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5 The Schwarzschild solution

5.1 The Schwarzschild metric

5.1.1 Deriving the metric

A large number of exact solutions of the Einstein equation have been found over
the years. The first to be discovered (apart from the trivial Minkowski space) is the
Schwarzschild solution, derived by Karl Schwarzschild in December 1915 (and
published in January 1916), only a month (two months) after the November 1915
publication of the Einstein equation by Einstein and the Einstein–Hilbert action by
Hilbert. The Schwarzschild solution is the general spherically symmetric vacuum
solution of GR. It is central in the study of the gravity of astrophysical objects such
as planets, stars, and black holes.

Let us derive the solution. If a (four-dimensional) metric is spherically sym-
metric, there exists a two-dimensional hypersurface that is conformal to the unit
two-sphere and orthogonal to the other two directions. So, adopting coordinates
(t, r, θ, φ), we can write the metric as (recall that gαβ = eα · eβ)

ds2 = −A(t, r)dt2 +B(t, r)dr2 + 2C(t, r)dtdr + e2δ(t,r)(dθ2 + sin2 θdφ2) , (5.1)

where 0 < θ < π, 0 ≤ φ < 2π as usual for the two-sphere. The area of the two-
sphere is S = 4πe2δ(t,r). We now choose a new radial coordinate r̃ defined so that
the area of the two-sphere is 4πr̃2, i.e. r̃ ≡

√
S/(4π) = eδ(t,r). In three-dimensional

Euclidean space, it is a result that the area of a two-sphere is 4πr2, where r is the
proper distance from the centre to the sphere. Here we have only made a coordinate
choice, and we have not yet determined the relation of r̃ to the proper distance. We
now drop the ˜ and simply denote the new radial coordinate by r.
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5.1 The Schwarzschild metric 72

Having fixed the radial coordinate, we can still change the time coordinate to
simplify the metric. Under the transformation t → t̃(t, r), we have

dt → dt̃ = ˙̃tdt+ t̃′dr , (5.2)

where dot denotes ∂t and prime denotes ∂r. The metric (5.1) becomes

ds2 = −A ˙̃t2dt2 + (B −At̃′2 + 2Ct̃′)dr2 + 2 ˙̃t(C −At̃′)dtdr

+r2(dθ2 + sin2 θdφ2) . (5.3)

The function t̃(t, r) is so far arbitrary. We now demand that gtr = 0, i.e. choose t̃ in
such a way that t̃′ = C/A. The only coordinate freedom left in the function t̃ is then
t̃ → t̃+D(t̃), where D(t̃) is an arbitrary function. This corresponds to the freedom
to redefine the time coordinate as function of itself. Dropping the ,̃ we can now
write the metric as (because the metric is diagonal, we have gtt < 0 and grr > 0)

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2(dθ2 + sin2 θdφ2) . (5.4)

We have exhausted the freedom to fix components of the metric using coordinate
transformations (apart from the choice of D(t), still left open). The functions α(t, r)
and β(t, r) are determined by the equation of motion.

The non-zero connection coefficients corresponding to the metric (5.4) are

Γ0
00 = α̇ Γ0

01 = α′ Γ0
11 = e−2(α−β)β̇ (5.5)

Γ1
00 = e2(α−β)α′ Γ1

01 = β̇ Γ1
11 = β′ (5.6)

Γ1
22 = −re−2β Γ1

33 = −re−2β sin2 θ (5.7)

Γ2
12 =

1

r
Γ2
33 = − sin θ cos θ (5.8)

Γ3
13 =

1

r
Γ3
23 =

cos θ

sin θ
. (5.9)

The corresponding non-zero components of the Riemann tensor are

R0
101 = (β̈ + β̇2 − α̇β̇)e−2(α−β) − α′′ − α′2 + α′β′ (5.10)

R0
202 = −rα′e−2β (5.11)

R0
303 = sin2 θR0

202 (5.12)

R0
212 = −rβ̇e−2α (5.13)

R0
313 = sin2 θR0

212 (5.14)

R1
212 = rβ′e−2β (5.15)

R1
313 = sin2 θR1

212 (5.16)

R3
323 = sin2 θ(1− e−2β) , (5.17)
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so the non-zero components of the Ricci tensor are

R0
0 = (β̈ + β̇2 − α̇β̇)e−2α −

(
α′′ + α′2 − α′β′ +

2

r
α′
)
e−2β (5.18)

R0
1 = −2β̇

r
e−2α (5.19)

R1
1 = (β̈ + β̇2 − α̇β̇)e−2α −

(
α′′ + α′2 − α′β′ − 2

r
β′
)
e−2β (5.20)

R2
2 = R3

3 =

(
−1

r
α′ +

1

r
β′ − 1

r2

)
e−2β +

1

r2
. (5.21)

The Einstein equation in vacuum is Gαβ = 0, which is equivalent to Rαβ = 0.
(We take the cosmological constant to be zero. We will later consider the case when
it is non-zero.) As we noted in the chapter 4, not all components of the Einstein
equation are independent as far as the functional degrees of freedom are concerned,
as they are related by the contracted Bianchi identity ∇αGαβ = 0. (They are
independent if we count the number of degrees of freedom at a point.)

