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• Quantum mechanics (and quantum field theory) is the 
defining physical theory of the 20th century.

• Quantum field theory is one the two fundamental theories 
of physics at the moment. (The other is general relativity, 
which describes space, time and gravity.)

• Quantum theory has overturned our conception of reality 
as concerns matter, being and happening.

• It is the foundation of all modern technology, and its 
impact on society is difficult to overestimate.
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Quantum century



• In the 17th century, classical physics was established 
with Isaac Newton’s Principia Mathematica.

• The view of reality of classical mechanics is close to 
our everyday ideas.
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Classical physics

Principia 1687



• Space is a passive stage for action.

• Time indicates at which point of the play we are.

• Both space and time are passive, eternal and 
unchanging: they do not care about events on-stage 
(i.e. what matter is doing).
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Classical space and time: the 
world as a theatre



• Matter consists of small grains (particles), stuck together. 
(Classical electromagnetism also includes fields; let’s not get 
into them!)

• The grains exist continuously and have a fixed position in 
space at each time.
• The world is definite. (The state of the world is unambiguous.)

• The grains interact with each other in such a way that, given 
the position and velocity of every grain at some time, their 
future and past is determined.
• The world is deterministic. (Every effect has a cause.)

• There is no special present moment.
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Classical matter and being: the 
world as a clockwork



• In the late 19th and early 20th century, observations could not 
be explained in the framework of classical physics

• Classical physics gave way to modern physics: quantum 
mechanics and special relativity.

• Special relativity changed the view of space and time, 
quantum mechanics changed the view of matter and being.

• These evolved into quantum field theory and general 
relativity.

• Quantum field theory and general relativity have not yet 
been fully combined.
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From the classical to the modern



Classical mechanics

Quantum mechanics Special relativity

Quantum field theory General relativity

Quantum gravity
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Genealogy of modern physics

? ?



Classical mechanics

Quantum mechanics Special relativity

Quantum field theory General relativity

Quantum gravity
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Limits of physical theories



• In 1911, it was found by Ernest Rutherford that atoms have a 
positively charged nucleus, surrounded by negatively 
charged electrons.

• The Rutherford model of the atom is like a solar system.

• According to classical electromagnetism, charged objects in 
accelerated motion emit electromagnetic radiation.

• An electron would lose energy and fall down into the nucleus 
in less than a billionth of a second.

• Also, atoms were observed to only emit light at certain 
discrete wavelengths, instead of a continuum.
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Atomic problems



• Niels Bohr proposed a 
solution in 1913: electrons 
orbit only at certain discrete 
distances: quantisation.

• If an electron jumps to to a 
closer orbit, it emits a photon 
(light particle). It has to 
absorb a photon to move up.

• Particles still have definite 
positions and velocities.

10Trondheim Academy of Fine Art, 09.04.2015

Bohr model of the atom



• The Bohr model was experimentally successful, but 
limited, and had no solid basis. It postulated quantisation, 
instead of explaining it.

• The full theory of quantum mechanics was found in 1925.

• Erwin Schrödinger formulated it in terms of the wave 
function, Werner Heisenberg, Max Born, and Pascual
Jordan in terms of matrices.

• Both are ways of describing the state of the system.
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Quantum mechanics



• The state of the system is the information that describes 
the system fully.

• In classical mechanics, the state is the positions and 
velocities of all grains.

• In quantum mechanics, the state cannot be expressed in 
terms of classical grains of matter.

• In both cases, state evolution is deterministic: given the 
initial state, the future state can be predicted. (In QM, the 
past cannot be determined, though.)
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Deterministic state evolution



• In quantum mechanics, two things are new:

• The state does not correspond one-to-one to 
observable quantities. (Lack of definiteness.)

• Relation of the state to observations is not 
deterministic.(Lack of determinism.)
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Indefiniteness and indeterminism



• The state of the system can be represented by a 
wave function.

• The wave function says:
• what are the possible results of observations (e.g. 

which kind of light an atom can emit)
• what are the probabilities of the possible results

14Trondheim Academy of Fine Art, 09.04.2015

Wave function



• In classical mechanics, a particle is modelled by a 
pointlike grain, and the state is its position and velocity.

• In quantum mechanics, a particle is modelled by a wave 
function. The wave function determines the probability of 
observing the particle at different points, and with different 
velocities.

• That is all.

• This is not a question of not being able to know more 
about the particle, but that there is nothing else to be 
known.
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Limits of being, not knowledge



• Bohr avoided the problem of atom instability (due to 
electromagnetic emission) by postulating discrete 
orbits.

