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A reactive interatomic bond-order potential for bcc tungsten is presented. Special attention in the
potential development was given for obtaining accurate formation and migration energies for point
defects, making the potential useful in atomic scale simulations of point and extended defects. The
potential was used to calculate binding energies and trapping distances for vacancies in vacancy
clusters and the recombination radius for self-interstitial atom and monovacancy. © 2010 American
Institute of Physics. �doi:10.1063/1.3298466�

I. INTRODUCTION

Tungsten �W�, or also known as wolfram, is a group 6B
transition metal with extraordinary physical and thermal
properties. It has the lowest coefficient of thermal expansion
and the highest melting point �3680 K� of any pure metal.
Due to its refractory properties of retaining strength at high
temperatures, W is used as filaments and electrodes in lamps,
in gas tungsten arc welding and as the compound tungsten
carbide in machining and cutting tools. The most spectacular
application of tungsten is its intended use in the ITER fusion
reactor.1,2

The mechanical and thermal properties of a material are
ordinarily controlled by extended defects,3 which in turn de-
pend on the kinetics and energetics of point defects. The
number and kind of point and extended defects are deter-
mined by the manufacturing process of the material, but can
also be introduced by annealing, quenching, or irradiation.
An excellent method for indirectly studying the basic recov-
ery mechanisms of ion irradiated material is the resistivity
measurement combined with isochronal annealing. This ex-
perimental method reveals the temperatures at which the ma-
terial recovers after ion, electron, or neutron bombardment.4,5

However, to identify these recovery stages which depend on
the mobility, recombination, clustering, and dissociation of
defects, the experimental data has to be compared with ato-
mistic simulations, which rely on an accurate description of
atomic interactions. Methods based on density functional
theory �DFT� are the most reliable computational techniques
for studying the physical and mechanical properties of
materials.6 However, due to the demanding need for compu-
tational power, the DFT calculations are limited to small size
systems, e.g., point defect energetics. Studies of large and
complex systems or time related processes using DFT calcu-
lations are at the present moment computationally not fea-
sible. Simulations of large systems need computationally ef-
ficient description of the atomic scale interactions.

Realistic analytical potentials describing variations of
the local chemical environment are nowadays available for a
number of different materials. Central-force many-body po-
tentials that describe well metallic materials are the
embedded-atom method �EAM�7,8 and Finnis–Sinclair �FS�

type potentials.9 Examples of schemes including noncentral
forces are the modified embedded-atom method10 and differ-
ent tight-binding techniques.11 An application of the fourth
moment approximation of the tight-binding scheme for mod-
eling tungsten surfaces was presented by Xu and Adams.12

Analytical potentials to describe W has been developed by
Derlet et al.13 which cannot deal with high-energy collision
dynamics, and by Juslin et al.14 which gives too low point
defect formation energies and wrong self-interstitial atom
configuration.

The purpose of the present work is to obtain the set of
parameters for a Tersoff–Brenner-type potential15–17 with a
well established functional form,14,18 which besides bulk
properties, also provides accurate formation and migration
energies for point defects in W. Moreover, the potential can
also be used for simulations involving high-energy colli-
sions. In this work we apply the obtained bond-order poten-
tial �BOP� parameters set to find the configuration, trapping
radius, and binding energies for W vacancy clusters and the
recombination radius for self-interstitial atom and monova-
cancy.

II. BOND-ORDER FORMALISM AND PARAMETERS

Bond-order potentials are semiempirical schemes to cal-
culate atomic interaction energies from the local arrangement
of atoms. The functional form of the used bond-order poten-
tial has been discussed in details previously.14,18,19 The total
energy is a sum over individual bond energies

E = �
i�j

f ij
c �rij��Vij

R�rij� − bijVij
A�rij�� , �1�

where the pairlike repulsive and attractive terms are taken as
Morse-like pair potentials

