We
then generate a random number between 0 and IntðrmaxÞ and solve
Eq. (B.11) for the corresponding diffusion distance r(Nj) for this
defect after Nj jumps. To finally place the defect in a new place in
three dimensions, we give further two random numbers to define a
place with spherical coordinates [rðNjÞ; q;f). The first one is the
polar angle q from: cosðqÞ ¼ 2,rand� 1, where the rand is a random
number between 0 and 1. Secondly, we find the azimuthal angle:
f ¼ 2p,rand, which gives the distances the defect is moved as:

Dx ¼ r
	
Nj
 sinðqÞ cosðfÞ (B.12)

Dy ¼ r
	
Nj
 sinðqÞ sinðfÞ (B.13)

Dz ¼ r
	
Nj
 cosðqÞ: (B.14)

To compare this approach to the usual MC method, where the
defect makes Nj consecutive diffusion jumps, we simulated 106

defects that each make Nj ¼ 10, 20, 50, 100, 200 or 500 jumps with
the jump length l ¼ 0.1 nm and compare the diffusion distance
distributions for the both methods. The Nj jumps were also tested
with different diffusion jump directions: <100> , <111> and
random where the direction for the diffusing defect was chosen
randomly. Fig. B.12 illustrates the effect the number of jumps and
jump direction has on the distance distribution for the defects.

As can be seen, with Nj ¼ 10 jumps, the random direction jumps
give about the same distance distribution as the theory Eq. (B.4).
For jumps in the <100> and <111> directions, the Nj ¼ 10 jumps
are not enough to obtain smooth distance distributions. When the
number of jumps increase, the distance distributions with different
jump directions all approach the theory as seen in Fig. B.12 f) with
Nj¼ 500. However, even if the distance distributions are not exactly
the same, the moments of the distributions are very close to each
other already for smaller number of jumps as seen in Table B.1. We
see that already for Nj over 20 jumps the present theory gives a
good agreement with the MC method irrespectively of the jump
direction. The advantage of the present theory is obvious from
Fig. B.12 f), where 500 consecutive diffusion jumps leads to a mean
position change of only about 2 nm. The statistically same position
change can now be made by generating one random number and
using Eq. (B.11) to solve for the total diffusion distance. The obvious
consequence using the new developed method is to substantially
reduce the number of numerical calculations needed to make
diffusion jumps until the defect is trapped, especially in a low trap
volume fraction system where the distance to the closest trap is
usually quite large.

There is, however, still one improvement to the developed
method. Looking closer at Eq. (B.11), we see that the diffusion dis-
tance r cannot directly be solved, but has to be iterated numerically
which can be time consuming. Fortunately there is a way of
avoiding this: we can generate a uniformly spaced Int(r) grid and
solve the corresponding r's in advance. This makes another sub-
stantial reduction in the computational time when the diffusion
distance can be deduced by simple uniformly spaced grid inter-
polation. The advantage of generating a Int(r) vs. r grid in advance is
not obvious because Eq. (B.11) depends on both the present number
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of jumps Nj and the jump length l. However, we can generate the
Int(r) vs. r grid with any Nj and l, and just scale the resulting
diffusion distance with present number of jumps and jump length.
To see how, the integral in Eq. (B.11) with Nj ¼ N1 and l1 becomes:

Intðr1Þ ¼ erf
�
X1∕2
1

�
� 2∕B1,r1,expð�X1Þ; (B.15)

where X1 ¼ r21∕A1 ¼ 3r21∕ð2l21N1Þ, from Eq. (B.3), and
B1 ¼ ðpA1Þ1∕2 ¼ ð2∕3pl21N1Þ1∕2. If we now scale another diffusion
distance r2 resulting from N2 and l2 number of jumps and jump
length, respectively, as:

r2 ¼ r1
l2
l1

�
N2

N1

�1∕2
; (B.16)

the integral with X2 ¼ 3r22∕ð2l22N2Þ and B2 ¼ ð2∕3pl22N2Þ1∕2
becomes:

Intðr2Þ ¼ erf
�
X1∕2
2

�
� 2∕B2,r2,expð�X2Þ (B.17)

¼ erf
�"

3r22
2l22N2

#1∕2!
� 2r2

B2
exp

 
� 3r22
2l22N2

!
(B.18)

¼ erf
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(B.19)
Table B.1
Comparison between defect diffusion distributionmoments obtained byMC simulations and present theory, see Fig. B.12. <100>, <111> and Random refers to results obtained
by the MC method with different diffusion jump directions.

〈r〉a [nm] SDb½nm� Skewnessc Kurtosisd

Nj ¼ 10
<100> 0.2921 0.1218 0.2467 2.9892
<111> 0.2924 0.1202 0.3155 2.9660
Random 0.2928 0.1194 0.3687 2.8558
Theory 0.2913 0.1230 0.4857 3.1082
Nj ¼ 20
<100> 0.4119 0.1722 0.4190 3.0437
<111> 0.4129 0.1716 0.4201 3.0073
Random 0.4132 0.1715 0.4299 2.9841
Theory 0.4120 0.1739 0.4857 3.1082
Nj ¼ 100
<100> 0.9203 0.3884 0.4772 3.0732
<111> 0.9208 0.3876 0.4788 3.0884
Random 0.9217 0.3877 0.4746 3.0822
Theory 0.9213 0.3888 0.4857 3.1082
Nj ¼ 500
<100> 2.0595 0.8692 0.4862 3.0976
<111> 2.0605 0.8691 0.4832 3.1024
Random 2.0606 0.8694 0.4829 3.1038
Theory 2.0601 0.8694 0.4857 3.1082

a〈r〉 ¼PiriDðriÞ∕
P

iDðriÞ, Eq. (B.7).
bSD¼ ½Piðri � 〈r〉Þ2DðriÞ∕

P
iDðriÞ�1∕2, Eq. (B.8).