• Bohr was wrong.

• In quantum mechanics, there is no problem because 
particles have no orbits. They do not have definite 
positions unless they are observed. Hence, they do 
not move in space along trajectories.
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Quantum mechanical model of 
the atom
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The two-slit experiment

Interference pattern
light: 1803
electron: 1961



• The following statements about the electron are all incorrect:
• It goes through the upper hole.
• It goes through the lower hole.
• It goes through both of the holes.
• It doesn’t go through either of the holes.

• Classical language of matter as grains, with fixed position 
and trajectory, is insufficient.
• Reality is indefinite.

• The wave function does not predict where the particle will 
fall, only the probability for it.
• Reality is indeterministic.
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To be and not to be



• When we observe the electron at one point, we know that the 
electron was there at the observation time.

• It is said that the wave function collapses: instead of a 
continuous probability distribution, the probability is 100% in 
one place and 0% everywhere else.

• Because the outcome of the observation is random, state 
evolution at collapse is indeterministic.

• Thus the present state does not determine the past.

• In quantum mechanics, there is a special moment of 
happening, when indefinite past is transformed into present 
certainty.
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Wave function collapse



• In 1935, Schrödinger illustrated quantum reality with the 
following thought experiment.

• Put a cat inside a box. In the box, there is a vial of poison 
gas, attached to a radioactive atom. If the atom decays, 
the vial is broken and the cat dies. If not, the cat lives.

• If we do not observe inside the box, the atom’s state is 
indefinite. Thus also the state of the cat is indefinite.

• Before we open the box, the cat is neither dead nor alive, 
it just has a probability of being dead or alive.
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Schrödinger’s cat



• Indefinite states are seen in the two-slit experiment.

• Why do we never see them in everyday life, for 
macroscopic objects? (The largest molecule for 
which the two-slit experiment has been done has 
810 atoms.)
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Appearance of definiteness



• According to the Copenhagen interpretation, the 
state collapses on observation.

• This is a workable rule for most physics purposes.

• Problems:
• Puts the observer in a special position. Who qualifies as 

an observer? What if we put Schrödinger in the box and 
leave the cat outside?

• Who observers the observers? (Observer is assumed to 
be in a definite state.)

• What about the state of the entire universe?
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The Copenhagen interpretation



• Part of the cat problem is solved by decoherence.

• System is called decoherent when there is no interference 
between states corresponding to different observations.

• Interaction between the box and the observers entangles
them, so that if one is definite, so is the other.

• Thus observers of non-isolated systems see only definite 
states. (It’s difficult to isolate a cat.)

• Decoherence does not explain how the state of the entire 
system becomes determined (collapse), nor say which of the 
alternatives is seen (indeterminism).

23Trondheim Academy of Fine Art, 09.04.2015

Decoherence



• The quantum mechanics of 1925 made it possible to 
calculate atomic spectra more precisely than the Bohr 
model.

• It also allowed to understand and manipulate the structure 
of atoms (periodic table), nuclei and molecules.

• All electronics and all modern chemistry –in other words, 
all modern technology– is based on quantum mechanics.

• The societal effects of electronics, chemistry and so on 
are incalculable.
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Quantum precision



• In the 1940’s quantum mechanics was unified with special 
relativity in quantum field theory (QFT).

• (Some of the successes credited to quantum mechanics 
above require QFT.)

• QFT has allowed us to understand the fundamental 
building blocks of matter and its interactions at a level 
beyond atoms, nuclei, protons and neutrons.

• QFT is the most precisely tested theory in history, 
agreeing with observations at the level of one part 109.

• QFT has not been fully united with general relativity.
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Beyond quantum mechanics



• Unifying QFT and general relativity has been studied since 
the 1950s, but remains unaccomplished.

• However, there is one area of overlap where it has been 
possible to observationally probe quantum gravity.

• In the early universe, during a small fraction of the first 
second, the expansion of the universe (likely) accelerated.

• The universe, including the probability distribution of 
perturbations, became smooth.

• As the state became determined (how?), one possibility was 
realised, and formed the seeds of all cosmic structure.
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Quantum seeds of structure
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The seeds of structure

http://sci.esa.int/planck/51553-cosmic-microwave-background-seen-by-planck/



• Quantum theory is the most precisely tested and most 
technologically fertile theory of physics.

• It has overturned everyday notions of reality in a way that 
would have been inconceivable a hundred years ago.

• The appearance of definite macroscopic reality is not 
understood.

• The union of quantum theory and general relativity is yet 
to be achieved.
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Reality beyond imagination