VR�r� =
D0

S − 1
exp�− ��2S�r − r0�� , �2�

VA�r� =
SD0

S − 1
exp�− ��2/S�r − r0�� , �3�

where the dimer bond energy D0 and bond distance r0 and
the parameters S and � are all fitting parameters. The inter-
action is restricted by a cutoff-functiona�Electronic mail: tommy.ahlgren@helsinki.fi.
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fc�r� = �
1, r � R − D ,

1

2
−

1

2
sin��

2
�r − R�/D	 , 
R − r
 � D ,

0, r � R + D ,
�

where D and R are adjustable quantities. The bond-order
parameter bij = �1+�ij�−1/2 includes three-body contributions
and angular dependence

�ij = �
k��i,j�

f ik
c �rik�gik��ijk� � exp�	ijk�rij − rik�� .

Here again the cutoff-function is included, while the indices
monitor the atom type-dependence of the parameters, which
is of importance for the description of compounds. 	ijk is a
fitting parameter. The angular function is defined as follows:

g��� = 
�1 +
c2

d2 −
c2

d2 + �h + cos ��2	 ,

where 
, c, d, and h are fitting parameters. In simulations
with high-energy collisions �Ekin�10 eV�, the repulsive part
of the potential has to be modified as follows:

Vmod
R �r� = VPP�r��1 − F�r�� + VR�r�F�r� ,

where VPP is a repulsive pair potential for a dimer employing
a DFT method20 or the Ziegler–Biersack–Littmark universal
repulsive potential21 and F�r� is the Fermi function

F�r� =
1

1 + exp�− bf�r − rf��
,

where the constants bf and rf are chosen such that the poten-
tial is effectively unmodified at the equilibrium and longer
bonding distances, but also gives smooth fit to the repulsive
potential. The potential parameters, see Table I, were ob-
tained by fitting simultaneously the cohesion energies and
lattice constants of 	 and � phase W, elastic constants and
bulk modulus, monovacancy formation and migration ener-
gies, and self-interstitial atom configuration and formation
energy. The optimization algorithm used was the multidi-
mensional unconstrained nonlinear Nelder–Mead method.22

III. TOTAL ENERGY CALCULATIONS

The DFT calculations were performed with the VASP.23,24

The electronic ground state of the system was calculated us-
ing the projector-augmented wave25,26 potentials as provided
in VASP. Electron exchange-correlation was performed within
the generalized gradient approximation using Perdew–
Burke–Ernzerhof functionals.27,28 The conjugate gradient
algorithm29 was used for the volumetric and ionic relaxation
and the relaxation was stopped after a convergence criteria of
0.01 eV/Å was reached. The energy cutoff for calculations
was 450 eV which ensured the convergence of geometrical
structures and total energies. A supercell with periodic
boundary conditions was used with 127 and 251 atoms for
vacancy and interstitial systems, respectively. A more de-
tailed description can be found elsewhere.30

IV. BULK PROPERTIES

Any potential model should be thoroughly tested by
comparing different calculated properties and energies to ex-
perimental values. If experimental data are not available, the
comparison should be made to DFT calculations. Before
looking at point defects and thermal properties, it should be
demonstrated that the potential gives the tungsten bulk prop-
erties satisfactorily. In Table II are presented the properties of
various existing as well as hypothetical high symmetry bulk
phases of tungsten as obtained from experiment, DFT calcu-
lations, other existing analytical potentials, and present BOP.
The cohesion energy and lattice constant are close to the
experimental ones for every potential, with the body-
centered cubic �bcc� structure �	-W� as the most stable struc-
ture for tungsten. The experimentally observed lattice
constants33 of �-W and 
-W and the cohesive energies from
DFT are nicely reproduced by our BOP. Even though the
bulk modulus and elastic constants were taken into fitting, it
was not possible to find a potential parameter set giving both
the elastic constants and the point defect properties accu-
rately �see Table III�. Because the point defect concentrations
and mobilities are exponential functions of formation and
migration energies, they were considered more important
than the elastic constants in the fitting procedure.

