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8 Perturbation theory and gravitational waves

8.1 Linearised metric and gauge transformations
8.1.1 Metric, connection and Riemann tensor

When discussing the Newtonian limit in chapter 4, we assumed that the perturbation
of the metric is diagonal and consists of only one function. Let us now consider gen-
eral linear perturbations around Minkowski space, also dropping the small velocity
approximation we used.

We assume that the spacetime is perturbatively near Minkowski space, i.e. gravi-
tational fields are weak. Precisely speaking, this means that there exists a coordinate
system where the metric can be written as

Gap = Nap + hozﬁ 5 (81)

where |hqg| < 1. We take the derivatives of hog to be of the same order of smallness
as hag. (This is not the case in all applications of perturbation theory in GR.) The
metric gog is a tensor, but 7,4 is not a tensor, so hqg is not a tensor either. However,
if we work only to linear order in h,g, it behaves as a tensor in Minkowski space, so we
can treat it like a field in flat spacetime. This is illustrated in figure 1. For example,
the indices of h,p are lowered with 7,4 and raised with 8. As 9793 = 093 we
have, to first order,

g8 ~ B poB (8.2)

where h®? = 77“777551175.

The perturbation h,g has 10 components. It is useful to decompose it in terms
of quantities that behave in a specific way under spatial rotations. (As Minkowski
space has no preferred time slices, the choice of time coordinate and spatial slicing
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(a) The real, perturbed, spacetime. (b) The fictitious background spacetime.
The metric is gag. The metric is 744. It is a tensor.
Neither 1, nor hop are tensors. The field hqg is a tensor.

Figure 1

is arbitrary, though we restrict to Cartesian coordinates, i.e. we slice the spacetime
with Euclidean spatial sections.) Under spatial rotations, hgo is a scalar, ho; is a
vector, h;; is a symmetric rank 2 tensor, and the spatial trace 6 h;; is a scalar. We
write

ds* = —(1 — hoo)dt* + 2hg;dtdz’ + (6;; + hij)da’da’
= —(1+2¢)dt* + 2w;dtdz’ + [(1 — 2¢);; + 2S;;]dz*da? ,  (8.3)
where S;; = S(ij) is called the strain. It is traceless, 6% S;j = 0. The indices of wj;

and S;; are raised and lowered with the Euclidean metric §;;. The new perturbation
functions in terms of the components h,g read

1

¢ = —§h00 (84)
w; = hoi = hio (8.5)

1 ..

1 1
Sij = 5 <hl] - 35ij(5klhkl> . (87)
The inverse of (8.4)—(8.7) reads

hoo = —2¢ (8.8)
hoi = w; (8.9)
hij = —2(5z‘j¢ + QSij (8.10)
h = 2¢—6v¢, (8.11)

where h = n*h,p. The expressions (8.4)—(8.7) do not give a full decomposition
into irreducible representations of the rotation group.! The perturbation hg;
has a scalar and an irreducible vector part, and S;; has scalar, irreducible vector
and irreducible rank 2 tensor parts. The irreducible decomposition is

w; = Bi + B,i
1
Sij = Cij+Cupn+Ch — g‘sijvzc ’ (8.12)

! Irreducible representations are those that contain no smaller subrepresentations that are closed

under the group action.
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where 9;B' = 9;,C" = 0, 9;C% =0, C;; = Clijys C%; = 0, and indices are again raised
and lowered with the Euclidean metric d;;. This extends the well-known Helmholtz
decomposition of a vector in three-dimensional Euclidean space. Here B; and C;
are irreducible vectors and Cj; is an irreducible rank 2 tensor.?

Let us count the number of degrees of freedom. In the decomposition (8.4)—
(8.7), ¢ and 9 are 2 functions, w; contains 3 functions, and the symmetric traceless
3 x 3 matrix S;; contains 6 — 1 = 5 functions. That is 10 functions in total. Let us
count how many irreducible scalar, vector, and tensor degrees of freedom we have.
From the irreducible representation (8.12) we see that w; contains one scalar and
one irreducible vector, and S;; contains one scalar, one irreducible vector and one
irreducible rank 2 tensor. An irreducible (three-)vector has 2 degrees of freedom
(3 components minus 1 for being divergence-free), as does an irreducible symmetric
rank 2 tensor (the 5 independent components of S;; minus 1 for one scalar and
minus 2 for one irreducible vector). So in total the metric has 4 scalar degrees of
freedom, 4 irreducible vector degrees of freedom and 2 irreducible tensor degrees
of freedom. However, due to coordinate invariance, in perturbation theory called
gauge invariance, not all of them are physical.

8.1.2 (Gauge transformations

The split into background and perturbations is not uniquely defined. Consider un-
perturbed Minkowski space in Cartesian coordinates. Now do a small coordinate
transformation, and linearise in the small parameter of the transformation (for ex-
ample, consider the merry-go-round coordinates introduced in chapter 1, with a
small angular velocity). The new metric has the form gog = 708 4 hag, but hag is a
coordinate artifact, and does not correspond to physical degrees of freedom. A gen-
eral coordinate transformation x® — z'®(z) contains 4 arbitrary functions, so only
10 — 4 = 6 of the 10 functions in the metric are independent. In the context of per-
turbation theory, this freedom corresponds to gauge transformations. They are
small coordinate transformations such that the background is left invariant and the
change is absorbed in the perturbations. A choice of division into the background
and perturbations means choosing a map from the real spacetime into a Minkowski
spacetime. Gauge transformations are changes in this mapping. Concretely, we have

% — 2/ = 2% + %) , (8.13)

where £“ is of the same order of smallness as the metric perturbations. In (6.26),
we showed that the metric transforms as

9o = Gog = (M T0(M 50,5

gap = 2V (38a)

~ Nap + hozB - ga,ﬂ - &B,a

= o+ hog (8.14)

12

Physicists are sloppy with language. The word tensor refers to an invariant object on the
manifold. However, it is also used to specifically mean a spatial rank 2 tensor. In the context
of perturbation theory, it most often means an irreducible rank 2 tensor, or its components.
The meaning is usually clear from the context.
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where &, = nagfﬁ . So the perturbation changes as

hag = hos = hap — Eap — Esa - (8.15)

Under the gauge transformation (8.15), the decomposed fields (8.4)—(8.7) trans-
form as

o — ¢ =0+& (8.16)

wp = wp=wi =& — 0 (8.17)