cSkewness ¼ ½Piðri � 〈r〉Þ3DðriÞ∕
P

iDðriÞ�∕SD3, Eq. (B.9).
dKurtosis ¼ ½Piðri � 〈r〉Þ4DðriÞ∕

P
iDðriÞ�∕SD3, Eq. (B.10).
¼ erf
�"

3r21
2l21N1

#1∕2!
� 2r1�

2∕3pl21N1

�1∕2 exp
 

� 3r21
2l21N1

!

(B.20)

¼ erf
�
X1∕2
1

�
� 2∕B1,r1,expð�X1Þ ¼ Intðr1Þ: (B.21)

Thus we can generate a random number Int(r1) and interpolate
diffusion distance r1 calculated with N1 and l1. The right diffusion
distance r2 with the present number of jumps N2 and l2 is then
obtained from Eq. (B.16). Visually this can be understood in such a
way that the integral calculatedwith specificN1 and l1 in Fig. B.11 c)
will be exactly the same if we scale the diffusion distance r using Eq.
(B.16) for another integral calculated with any N2 and l2. A similar
idea to the method developed here is presented by Dalla Torre et al.
[12], where defects perform macro-jumps whose distance is given
by the continuous diffusion law. In their method the diffusion
distance is calculated for a given time interval, whereas here it is
related to the number of atomic jumps (specific to sink strength
calculations). The time interval can also be used here by using Eq.
(B.3) to relate the number of jumps to a time interval.
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Fig. B.11. a) The defect probability density function solution to the three dimensional
diffusion equation. Initial defect position is at r ¼ 0. b) The radial probability of the
defect position after t seconds of diffusion. c) The probability integral as a function of
diffusion distance r.

Fig. B.12. The defect diffusion distributions with different number of jumps Nj ob-
tained by usual MC simulations and present theory. The MC simulations were done
with three different jump schemes, jumps in <100>, <111> or random direction.
Appendix C. Analytical sink strength for spherical trap with
volume correction

The sink strength for defects to a trapwith concentration ct from
Brailsford and Bullough [6], (neglecting the thermal emission) is
calculated by
k2 ¼
ct

Z
S

	
F
!
, n!
dS

D〈c〉
;

(C.1)

where
R
Sð F
!
, n!ÞdS is the flux of defects through the trap surface

area, D is the defect diffusion coefficient and 〈c〉 is the mean defect
concentration in the system. If the trap shape is symmetric and the
flux of defects to the trap boundary is constant from all directions�� F!�� ¼ constant, we can write the surface integral, Eq. (C.1), simply
as:

Z
S

	
F
!
, n!
dS ¼

����F
����S; (C.2)

where S is the trap surface area. To find the analytical sink strength
we choose a spherical volume with radius L with a spherical trap
with radius Rt at the origin, see Fig. C.13. At time t ¼ 0 the defects
starts to be produced in the whole volume (except the trap volume)
with a production rate K [m�3s�1]. A spherically symmetric defect
concentration profile as a function of r from the trap edge and time t
develops. This profile satisfies following equation in spherical
coordinates

dc
dt

¼ DV2cþ K ¼ D

r2
v

vr

�
r2
vc
vr

�
þ K: (C.3)

The steady state differential equation to solve becomes:

0 ¼ 1

r2
v

vr

�
r2
vc
vr

�
þ K
D
: (C.4)

The solution must give zero concentration of defects at the trap
boundary r ¼ Rt: c(Rt) ¼ 0. Further, we assume a spherical simu-
lation cell, where the flux of defects through the boundary at r¼ L is
zero: vc

vrjr¼L ¼ 0. The solution to the differential equation is:

cðrÞ ¼ K
3D

�
L3
�
1
Rt

� 1
r

�
þ 1
2

�
R2t � r2

� �
(C.5)

The flux of defects at the trap boundary is:

�����F
����� ¼ D

vc
vr
jr¼Rt

¼ D
K
3D

"
L3

R2t
� Rt

#
(C.6)

The mean defect concentration for this spherically symmetric
system becomes:

〈c〉 ¼
Z
Vm

cdV ¼

Z L

Rt

cðrÞ4pr2dr

4pL3∕3
¼ 3

L3

ZL
Rt

cðrÞr2dr (C.7)

¼ K
3D

"
L3

Rt
� 9L2

5
þ R2t �

1
5
R5t
L3

#
(C.8)

The sink strength follows using definition in Eq. (C.1):

k2 ¼ ct jFjS
D〈c〉

¼
ctD

K
3D

h
L3∕R2t � Rt

i
4pR2t

D
K
3D

h
L3∕Rt � 9L2∕5þ R2t � R5t ∕

�
5L3
�i

(C.9)
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¼
ct
h
1� R3t ∕L

3
i
4pRth

1� 9Rt∕ð5LÞ þ R3t ∕L
3 � R6t ∕

�
5L6
�i: (C.10)

Note that if L> >Rt we get the classical low trap concentration
sink strength: k2i z4pRtct . This equation is known as the Wie-
dersich formula [2,3].
Fig. C.13. The spherical cell with radius L with a spherical trap with radius Rt in the
middle.
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