V. THERMAL AND POINT DEFECT PROPERTIES

To understand the changes in the microstructure and me-
chanical properties of a material during thermal treatment or
irradiation, one has to have a definite picture of the kinetics
and energetics of point defects. Table III summarizes the
thermal and point defect properties obtained from experi-
ment, DFT calculations, and analytical potentials. A large
scatter in the melting temperature for the different analytical
potentials is observed. The developed BOP overestimates the
melting temperature by about 23%. Melting of the material is
a complicated process, but a general observation can be
stated as follows. If the formation energy for a Frenkel pair
�sum of vacancy and interstitial formation energies: Hv

f +Hi
f�

given by a potential is larger than the experimental one, the
melting temperature calculated with the potential will also be
larger than the one obtained experimentally.

TABLE I. Parameters for the W-W interaction developed in this work.

Parameter Value

D0 �eV� 3.282 547
r0 �Å� 2.460 687
� �Å−1� 1.373 146
S 2.215 376

 0.001 293 884
c 1.327 324
d 0.135096
h �0.352
R �Å� 4.4
D �Å� 0.840 189
	WWW 0.0

bf �Å−1� 12
rf �Å� 1.3
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A. Monovacancy

The vacancy formation energy of 3.75 eV calculated
with our BOP is very close to the experimental value, and the
vacancy formation volume agrees with DFT calculations.
The FS type potential by Derlet et al.13 gives also a nice
formation value of 3.56 eV. The BOP by Juslin et al.14 gives
a quite low formation energy of 1.68 eV, while the BOP by
Mrovec et al.32 gives a bit high vacancy formation energy of
4.30 eV.

The W self-diffusion activation enthalpy of about 5.4 eV
is the sum of vacancy formation and migration energies at
temperatures where only monovacancy contributes to
diffusion.42 Both the experiments and BOP result in a mono-
vacancy migration energy close to 1.8 eV. Moreover, the
monovacancy migration barrier as a function of the reaction
coordinate is in excellent agreement with DFT calculations
�see Fig. 1�. A positive migration volume of about 0.13 

estimated by our BOP predicts only a minor decrease in the
monovacancy diffusivity at increasing pressures.43

B. Self-interstitial atom

The formation energy of SIA given by our BOP is in
reasonable agreement with the experimental and DFT values.
Study by Nguyen-Manh et al.37 shows that �111 crowdion is
the lowest energy SIA configuration for all nonmagnetic 5B
and 6B transition metals. This SIA configuration agrees
nicely with our DFT calculations and BOP �see Fig. 2�. The
small SIA formation volume of 0.6  given by DFT is prob-
ably a consequence of the small system size �251 atoms�
compared to the large SIA defect and periodic boundary con-
ditions employed in the calculations.

The SIA configuration in W has a large extent in the
lattice and its strain field reaches far from the SIA center.
Figure 3 shows the SIA-monovacancy recombination radius
around the �111 SIA crowdion calculated by the present
BOP. If a monovacancy is inside the drawn ellipsoid, the
Frenkel pair is annihilated.

The recombination radius is here defined as the maxi-
mum distance between the monovacancy and SIA center
which allows immediate recombination and leaves behind a

TABLE II. Comparison of properties of the existing as well as the hypothetical high symmetry bulk phases of
tungsten as obtained from experiment, DFT calculations, the FS potential, modified �MEAM� potential, and
BOP by Mrovec et al. �Ref. 32�, Juslin et al.�Ref. 14�, and from the present study. Ec: cohesive energy
�eV/atom�; �E: energy difference with respect to ground-state structure �eV/atom�; a: lattice parameter �Å�; B:
bulk modulus �GPa�; and cij: elastic constants �GPa�.