Yoo Y=t O (8.18)
1 1

Sij — Sz{j = Sij — 5(5@',]' +&4) + g%@kgk , (8.19)

where dot denotes partial derivative with respect to t. We can divide the gauge
transformation three-vector into irreducible parts as & = 0;€ + §~¢, where (%éi =0.
In terms of the irreducible representation (i.e. using the decomposition (8.12)), the
gauge transformations (8.16)—(8.19) read

o = o+& (8.20)
B = B-£-¢ (8.21)
B, = Bi—§ (8.22)
Y = w+év2§ (8.23)
' = C-¢ (8.24)
G = Ci—§ (8.25)
Ci; = Ciyj . (8.26)

We have 4 gauge degrees of freedom: two scalars £ and &y, and one irreducible
vector &. We calculated after (8.12) that the perturbations have 4 scalar, 4 vector,
and 2 tensor degrees of freedom. Subtracting the number of gauge degrees of free-
dom, we now see that the 6 physical degrees are divided into 2 scalar, 2 vector and 2
tensor degrees of freedom. The gauge degrees of freedom are a nuisance in the sense
that we have to take them into account to be sure of the physical interpretation of
our solutions: we should not mistake gauge artifacts for physics. One way to do so is
to consider only gauge-invariant quantities, i.e. combinations of the perturbations
that do not change under gauge transformations. For example, B; — C; does not
change under a gauge transformation, and Cj; is gauge-invariant by itself. On the
other hand, we can use the gauge degrees of freedom to our advantage, because a ju-
dicious choice of €%, called a gauge choice, can considerably simplify the equations
of motion, as we will see.

8.1.3 Connection and Riemann tensor

To first order, the connection coefficients for the metric (8.3) are

1
Fgﬁ = ig’yu(aagﬁu + aﬁgua - 8;1.9046)

1
577%”(804]15# + aﬂhua - 8,uhaﬁ) . (827)

12
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In terms of the decomposition (8.3), we have

Y, ~ ¢ (8.28)
% ~ 0;¢ (8.29)
1 .

I =~ —5(3jwk + Okw; — hjk) (8.30)
60 ~ ; + 0;¢ (8.31)
i 1 1
jo = 5(6jwl- — @»wj + hij) (8.32)
, 1
;‘k o~ 5(6jhki + 8khij — aihjk) , (8.33)

we have not divided h;; into the traceless part 25;; and the trace —61).
The corresponding Riemann tensor is
Rogys =~ %ﬁyfg}; - Uauﬁérf;g
1
o~ 5(8755ha5 — 678ah5/3 — 0508ha~y + 853ah75) , (8.34)

The gauge transformation (8.15) leaves the Riemann tensor unchanged. This can
be seen straightforwardly by substituting (8.15) into (8.34) to get

R0575 - R:lﬂfyé = Raﬂ'yé . (835)

This is analogous to how the gauge transformation A, — A, = A, + 9,0 in elec-
tromagnetism leaves the field strength Fy,3 = 0,43 — d3A, unchanged.
The Riemann tensor can be written as

1. : :
Rojor = 5(95hot + dihoj — Gohij — 9idjhao)

~ 0,016+ %(@-wl + Opg) — %'flﬂ (8.36)
Rojii ~ %(@ﬁjhoz — %ok + Orhij — Ohyy)

= %(@cajwl — O10jwi) — %(&chlj — Oyhuj) (8.37)
Riji  ~ %(akajhil — OkO;hy; — 010;hix, + 010;huj) (8.38)

The Ricci tensor is

Raﬁ = nwéRﬂ/a&ﬁ

% (aaayfﬂﬁ + 8587h7a — Dhaﬁ — aaagh) , (8.39)

12

where [0 ~ n®8 0,03. The Ricci scalar is

R =~ 1%Rup ~ 0,05h*" —Oh , (8.40)
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so the Einstein tensor is

1
Gop =~ Raﬁ_gnaﬁR

1
5(8a67h75 + 8567h7a - Ga(?gh — Dhaﬁ - 7704/38785]176 + Uaﬁmh) . (8.41)

12

In terms of the decomposition (8.3), the Einstein tensor reads
Goo =~ 2V + 9;0;8% (8.42)
Coy = —5 VPt 00t + 2050 + " (8.43)
Gij =~ (0V* = 0,0;) (¢ — ) + 20,53 + ;060"
5 O + D) — ISy + (068" + 0;5%5) — 5,005 | (3.44)

where V2 = 6”8@6]

8.1.4 Equation of motion for particles

Let us first consider the equation of motion for particles (the geodesic equation) and
then the equation of motion for the metric (the Einstein equation). Take a particle
moving on timelike geodesic with tangent vector u®. Its four-momentum is

p® = mu® = (E,p') , (8.45)
where m is mass, F is energy, and p’ is three-momentum. We can write the three-
momentum as

dat dat

p=m ar E at Ev' (8.46)

where we have used the relation E = mu® = m%.

The geodesic equation is

0 = uBV,guo‘

d o
= %+ngu’8u7

dp®
ar P

(&7

d
- E% +19. %7, (8.47)

X m

where we have again used £ = mu® = m%. Moving the connection coefficients to

one side and dividing both sides by E, we get

a By
W7o PP (8.48)

dt MR
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The component o = 0 gives, inputting connection coefficients from (8.28)—(8.30),

dE op” / i
— _FO pp = _F80E - 2F81E’U2 — F?jE’UZ/U]

dt -~ Y% E
. . 1. o
=—-F I:(b + 20° i) — (aiwj — thj>’ul'l)]:| . (8.49)
For the components a = i we get
dp’ . PP i A R
dt = —FQBT = — OOE — 2F0JE'U — F]kE’U v

= —E[&gb + w; + (ajwi — &-wj + hij)vj
1 )
+§(8jhki + 8khij — 8ihjk)’l)]1}k . (8.50)

This form of the geodesic equation suggests identifying the connection coefficient
terms as forces due to gravitational fields living in Minkowski space. In addition to
the field ¢ that is the only contribution in the Newtonian case, we have the extra
scalar field v, vector field w and tensor field h;j. Their physical meaning is more
transparent if we introduce the gravitoelectric and gravitomagnetic vector fields

Gi = —0ip—w;

H = %oy, (8.51)
or, in three-vector notation,

G = —V¢-u

H = Vxo. (8.52)

In terms of the fields (8.52), the generalisation (8.50) of Newton’s law of gravity
reads

dp? . A | )
TZ =F|G"+ (ai’wj — iji)v] — hz‘j’l)] — 5(8jhki + 8khji — 6ihjk)vjv’“]
. .. . . 1 .
= E(Gz + EUkUij) - F hijU] + i(ﬁjh;ﬂ + akhﬂ — ﬁihjk)vjvk] s (8.53)
—_———
G+oxH

where we have used the relation
vx H= eijkaHk = eijkeklm v Owp, = v Ow; — v 0jw; . (8.54)
—
Ekij€klm:6iléjm_6im6jl

The force law (8.53) can be compared to the electromagnetic Lorentz force, which
we discussed in chapter 1:
dp

5 = ¢(E+7x B), (8.55)
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and the gravitoelectric and gravitomagnetic fields G and H can be compared to the
electric and magnetic fields:

:—Vgp—jf
=VxA, (8.56)

o =

where we have written A% = (i, A?).