Experimental DFT FSa MEAMb

Bond order potentials

Mrovec et al.c Juslin et al.a Present study

Diamond
�E 2.33a 3.11 3.70 3.11 4.46
a 5.87a 5.87 5.66 5.94 6.01

sc
�E 1.35c 1.50 2.61 1.23 1.61 2.07
a 2.61c 2.69 2.63 2.52 2.67 2.59

hcp
�E 0.47c 0.34 0.25

fcc, 
-W
�E 0.47c, 0.49d 0.15 0.26 0.48 0.35 0.24
a 4.13e 4.00c, 4.02d 3.93 4.01 4.02 4.01 4.05

A15, �-W
�E 0.08c, 0.09d 0.22 0.64 0.31 0.10e

a 5.05f 5.06c, 5.06d 5.14 5.07 5.12 5.16

bcc, 	-W
Ec �8.9f �9.97g, �8.49d �8.89 �8.66 �8.99 �8.89 �8.89e

a 3.165i 3.14g, 3.172d 3.165 3.164 3.165 3.165 3.171e

B 308–314h 320i 301 314 308 215e

c11 501–521h 552i 512 533 542 444e

c12 199–207h 204i 196 205 191 128e

c44 151–160h 149i 170 163 162 134e

aReference 14.
bReference 31.
cReference 32.
dThis work.
eProperties used in potential fitting.

fReference 33.
gReference 34.
hReference 35.
iReference 36.
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perfect lattice. According to our calculations, the oblong
shape of the SIA defect in W results in that the recombina-
tion radius is an ellipse �ellipsoid in three-dimensional� with
the semiminor axis of 5.4 Å and semimajor axis of 18 Å. The
recombination radius was calculated by placing a monova-
cancy in all positions around the SIA and relaxing each dif-
ferent system with the molecular statics method. The calcu-
lations were done using 5488 atoms but only the closest
atoms in the crowdion plane are pictured in Fig. 3.

Under irradiation, an important factor driving the evolu-
tion of the microstructure in metals is the fast migration of
SIA’s. The crowdion configuration of the SIA in W, see Fig.
2, means that with only a small coherent displacement
��0.4 Å� of the crowdion atoms, the SIA center moves
about 2.7 Å in �111 direction. This kind of behavior can be
described by the Frenkel–Kontorova model which approxi-
mates the interstitial crowdion as a string of atoms connected
by elastic springs.44,45 As a result the interstitial crowdion

can be described as a quasiparticle which can propagate
through the crystal as a nearly free particle with an effective
mass of only a fraction of that for a W atom. It follows that
an interstitial crowdion should be very mobile along the
crowdion axis, which is exactly what is observed. Dausinger
et al.46 concluded from their resistivity annealing experi-
ments that long-range SIA migration starts between 24 and
30 K, corresponding to a migration energy of 54 meV. More
resent work by Tamimoto et al.47 using anelasticity measure-
ments, indicates that SIA diffusion could already take place

TABLE III. Comparison of thermal and point defect properties obtained from experiment, DFT calculations,
MEAM potential, BOP by Juslin et al., and present study. Tm: melting temperature �K�; �Hf: enthalpy of fusion
at the melting temperature �kJ/mole�; �V /Vs: volume change upon melting �%�; �l: density of the liquid at the
melting point �g /cm3�; 	L: coefficient of linear thermal expansion �10−6 /K�; Hv

f , Hi
f: vacancy and interstitial

formation energies �eV�; Vv
f , Vi

f: vacancy and interstitial formation volumes in units of the atomic volume ��;
Hv

m, Hi
m: vacancy and interstitial migration energies �eV�; and Vv

m: vacancy migration volume ��.

Experimental

DFT

MEAMb

BOP

Nguyen-Manha This work Juslin et al.c Present study

Tm 3695d 4600 2750 4550
�Hf 52.3d 33.0 27.4 31.8
�V /Vs 3.2 4.3 3.6
�l 17.0d 17.1 16.8
	L 4.5e 6.6 8.2
Hv

f 3.7�0.2 f 3.56 3.34 3.95 1.68 3.75g

Vv
f 0.62 0.68 0.73

Hv
m 1.8�0.1 f 1.78 1.71 1.73 1.80g

Vv
m �0.05 0.13

Hi
f 9.1�0.6 h 9.6 9.98 9.0 8.3 9.9g

Vi
f 0.6 1.95 1.60

Hi
m 0.05 0.005 0.20 0.002

aReference 37.
bReference 31.
cReference 14.
dReference 38.

eReference 39.
fReference 40.
gProperties used in potential fitting.
hReference 41.
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FIG. 1. �Color online� System energy variation along monovacancy migra-
tion path in �111 direction calculated by BOP and DFT methods. The
saddle point energy is about 1.8 eV.