We see that hgg and hg; affect particle motion in the same way as the electro-
magnetic scalar and vector potential, respectively. Gravity couples to the energy F
instead of the electric charge q. The perturbation hgg alone gives the Newtonian
force, with the difference that it couples to £/ and not m. The time derivative of h;;
contributes at the same linear order in v* as hg;, and its spatial derivatives contribute
at quadratic order in v’

In order to quantify the different terms, we need the magnitude of the different
perturbations for a realistic source, so we have to solve the Einstein equation.

8.1.5 Equation of motion for the metric

In the components of the Einstein tensor (8.42)-(8.44), various combinations of the
metric perturbations and their derivatives appear. We can simplify these compo-
nents considerably by choosing a convenient gauge, such as the transverse gauge,
defined by the gauge conditions

ow' =

287 = 0. (8.57)

Let us first show that we can simultaneously impose these conditions. We have
available four functions £, and (8.57) has four conditions, so naively seems possible
that we can impose them. However, not all four conditions can be imposed with the
gauge transformations, so we have to show that there exists a vector £% such that
(8.57) holds. The conditions are easiest to handle in terms of irreducible variables
defined in (8.12).

The first condition reads

0 = 9;B"+V’B
= V’B, (8.58)

given that 9;B' = 0 by definition. The only solution to the equation V2B = 0 that
is non-singular everywhere and vanishes at spatial infinity is B = 0.
In terms of the irreducible variables, the second gauge condition in (8.57) reads

. 1 , 1 2
0 = 0Ciy; + 5@‘8101‘ + §V20j + gajVQC
2

3ajv20 , (8.59)

1

where we have taken into account that by definition 8'C;; = 0, 8'C; = 0. Applying
&7 to (8.59) and using §7C; = 0 gives V2V?C = 0. Again, the only solution that
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is non-singular everywhere and vanishes at spatial infinity is C' = 0. Using this in
(8.59) then gives V2C; = 0, which gives C; = 0. .
So we have to check whether it is possible to choose &, = (£, ;i + &) so that
B = C =0 and C; = 0. Starting from arbitrary coordinates where these functions
are not necessarily zero, under a gauge transformation they change according to
(8.21), (8.24) and (8.25) as
BB =B-¢(—¢&
C—-C=C-¢
Ci — Cll = Cz — éz . (8.60)
Requiring that in the new coordinates B’ = C" = 0 and C] = 0 gives the unique
solution ¢ = C, §g = B — C and & = C;. So it is always possible to choose the
transverse gauge, and it completely fixes the gauge conditions: there are no gauge
degrees of freedom left over.
In the transverse gauge, the Einstein equation Gng = 8mGNT,p simplifies con-
siderably:
V%) =~ 4nGNTh  (8.61)
Viw; — 497 ~ —167GNTp; (8.62)

w1
(6:;;V2 — 0;0;) (¢ — ) + 2857 — 5 (Oibj + Opuiy) =018y =~ 87GNTy; . (8.63)
We can split the 75 component into the trace and the traceless part:
v2(¢ — )+ 3¢ ~ AnGNOITy (8.64)
1 1
<35@V2 )((;5 1[)) DSU >~ 87TGN <T¢j — 35ij5lekl> .(8.65)

We can solve these equations straightforwardly one step at a time. First we solve ¢
from (8.61). We then input the result into (8.64) to solve for ¢ and into (8.62) to
solve for w’. Finally, we input all these results into (8.65) to solve for S;;.

The solution of (8.61) is

Y(t,x) = —GN/d3x’
Analogously, the solution of (8.62) is
/ 3 20N Toi(t,X') = 200t X)

[x — x|

Too(t,x")
x — x/|

(8.66)

W; (t, X) =

A3’

[x — x|

TOO(ta x")(z} — =)

/_X//‘3

1
= Gy 4T (t,x') — /d?’x//
s

] . (8.67)

|x
The solution of (8.64) is likewise
—GNOI T (1, X) + £ (t X)

[x — x|

T !
59T (t, %) /d3 4 Ootx)] .(8.68)

ot - vitx) = [ @

32’
= ‘GN/| <]
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We will discuss the solution for S;; later. Let us first look at the Newtonian limit,
now properly accounting for all of the metric perturbations.

8.1.6 Newtonian limit redux

The central assumptions of the Newtonian limit are weak fields and small velocities.
The energy-momentum tensor reads, in full generality,

Top = (p+ Pluaug + Pgas + 2qug) + lag
~ (p+ Pluaug + Pnag + 2qugy + lag (8.69)

where on the second line we have taken into account that the matter quantities
are assumed to be the same order of smallness as the metric perturbations (which
they source via a linear equation). Assuming that u; is also of the same order of
smallnes and using the normalisation gaﬁuauﬂ = —1, the components of the energy-
momentum tensor read

Too =~ (p+ P)ugug — P+ 2qoug + oo = p + 2q;u’ ~ p
Toi =~ (p+ Pluou; + qiuo + o = —g; — 1w’ ~ —g;
T ~ P(SZ] + 2(](in) +1IL; ~ P(S” + 1L (8.70)

where we have used g,u® = 0 and Haguﬁ = 0 to solve for gy and Ily;, and have kept
the leading cross-terms between the velocity and the matter variables, but dropped
cross-terms between matter variables and metric perturbations. If we assume that
all matter contributions except the energy density are negligible, we get

Too =~ p
To; ~ —pu;
T, ~ 0. (8.71)

The solution for ¢ from (8.66) is now the same as in Newtonian physics, except
that the source is the energy density, not the mass density,

b(t, x) ——GN/d3 LX) (8.72)

[x — x|

In this limit, the difference between ¢ and ¢ is generated solely by w If the density
varies slowly in time, so does ¢, and ¢ ~ ).

The solution for w; in (8.67) has two parts, one generated by pu; and the other
by p. If the second contribution is small, we get

(t, x)ug(t
wi(t,x) ~ —4Gx /d3 Zl ’f{ “}E,’X). (8.73)

In the Newtonian limit, the vector perturbation w’ is suppressed by one factor
of velocity compared to the the scalar perturbations i and ¢. In the geodesic
equation (8.53), w' appears via a time derivative and coupled to the velocity. The
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contribution of w’ to the equation of motion is therefore additionally suppressed
beyond the suppression of w® over ¢ and ¢.

Let us now come back to S;;. In the approximation we have adopted, its equation
of motion reduces to

0S; =0 . (8.74)

This is a wave equation. Unlike all the other metric perturbations, S;; does not
vanish in the absence of matter, but propagates at the speed of light. Note that in
the transverse gauge S;; = C;;, so S;; contains only the physical two tensor degrees
of freedom. Let us take a closer look at these gravitational waves.

8.2 Gravitational waves

8.2.1 In vacuum

Let us consider the perturbed metric in the case when the energy-momentum tensor

is zero. The equations of motion then give ¢ =1 =0, w; = 0, and

B 9%S;;
ot?

0= DSz'j = + VQSZ'J' . (8.75)
This is a wave equation whose solutions are waves moving at the speed of light. The
general solution is a linear combination of waves with all possible null wavevectors

ke,
Sij(t, &) = Re{ / d%’éij(l%”)eikéxa} : (8.76)

Note that kaz® = k - & — kt, where k = |k|. Inserting (8.76) into (8.75), we get the
null condition k,k'* = 0. For a monochromatic wave with wavevector k, we have

Sij(K) = 6@ (K — k)sq; (), so
Sii(t, ) = Re{sij(é)ei@f—k”} . (8.77)

Because S;; is symmetric, s;; = sj;. Because S5 is traceless, 5% s = 0. The equation
(8.75) has been derived in the transverse gauge, and the gauge condition 9;S% = 0
means k‘isij = 0. Let us choose the z-axis to point in the direction of k. The matrix
s;j then reads

. 511(@ s12(k) 0
sij(k) = [ s12(k) —s11(k) 0] - (8.78)
0 0 0

From the 5 degrees of freedom of a general traceless symmetric 3 x 3 matrix,
the transverse condition removes 3, leaving us with 2, which is the right number of
physical tensor degrees of freedom, as discussed earlier. Of the 10 degrees of freedom
in the metric, only 6 are physical, and only 2 propagate, the other 4 are given by
constraints.
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The gravitational wave is analogous to the electromagnetic wave. A photon is
described by a vector field and is hence a spin 1 particle. However, because of gauge
invariance, it has only 2 degrees of freedom (a general spin 1 particle has 3). A
gravitational wave corresponds to a spin 2 particle®, which in general can have 5
degrees of freedom, but in GR it has only 2, because of invariance under general
coordinate transformations. In both cases, in the transverse gauge the field oscillates
orthogonal to the direction of propagation. Let us now look more closely at these
oscillations, i.e. at the polarisation of the gravitational wave.

The metric perturbation corresponding to a gravitational wave propagating in
the z-direction with wavenumber k can be written as

0 0 0 O
-\ 0 h+ h)( O _
hop(t, @) =2 0 hy —h, 0 coslk(z —t)], (8.79)
0 0 0 0

where the polarisation modes h, hy depend on k, and the reason for the notation
4+, x will become clear soon.

8.2.2 Effect on matter

Let us now look at how gravitational waves affect matter. Consider massive test
particles affected only by gravity. Their motion is given by the geodesic equation:

0 = uBVBUO‘
= #4+T4,i%7 . (8.80)

Because the only non-zero metric perturbation is S;;, and St =0, 9;87 =0, only
connection coefficients with at least two spatial indices are non-zero, to first order in
perturbation theory. (This can be checked explicitly from (8.28)—(8.33).) Therefore
the combination I'3 %47 includes either one or two factors of . So if we consider
particles that are initially at rest, their initial acceleration is zero, and they stay at
rest.* By the same token, their proper time equals coordinate time, z° = t.

So the solution to the equation of motion for test particles initially at rest is
simply 20 = ¢, 2 = constant. However, this does not mean they are unaffected by
the gravitational wave. Their proper distance oscillates as the wave passes through,
even though the coordinate distance is unaffected.’

3 This propagating perturbation of the spacetime could be called a graviton. However, more

often the word graviton is only used to refer to a perturbation of the quantised gravitational
field.

A plane wave has infinite extension, so there is no time when it would not have have crossed our
test particles. But real waves are wave packets with finite extension, and the same reasoning
applies.

Similarly, in the spatially homogeneous and isotropic FLRW model the proper distance between
observers who stay at constant coordinate position increases or decreases as the universe ex-
pands or contracts.

ot
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Consider particles on the zy-plane (z = 0). For a gravitational wave with polar-
isation hy (i.e. hx = 0), the metric is

—1
B 1 + 2h4 cos (kt)
Jab = 1 — 2h cos (kt) (8:81)
1
The proper distance at coordinate distance x in the z-direction is
X
L, = / dzy/g11
01‘
~ / dz[l + h4 cos (kt)]
0
= z[l + hy cos (kt)] . (8.82)
Similarly, the proper distance in the y-direction is
L, = y[l—hycos(kt)]. (8.83)

The area element on the zy-plane is unchanged, as [1 + 2hy cos (kz — kt)][1 —
2hy cos (kz — kt)] ~ 1.

So a gravitational wave with polarisation hy expands and contracts the z- and
y-directions concurrently in such a way that the area remains constant. This is the
reason for the label +.

Finding the effect of a wave with polarisation hy is a bit more complicated,
because in the coordinate system we used, the metric is not diagonal. We can first
rotate the coordinate system so that the metric is diagonal, calculate the proper
distance and then rotate back. Rotation of the xy-plane is the transformation

z' — 1 = R'al (8.84)
where the rotation matrix is

Ri(0) = <COSH _Sin9>. (8.85)

sinf cos@

Here the index ¢ takes only the values 1 and 2. We could include the z-coordinate
and use a 3 x 3 matrix, but since the action is on the zy-plane, this would only be
extra notation with little benefit. As usual, the metric transforms with the inverse
matrix, which in this case just has —6 in place of 6, so

{(—0)R(—0) g

—0)
J(=O)Ri(=0) (611 + ha)
= i+ RN (—0)R'j(—0)hyy (8.86)

9ij = 9i; = R* (—
_ Rk (_
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Let us write the transformation in matrix form, considering a general polarisation
(and taking into account R'; = (R™1);%). In matrix notation, h — RhR™%:

h+ h/><
hX _th
cosf —sin@\ (hy hy cosf sind
sinf  cos# hyx —hy)\—sinf cosf
~ [(cos? —sin?@)hy — 2cosfsinbhy  2cosfsinbhy + (cos? O — sin O)hy
~ \2cosfsinOhy + (cos? —sin®O)hy  —(cos?§ — sin® O)hy + 2 cos O sin Ohy
_ [cos(20)hy —sin(20)hy  sin(26)hy + cos(26)hy
— \sin(20)hy + cos(20)hyx  — cos(20)hy + sin(20)hy
[ —sin(20)hyx  cos(20)hy
N ( cos(20)hyx  sin(20)hy )’ (8.87)

where on the last line we have specialised to the situation hy = 0. We see that
if cos(20) = 0 and sin(20) = —1, the x polarisation is transformed into the +

polarisation. This corresponds to § = —7.