FIG. 2. �Color online� Top: electron density for the �111 crowdion calcu-
lated by DFT in this work. Bottom: the SIA configuration with the lowest
energy for BOP developed in this study. The SIA displaces atoms �full
circles� from their lattice sites �empty circles� in the �111 direction.
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under 1.5 K. This low migration temperature would corre-
spond to a much lower migration energy than 54 meV, as
was obtained by our DFT calculations using 251 atoms with
the nudged elastic band method. The SIA migration barrier
calculated by DFT was 5 meV and by our BOP 2 meV.

VI. EXTENDED DEFECTS

In this section, we will first use the present BOP param-
eters set to look at the surface energies and interlayer relax-
ations for the low-index W surfaces. Second we will use the
potential to calculate the configuration, trapping radius, and
binding energies for W vacancy clusters.

A. Surfaces

The surface energy defined as the excess energy per sur-
face unit area is an important quantity which determines for
example the equilibrium shape of the mesoscopic crystals.
The surface energies and interlayer relaxations for the unre-
constructed low-index surfaces �100�, �110�, �111�, and �211�
are presented in Table IV. The experimental surface energy
values of 3.27 and 3.68 J /m2 results from surface tension
measurements in the liquid phase extrapolated to zero
temperature.48,49 Thus, these values correspond to an isotro-
pic crystal and cannot be compared with the surface energy
of a particular surface facet. The surface energies for the
present BOP seem to be slightly smaller than for the BOP by
Mrovec et al.32 or given by DFT calculations. The interlayer
relaxations, however, are in agreement with the existing ex-
perimental and DFT values.

B. Vacancy clusters

As the thermal energy increases, the monovacancies start
to diffuse. If the moving vacancy comes into contact with
another vacancy or vacancy cluster, and the interaction is
attractive, the vacancy is trapped and a bigger cluster is
formed. Table V shows the binding energies for small va-
cancy clusters obtained in this study. The corresponding con-
figurations for the vacancy clusters can be seen in Fig. 4.

The binding energy of a vacancy cluster with N vacan-
cies, EN

b , is defined as the energy required to separate the last
vacancy from the cluster as

<110>

<0
01

>

FIG. 3. The oblong shape of the SIA defect in W results in that the recom-
bination radius is an ellipsoid around the center of the SIA with the semi-
major axis 18 Å in �111 direction and semiminor axis 5.4 Å. If a SIA comes
within this recombination radius from the monovacancy, they both are
annihilated.

TABLE IV. Surface energies and interlayer relaxations �%� for unreconstructed low-index surfaces obtained
from experiment, DFT calculations and analytical potentials. 
hkl: surface energy �J /m2� for �hkl� surface; and
�ij

hkl: interlayer relaxation �%� between layer i and j.

Expt. DFT FSa

BOP

Mrovec et al.a This study

(100)

100 4.64b 2.92 3.81 2.91
�12

100 �6c, −4�10 d −6�0.5 e �0.7 �2.5 �2.3
�23

100 0.5�0.5 e �0.6 �0.4 �1.8

(110)

110 4.01b 2.58 2.60 2.17
�12

110 −2.7�0.5 f �3.6g �0.5 �1.0 �3.3
�23

110 0.0�0.3 f +0.2 g +0.1 +0.6 +0.2

(211)

211 4.18b 3.05 3.00 2.80
�12

211 �9.3h �4.8 �7.9 �8.6
�23

211 +1.1 +2.1 �1.3

(111)

111 4.45b 3.24
�12

111 �5.7
�23

111 �16.4

aReference 32.
bReference 50.
cReference 51.
dReference 52.