In the transformed coordinate system, the proper length between the origin and
the ring of dust particles in the 2’ and 3/ directions is

Ly = 2'[1+ hy cos (kt)]
Ly = o[l — hycos(kt)] . (8.88)

We now rotate the directions ' and 3’ back to the original directions with the
inverse transformation, R';(—0) = R';(})

A Rij (%) 2/

_ (cos T —sinf) (2
sin§  cos % vy
_ 11 =1\ [
VAN WAV
_ i o — y/
\/5 w/ + y/
= (5) . (8.89)

Combining this and (8.88), we find that the proper distance in the z-direction oscil-
lates as
L, = —=(Ly—Ly)

[1+4 hy cos (kt)]z" — —=[1 — hyx cos (kt)]y/’

N

/ / 1 / /
(@ =)+ ﬁ(:v +y')hx cos (kt)
= 1+ yhy cos (kt) . (8.90)
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Similarly, we get
L, = y+axhycos(kt). (8.91)

Again, the area element is unchanged, as det(d;; + h;j) ~ 1 to first order. The
hx polarisation stretches the directions diagonally: the distance in the x-direction
stretches/contracts as the y-coordinate grows, and vice versa. This is the reason for
the label x.

8.2.3 Generation

Let us now discuss how gravitational waves are sourced by matter. As we have to
consider other components of the metric in addition to Sj;, it is more convenient to
use a gauge other than the transverse gauge. Consider the Einstein tensor (8.41).
We can simplify it by switching to a different variable, namely the trace-reversed
perturbation

1
hag = hap = 5hnag - (8.92)

It follows that h = no‘ﬁﬁaﬁ = —h, so

_ 1_
hag = hapg — §hnaﬁ . (8.93)

The relation between Eag and h,g is the same as the relation between the Einstein
tensor G\ng and the Ricci tensor R,g. In terms of h,g, the Einstein tensor reads

1 _ _ _ _
Gop = 3 (030ah"s + 00,17 0 = Map0:0577° = D) (8.94)

i.e. we have eliminated terms proportional to 7,3. So far, we have not made any
gauge choice. If we impose the condition

D =0, (8.95)

then (8.94) simplifies to
1 -
Gag ~ —iDhQﬁ s (896)

The coordinate system where condition (8.95) holds is called the Lorenz gauge
after the similar gauge in electromagnetism. Let us show that it is possible to
impose this condition. As the Lorenz gauge condition is written in terms of the full
perturbation h,g rather than the components split into scalar, vector and tensor
parts, it is easier to consider the gauge condition covariantly rather then in terms of

the irreducible variables. Under the gauge transformation (8.15), hap transforms as
hap = g = has = Sas = Epa + Maps 1y - (8.97)

So, let us assume that we are in a gauge where 9,h®° is arbitrary and show that
there exists a choice of £€* that brings it to zero:

0ah® = 0ah'®? = 0uh*? — 0" =0 . (8.98)
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The equation 067 = 9,h*? always has a solution, so we can choose the Lorenz gauge.
In contrast to the transverse gauge condition, the Lorenz gauge condition does not
fix the gauge completely. We can still shift the gauge functions as £€% — £“ 4+ (¢ as
long as LI¢* = 0.

We are now left with only one term in the Einstein tensor (8.94), and the Einstein
equation reads

Ohap = —167GNTap - (8.99)

Note the consistency of the gauge condition (8.95) with the continuity equation
9a T = 0. This equation can be solved as readily as the Poisson equation, with
the result

B (trct) X,)

P (t,x) = 4GN/d3x’T K—x| (8.100)
where tyo = t—|x—x'| is the retarded time. We could add an arbitrary solution of
the homogeneous wave equation, but we are here interested in the waves generated
by matter, and so demand that the metric perturbation vanishes when the energy-
momentum tensor vanishes.

In contrast to the solutions of the Poisson equation, here the integration is not
over a spatial hypersurface of constant time, but over the past lightcone. The
gravitational wave signal at our location is determined by the sources with a time
lag corresponding to the distance times the speed of light. As far as the equations
are concerned, we could equally well use the advanced time t,q, =t + |x — x/| in
the solution, corresponding to integrating over the future lightcone. As usual, we
discard such signals that move backward in time, demanding that null geodesics can
only be travelled in one direction. (As noted earlier, we do not know why this the
case in GR any more than in electromagnetism.)

Let us now simplify (8.100). We first show that we need to consider only the ij
components, because the others can be solved from the gauge condition (8.95). The
1 components of the gauge condition are

0 = 0ah® =h% 4+ 8;h7" | (8.101)
from which we solve

t
Rt %) = a'(%) — / dt'o;p?' (¢, 7) | (8.102)

where a'(Z) is an arbitrary function of the spatial coordinates. The 0 component of
the gauge condition gives

0 = 0,7 =h% 4 9;h0 (8.103)
so we get
t
ROt %) = a(Z) - / dt'o;h?° (', 7)

t
= a(¥) — tdha'(F) + / dt'9;0;h" (¢, %) , (8.104)
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where a(Z) is an arbitrary function of the spatial coordinates.

We see that the gauge condition does not quite allow us to determme the compo-
nents hoo from hlj One possibility is that the functions a¢ and a® might correspond
to gauge degrees of freedom — recall that we are still allowed to do gauge trans-
formations where the gauge function £% satisfies [0 = 0. However, with such
transformations we cannot get rid of a and a’, so in general they correspond to
physical degrees of freedom. This is simple to see: the relation between a’ and £
is linear, so (J¢* = 0 means we can only eliminate o’ if Oa’ = V2a’ = 0, which is
only possible if a’ = 0, and similarly for a. So a and @’ are physical parts of the
solution. However, because a and a’ depend only on the spatial coordinates, they
cannot describe waves. Because we are considering wave solutions, we can set them
to zero.

Having established that it’s enough to consider only h%, let us simplify the
expression for it. First, we assume that the source region where 7% # 0 has compact
support, and its size is small compared to its distance from the observation point Z.
This allows us to write

. T (tret, X'
RU(t,x) = 4Gy / dz /|><(t>;|)
4G
~ TN/d?’ "T (treg, X) | (8.105)

where r is the distance from the observer at & to the centre of the observation re-
gion. This approximation is excellent for all sources of gravitational waves that can
be observed in the foreseeable future. They are at astrophysical or cosmological dis-
tances from us®, and the sources have sizes comparable to the radii of compact stellar
remnants or Schwarzschild radii of black holes (kilometers to billions of kilometers).

We can further simplify the expression by replacing the spatial components with
time components using the continuity equation 9,7% = 0. The procedure is similar
to writing hoe in terms of hl] above, here we just go in reverse. Consider the integral

/ Ba(T*27) / BaT™* ol + / 32T (8.106)

The left-hand side is a total derivative, so it can be written as a boundary integral
via Gauss’ theorem. As the source region is compact, the boundary term vanishes,

and we get
/d3$Tij = —/d?’a:Tikvkxj

= / d?2T™ oz’

d
— d3 T’LO 7
dt v
1d 3 i0,.j 50,
= g | ¥ (T2 +17°") (8.107)

6 The closest source of directly detected gravitational waves so far, event GW170817, was about

100 million light years from us. In the next decade, we will be able to detect gravitational
waves from sources only some thousands of light years away.
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where in the second equality we have applied 9,7 = 9yT% + 8jTji = 0, and on
the last line used the fact that since 7% is symmetric, we can explicitly symmetrise
the left-hand side. We can now repeat the same trick to get rid of the remaining
spatial index in the energy-momentum tensor:

/d3ZL‘<T0kZL‘iZL‘j> L= /dgacTOk,kwixj +/d3ZC(TOi.Z‘j —i—Toj:L‘i) : (8.108)

The left-hand side vanishes for the same reason as before, so the right-hand side
gives

/d?’a:(TOixj —i—TOja:i) = —/d3xT0k7kxix7 = /d?’xToopxixj , (8.109)

where on the second line we have used 9,7*° = 9T 49, T*° = 0. Inserting (8.109)
into (8.107), we get

. 1 d2 o
/d3a:T“ = Sa2 P72 . (8.110)
For sources moving at non-relativistic velocities, 7% ~ p. Inputting this result into
(8.105), we get the final expression for the metric perturbation:

gy 2GN d? i
h(t,x) = a2 d®a/p(t, x' )" " s (8.111)

This is the quadrupole formula for gravitational radiation.

8.2.4 Sourced by two rotating masses

As an example, let us consider a source that consists of two masses M moving at
constant angular velocity w on opposite sides of a circle with radius a, illustrated
in figure 2. This simple setup could model a physical object, like a dumbbell, or an
astrophysical binary system. It gives a good first approximation for the amplitude
and frequency of the gravitational waves emitted by real black hole binary systems
during their inspiral phase.”

Let us choose coordinates so that the masses move on the xy-plane, with positions

Zo(t) = (—1)"a(cos[wt], sin[wt], 0) |, (8.112)

where n = 1, 2 labels the masses. The energy density is thus, modelling the masses
as point particles (a fair approximation as long as their size is much smaller than
their distance from each other)

p(t, &) = MY 5[F — Zn(t)] . (8.113)

The eccentricity of a black hole binary system decreases faster than its energy, so circularity
is a good approximation for mature black hole binaries.
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X (R perd)

x3
Figure 2: Binary system setup.
The quadrupole formula (8.111) gives
o 2GNM d2 S~ .
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(t,%) r dt? Il
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AGNM d? o
= (2} 1)
rode? t tret
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G e (cos@ww su2et) 0
st

cosl2w(t —r)]  sin[2w(t—7)] O
_ W sin2w(t — )] —cos2w(t—r)] 0], (8.114)
0 0 0

where 7 = |Z|.

We cannot straightforwardly apply the interpretation of gravitational waves dis-
cussed in (8.2.2) to this result, because there we used the transverse gauge (9;5% = 0)
and here we have used the Lorenz gauge (9,h*° = 0). We have

20,8 = 0;h"
1
= Ol — 5590;h . (8.115)
If the observer is on the z-axis, then r = z, so 9;h% = 0. It then follows from Lorenz

gauge condition that an_ = 0, as we see from (8.102) and (8.104). Because the
solution (8.114) satisfies h?; = 0, it follows that 9;S% = 0. So on the z-axis we can
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Figure 3: The first direct gravitational wave signal detected. The upper two panels
show the amplitude as a function of time at the two observation sites at Hanford
and Livingston, the third panel shows the residual after subtracting the model,
and the bottom panels show the frequency as a function of time. (Source: https:
//arxiv.org/abs/1602.03837).

. . . . 2 2
identify (8.114) as a plane wave with angular frequency 2w, amplitude %

and right-handed circular polarisation. For an observer off the z-axis, we have to do
a gauge transformation from the Lorenz gauge to the transverse gauge.

Exercise. Show that the wave (8.114) is circularly polarised, i.e. particles at
constant coordinate position on the zy-plane move in a circle in the clockwise direc-
tion as seen from the direction of the positive z-axis.

The first direct gravitational wave detection was made by the LIGO experiment
on September 14 2015. The physical idea is simple: a light wave is split in two
and sent down two 4 km long tunnels that are orthogonal to each other, reflected
back at the ends, and then the phases of the waves are compared. Interferometry
allows for extremely accurate measurement of changes in length (not the length
itself) along the two tunnels. If gravitational wave passes through, the lengths of
the two tunnels change in a different way. To reduce errors, there are two detectors
3 000 km apart, which also allows to measure the time lag between gravitational
wave detection (varying from zero to 0.01 seconds, depending on the direction of the
wave). The source of the first gravitational wave was a black hole binary system.
Each black hole had mass 30M, and the distance to the system was 1 billion light
years. The signal is shown in figure 3.


https://arxiv.org/abs/1602.03837
https://arxiv.org/abs/1602.03837
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Exercise. Find the frequency and the amplitude of the gravitational waves
emitted by the system detected by LIGO as a function of A (defined below). Take
the black holes to be on a circular Newtonian orbit with radius r = Arg, where rg is
the Schwarzschild radius and A > 1. Take the orbit to be on the zy-plane, its center
to be at the origin and the observer to be on the z-axis. Approximate the black
holes as pointlike and non-rotating, and neglect the expansion of the universe.

In 2017, a Nobel prize was awarded for the LIGO detection. The observation
started a boom of gravitational wave studies both on the theoretical and obser-
vational side. As we mentioned in chapter, the fourth observational round of the
combined LIGO-Virgo-KAGRA gravitational wave detector network is ongoing, with
10-15 candidate detections per month. The next generation experiment LISA will
consist of a trio of satellites 2.5 million km apart, co-orbiting the Sun with the
Earth. LISA is due to be launched in 2035 by the European Space Agency ESA in
collaboration with the United States space agency NASA.

However, before direct detection, gravitational waves had already been observed
indirectly from the energy loss due to their emission. Let us calculate it.