eReference 53.
fReference 54.
gReference 55.
hReference 56.
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EN
b = EN−1 + E1 − �EN + E0� ,

where EN is the total energy of the system. To perform the
calculation, one needs to find the lowest potential energy
configuration for each cluster size. In this work, this was
done by using a simulation cell with 5488 lattice positions
and the system total potential energy for each possible va-
cancy configuration was calculated using molecular statics
method. The nearest neighbor divacancy binding energy ob-
tained by present BOP was 0.66 eV, which is very close to
the only existing experimental value of 0.7 eV by Park et
al.57 There is some controversy whether the binding energy
of the divacancy is positive or negative; DFT values vary
between �0.4 and +1.0 eV, as discussed in Ref. 58 and
references therein.

Finding the lowest energy configuration for large va-
cancy clusters can be very time consuming computationally.
For example, four vacancies can be distributed in 10 differ-
ent lattice positions in 210 different ways. The number of
different possible configurations NConf that NVac number of
vacancies can be arranged in NPos lattice positions can be
calculated using the equation

NConf =
NPos�NPos − 1� . . . �NPos − NVac + 1�

NVac
.

As can be noticed, the number of possible vacancy configu-
rations increases very fast for larger clusters; 10 vacancies

can be distributed in 24 different lattice positions in
196 1256 different ways. An approach to decrease the com-
putational effort in finding the lowest energy configuration is
the use of the fact that W atoms in a bcc lattice have eight
nearest neighbors at a distance of about 2.74 Å. If any of the
eight nearest atoms are missing for a particular W atom, the
calculated total potential energy increases. The minimum en-
ergy configuration for a vacancy cluster should thus be a
configuration where the total number of nearest neighbors in
the lattice is at its maximum. Total energy calculations are
thus needed only for those cluster configurations that result
in a small number of broken W bonds, reducing drastically
the computational effort in finding the lowest vacancy cluster
configuration.

Next, the present BOP parameters were used to calculate
the distance of a monovacancy to a vacancy cluster before it
is trapped and the cluster size increases by 1. This parameter,
called the vacancy trapping radius RT

v, is measured from the
cluster center. The resulting vacancy trapping radius as a
function of cluster size calculated using molecular statics is
presented in Fig. 5. The vacancy trapping radius increases
approximately linearly with the size of the cluster NVac and is
fitted by a straight line

RT
v = �4.4 + 0.2NVac� Å.

The nonspherical configurations for small vacancy clusters
are responsible for the linear increase in the trapping radius.
The larger the vacancy clusters become, the more spherical
they appear. For large clusters the vacancy trapping radius
should increase proportional to NVac

1/3 .

VII. CONCLUSIONS

A set of parameters for a reactive interatomic bond-order
potential giving accurate formation and migration energies
for point defects in tungsten and able to deal with high-
energy collisions was presented. The obtained potential pa-
rameters set was used to calculate various properties in W,
including the binding energies and trapping distances for va-
cancies in vacancy clusters and the recombination radius for
the self-interstitial atom and monovacancy.

TABLE V. Binding energies for small vacancy clusters. The binding energy
is defined as the energy required to separate the last vacancy from the
cluster.

Number of vacancy
in the cluster

Binding energy
�eV�

Number of vacancy
in the cluster

Binding energy
�eV�

2a 0.6559 7 1.7459
3 1.1127 8 1.8353
4 1.8942 9 2.2658
5 1.7833 10 2.2686
6 2.2953

aNearest neighbor configuration

32 4

65 7

8 9 10

FIG. 4. �Color online� Lowest energy configurations for small vacancy clus-
ters calculated using the present BOP. We can see that square pyramid �five
vacancies� shapes are favored, leading also to octahedral shapes �six vacan-
cies� which also is a square bipyramid.
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FIG. 5. The vacancy trapping radius increases approximately linearly with
the size of the vacancy cluster. If a monovacancy comes within this distance
from the vacancy cluster center, it will be trapped and the cluster size will
increase by 1.
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