8.2.5 Energy-momentum pseudotensor

Gravitational waves are a first order perturbation of the metric. Their effect on the
system emitting them is a second order effect. Second order perturbation theory
can get a bit involved, but we will be able to avoid most complications, as we are
mainly interested in finding the effective energy-momentum tensor of the gravita-
tional waves. The energy it carries is then equal to the energy lost by the system. If
we can deduce the amount of energy lost by the system from observing its dynamics,
we can determine the energy of the emitted waves, which fixes a combination of their
amplitude and frequency.

We have already remarked that we treat metric perturbations as fields living
in Minkowski space. From this point of view, the gravitational wave is just a spin
2 field, which carries energy like all matter fields. However, because of coordinate
invariance, it is impossible to localise the energy carried by a gravitational wave. At
any point in spacetime, we can make the metric flat and its first derivative zero. To
find the energy of gravitational waves, we have to average over several wavelengths.
Let us first derive the local quantity that we would like to identify as the energy-
momentum tensor and then average it.

Recall our perturbative calculation of Mercury’s orbit and bending of light by the
Sun. We first solved for the background, and then the background solution provided
a source term for the first order perturbation. Here we have a similar setup, but
at second order: the first order perturbation provides a source for the second order
perturbation. The metric is

Gop = T + hag = Nag + his) + BS) (8.116)

«

where h((llg is the first order perturbation we have been dealing with so far, and hfﬁ)

is the perturbation it sources; 1 > \hsg\ > ]hfﬁ)\ Correspondingly, the Ricci tensor
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is
Ras = R (D) + RO (hE) + RE)(hD) (8.117)

=0 =0

where we have not written down the background Ricci tensor, as it is trivially

zero. The first term ng(hgl,)) is the part of the Ricci tensor that is linear in the

perturbation (given in (8.39)), evaluated with the first order perturbation h,(}) The

second term R&lﬁ)(h,(f,,)) is the same linear Ricci tensor (8.39), but evaluated with the

second order perturbation hf,,). Finally, R((fﬂ)(h/(}l,)) is the part of the Ricci tensor

that is quadratic in the perturbation, evaluated with the first order perturbation

K.

We solve the Einstein equation R,3 = 0 order by order. The first order equation
is the same as before, R%(hﬁ,}) = 0, and gives the solutions we have discussed. The
second order equation has two terms whose sum is zero, so we have

R (2) = —RE)(h

o (i) aa (W) - (8.118)

ny

In terms of the Einstein tensor, this reads

GO = RYMAE) — Snasmd R (h2)

ap\uy 9 ¥o \ Ty
2 1 2
= R + 570 B (L)
= 8nGNtag » (8.119)

where on the last line we have defined the energy-momentum pseudotensor ¢z,

— 1 2) (1) L 5 () 1 (1)
tas = _87TGN Raﬁ(hwj)_inaﬁnw Rv& (h,uu) . (8120)

The second order perturbation h,(f,,) is sourced by the square of the first order pertur-
bation, and we treat the the source term as if it was an energy-momentum tensor of
matter. Physically we have the small first order ripples in spacetime, which lead to
smaller second order ripples due to the non-linearity of the Einstein equation. The
division we have made between the genuinely second order term and the square of
the first order terms is not gauge-invariant. In general, terms that are the square
of a first order term in one gauge may be part of the linear second order term
in another gauge. Also, recall that ¢,3 is not a tensor in the full spacetime, as
the split between background and perturbations is gauge-dependent. Only the sum
9o = Nas + hSﬁ) + hfﬁ) is a tensor, not the individual parts.

Nevertheless, in a given gauge, t,g functions like an energy-momentum tensor in
sourcing hg,), and also (after averaged over several wavelengths) in determining the
energy carried by gravitational waves.

We get R&Qg(hm,) by inserting gns = 708+ hap into the definition of the Ricci ten-
sor and expanding to second order. There are quite a few terms, but the expression
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simplifies considerably by choosing a convenient gauge. We adopt the Lorenz gauge
I h™? = 0, where fzalg contains both the first and the second order perturbation.
In vacuum, we can simultaneously impose the gauge conditions h(1) = 0, ESO) = 0.
(Exercise. Show this.) We saw that for the binary system we considered, this
happens automatically in the Lorenz gauge, but it applies more generally. In these
coordinates, we get the rather simple result (note that to first order, Baﬁ = hag)

1 1
R (hw) = 1 0aD3hy + L Oal Dghy + O h¥ 0Dl
v 1 v
—h* @La(ahﬁ)y + iau(h“ Oyhag) (8.121)
Consider the continuity equation. In order to interpret ¢,43 as an effective energy-

momentum tensor, ¢,3 should vanish when contracted with the covariant derivative.
Let us check this.

0 = VoG
= 0,G*P +T8,G" + T8 Gon
~ 9,G*
= 9GO (MG) + 9GO (M3)) + .G P ()
= 0GP () + 0.6 () | (8.122)

where on the third line we have taken into account that as the background Einstein

tensor as well as G(l)aﬁ(hf}y)) vanishes, there are no cross terms with the connection
coefficients at second order. Applying (8.119), we have

1

167GN
where on the second line we have used the result Gsﬂ)(hw) = —%DEW given in
(8.96), and on the third line we have applied the Lorenz gauge condition.

The only thing left is to average t,g to get something that corresponds to mea-
sured energy and momentum flow. We will not go into the details of the averaging
process. The important thing is that as the wave is periodic (and for real systems,
contained in a tube of finite spatial width), any total derivatives can be transformed
into boundary terms that vanish. Let us denote the averaging by (). Averaging

Rg%g)(hgly)), we have from (8.121)

Ot = 9, GMB(p2)y = —

WG ) .00 =0, (8.123)
N

RO 9,850 L)) + ~ (Bah W sh (D) + (9117 0,k )
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where we have used partial integrations, taking into account that total derivatives
can be discarded, and used the equation of motion th}l,) = 0 and the gauge condition

GMh(l)“l‘ = 0. Let us calculate the corresponding Ricci scalar,

(ROnD)) = R 1L))
1

= _Z<naﬁaah(1)uvaﬁh£13>

1
— Z@aﬁaaaﬁh(UWhL%
= 0, (8.125)

where we have again used Dh,(},,) = 0. So we get the simple result that the energy

and momentum carried by a gravitational wave are described by the pseudotensor

(tap) = 32WGN<8ah<1)“”aghL9). (8.126)

As an example, consider a monochromatic wave described by the perturbation
hsﬂ) = sqpcos(kyz’) . (8.127)

Choosing coordinates such that the z-axis points in the k direction, we have k% =
(w,0,0,w), i.e. ko = (—w,0,0,w), so

1 , :
(tap) = msws“ kak/g<81n2(k7x’y)>
1 0 0 -1
w? 0 00 O
. T 4
iz 0 00 o] (8.128)
-1 0 0 1

where on the last line we have taken into account that the average of sin® x over a pe-
riod is % This has the same form as the energy-momentum tensor of monochromatic
electromagnetic radiation.

8.2.6 Enmnergy loss

Now that we have the energy-momentum pseudotensor in hand, we can find how
much energy a gravitational wave source emits. The power radiated per unit time
t through a spherical surface S at distance r away from the source is the inte-
gral of g,n® over the surface, where g, is the energy flux and n® is the radial
unit vector normal to the surface. Looking at the decomposition of the energy-
momentum tensor (8.69) (or equation (4.10)) we get (taking into account uan® = 0)
qan® = —Ta[guo‘nﬁ = —Ty,. We can consider this in terms of the continuity equa-
tion 9,7 = 0. As discussed in section 4.1.2, taking the component 8 = 0 and
integrating over a spatial volume, we see that the power at which the source loses
energy is % [d32Too = — [dSnT% = [ dSn'Tp;. We now have (t,g) in place of
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T,p, so the rate at which the system loses energy can be calculated by integrating

over the two-sphere of radius 7 centred on the source®:

dE ;
E = /SdS<t01>n

= 72 / dQ(to,)

7,2

— 0 Wuvg pd) 192
o | Ao nL) (5.129)

where we have input the result (8.126) for (¢,3). Now we want to express the
gravitational wave in terms of the source properties. The quadrupole formula (8.111)
can be written as

h (%) = 2fN JE(t,x) (8.130)
where JgT is the traceless transverse part of the inertial tensor I;;,
Jij = 35”5“Ikl , (8.131)
where
Lij = /d%c'p(t,x’)x/ix/j s (8.132)

There are three differences compared to our earlier result (8.111): we have replaced
Bij with h;j, taken out the trace of J;; and added to it the superscript 77", for
traceless and transverse. These additions are due to the extra conditions we imposed
when deriving .3, namely h() =0 and h(()g = (0. With these conditions, Baﬂ = hag,
and hg;) is traceless and transverse, 9;h(V4 = (.

Before looking at the transverse condition, let us simplify (8.129). We have

2 2
ol = 2T, GNa JIT
2GN T 2GN “TT
= 2 ‘]zJ , ‘]ij
2GN .-'TT
~ SN (8.133)

where on the second line we have used the fact that for any function f we have
Orf(t —r) = —00f(t —r), and on the last line we have assumed that 1/r gives a
stronger suppression than an extra time derivative (for real sources, this is an excel-
lent approximation).

Putting these results into (8.129), we get

dE GN ..TTA....TT
— = Q Y 134
i = e [aaTTe T, (8134)

8 This is obviously minus the rate at which energy is passing through the two-sphere.
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Now we should implement the traceless transverse projection and take the integral
over the solid angle. The wave propagates in the radial direction, so the transverse
condition 9;AM¥U = 0 reduces to hg:) = 0. This can be implemented with the
projection operator

Pa,B = MNap —NaNng , (8135)

We have earlier used the tensor g.g + uqug to project orthogonally to the time
direction u®. The tensor P,g similarly projects orthogonally to the radial direction
n®. (Note that n* = z'/|Z|.) It satisfies

P, P7g = P%. (8.136)
We only need the spatial part, P;; = d;; — n;nj. The traceless transverse projection
of a spatial tensor A;; is

1
ALT = PkiPlekl—EP,-ijlAkl. (8.137)

It is necessary to subtract the trace part even in the case of tensors that are explicitly
traceless, because the projection could otherwise spoil the property. The contraction
of two transverse traceless projected tensors is

” 1 ) . 1 L
AETATTl] = (Pkiplj - ZR]PM> A (lepjn — 2PmnPU> A™Mn
1 L.
— <Pkmpln + ZPijP”Pklen — P“Pmn> Ap A
1

where we have on the last line taken into account PijPij = 2. Averaging this over
all directions, we have (assuming that A;; does not depend on direction, which is a
good approximation far away from the source)

1

- dQATTATTZJ
A K
kl gmn 1 1
= A%A Z dQ (5km - nknm)(éln - nlnn) - 5(5kl - nknl)((smn - nmnn)
78
1 1
_ AklAng /dQ [5km6ln — Ok — Ol MM, —+ annlnmnn] , (8.139)
7I

where we have on the last line assumed that A is traceless.

The average of n;n; over the unit sphere is zero unless ¢ = j. (This is easy to
see by parity: any component n; has the opposite value on opposite sides of the
hemisphere.) If i = j, all components give the same result by rotational symmetry,
SO ﬁ [ dQnn; = %51-]-, given that 5ijninj = 1. By similar reasoning, average over
nEnnmny, gives zero unless all indices are paired off, and since all directions are
equivalent, we have

1
E /dannmmnn = N(éklémn + OpnOrm + 6km5m) s (8.140)
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where NN is a constant. Contracting with dz;0,,, gives 1 on the left-hand side and
15N on the right-hand side, so N = . With these results, (8.139) gives

1 .9 .

1 [ A0AGTATTY = S A AT (8.141)
Setting A;; = JZ] and inputting this into (8.134), we have the final result for the
power radiated by the gravitating system, expressed in terms of its inertial tensor,

dE NI
& _ENyE 8.142
- NIy, (3.142)
where () stands for averaging over a few periods corresponding to the wavelength of
the wave.
For the two-mass system discussed in section 8.2.4, we get (Exercise. Show
this.)

dE  128GNM*a*W’
at 5
128GN M2a*wb
S a— (8.143)

where on the second line we have restored the speed of light for easy calculation in
SI units. For example, two 1 kg balls rotating 2 m from each other with angular
frequency 1 rad/s give off gravitational radiation with power 7 x 107°2 W,

Change of orbital parameters due to gravitational wave emission from the Hulse—
Taylor pulsar was first observed in 1978. A Nobel prize was awarded for it in 1993.
This was the first detection of gravitational waves, albeit indirect.

Exercise. Consider the binary black hole system discussed at the end of section
8.2.4.

b) Approximating that the orbit remains circular, find the decay of \ as a function
of time due to gravitational wave emission.

b) What is the lifetime of the system —defined here as the time to reach A =1,
where our approximation must break down— if the initial radius is 1) one astronom-
ical unit or 2) 10737 How close do the black holes have to start from in order to
merge within 10'° years?

c¢) Find the velocity as a function of A. Given that we use Newtonian orbits, is
there a point before A = 1 when the approximation is no longer reliable?

d) What is the total radiated energy (from the initial radius to A = 1) in cases
1) and 2), in units of M7
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