We start with the simplest equation: equating the component (5.19) to zero
gives β = β(r). Equating the components (5.18) and (5.20) to zero and subtracting
them from each other gives α′ = −β′, i.e. α(t, r) = −β(r) + E(t), where E(t) is an
arbitrary function. We now redefine the time coordinate as dt̃ = eEdt and drop the
tilde. (In other words, we use the freedom to choose D(t) to put E = 0, without
loss of generality.) The only thing left to determine is the function β(r). It’s easiest
to solve β(r) from the component (5.21), because it involves only first derivatives.
Equating it to zero gives

2β′r = 1− e2β , (5.22)

so we get ∫
dr

r
= 2

∫
dβ

1− e2β

=

∫
dx

x(1− x)

=

∫
dx

(
1

x
− 1

x− 1

)
, (5.23)

where we have used the change of variables x ≡ e2β ⇒ dβ = dx/(2x). Integrating
and solving for x, we get x = e2β = (1− rs/r)

−1, where rs is an integration constant
with the dimension of length.

We thus obtain the Schwarzschild metric:

ds2 = −
(
1− rs

r

)
dt2 +

1

1− rs
r

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (5.24)

The metric is uniquely determined up to the single constant rs, called the Schwarzschild
radius. For r ≫ rs, the difference between the metric (5.24) and the Minkowski



5.1 The Schwarzschild metric 74

metric in spherical coordinates is δgαβ ≃ rs/r for α = β = t, r, and 0 otherwise. The
difference approaches zero as r → ∞, so the spacetime is asymptotically flat.

The value of rs is fixed by the Newtonian limit. For the perturbed Minkowski
metric discussed in chapter 4, a spherically symmetric Newtonian mass M creates a
metric perturbation equal to −2 times the Newtonian potential, i.e. 2GNM/r. We
thus identify rs = 2GNM .1 This identification is the definition of mass in GR for a
spherically symmetric source. We can also say that a sphere around the centre with
r > rs has total energy M . This can be generalised to a general asymptotically flat
spacetime: we can look at how fast the metric falls off at infinity and identify the
coefficient of the 1/r term as 2GNM . If there is an energy flux coming to asymptotic
infinity, the mass defined this way will decrease accordingly, so that the mass plus
escaped energy stays constant. (We will consider such an energy flux when we discuss
gravitational waves in chapter 8.) Note that if we defined energy by projecting the
energy-momentum tensor onto an observer’s four-velocity uα and integrating over
the hypersurface orthogonal to uα (assuming it exists), the result would instead be
zero, because the spacetime is empty everywhere where the metric (5.24) applies.
For astrophysical objects like planets and stars, the metric does not apply below
their surface, since the spacetime is not empty there. Matching the solution that
describes the matter-filled region with the outside Schwarzschild metric will show
that the mass of the matter inside the region corresponds to M (with subtleties
related to the definition of gravitational binding energy, which we will not consider
here).

It is remarkable that the metric (5.24) has an extra symmetry that was not
assumed: the metric is independent of time, which together with the property g0i = 0
means that the spacetime is static. (We will define the property of being static
in a coordinate-independent way when discussing symmetries in chapter 9.) This
result has been given its own name: the fact that a spherically symmetric vacuum
solution is static is called Birkhoff’s theorem. So a spherically pulsating mass
distribution has no effect on the spacetime outside it. The only information that
can be measured from the outside (using gravity) is the mass. This result is stable
to small perturbations: if a spacetime is nearly spherically symmetric and nearly
empty, it is close to the Schwarzschild solution.

The tt component of the metric (5.24) vanishes at r = rs, while the rr component
diverges. This means that the coordinates do not apply at r ≤ rs. So the range for
the radial coordinate is rs < r < ∞, while the solution is eternal both to the past
and the future, −∞ < t < ∞. To get an idea of the relevant radial scale, consider
the Schwarzschild radius for the Earth and the Sun:

Earth M⊕ = 5.98× 1024 kg rs⊕ = 0.886 cm

Sun M⊙ = 1.99× 1030 kg rs⊙ = 2.95 km . (5.25)

If the radius of the object is larger than rs, the vacuum solution ceases to apply
before we get to rs. If this is not the case it is not obvious from the metric (5.24)

1 In chapter 4 we used Cartesian coordinates, where all directions were perturbed, here we
use spherical coordinates such that the angular directions are not perturbed. So we should
transform to the same coordinate system to compare the metric perturbations. The result of
our sloppy argumentation is, however, correct. (Exercise. Show this.)
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whether the spacetime ends at r = rs. After all, for Euclidean space written in
spherical coordinates, gθθ and gφφ both vanish at r = 0, but this does not mean
that the point r = 0 would be physically special, although it is true that we cannot
continue the manifold beyond it. We will see that for the Schwarzschild metric the
situation is the opposite: the radius r = rs is physically special, but we can continue
the spacetime beyond it.

5.1.2 Including the cosmological constant

Including the cosmological constant, the vacuum Einstein equation reads

Gα
β + Λδαβ = 0 ⇔ Rα

β = Λδαβ . (5.26)

Therefore the results β = β(r) and α = −β, which were derived from the 01 com-
ponent and from the difference between the 00 and 11 components are unchanged,
only the form of β(r) changes. The result is (Exercise. Show this.)

ds2 = −
(
1− rs

r
− Λ

3
r2
)
dt2 +

1

1− rs
r
− Λ

3 r
2
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (5.27)

When Λ > 0, this is called the de Sitter–Schwarzschild metric, because it
reduces to the Schwarzschild metric when Λ = 0 and to the de Sitter metric when
rs = 0. In the Newtonian limit, the cosmological constant introduces a potential
that rises like r2, corresponding to a linearly growing force. Such a term can be
incorporated into Newtonian gravity, and was in fact considered by Isaac Newton.

In the case Λ > 0, the radial coordinate is bounded not only from below, but
also from above (by approximately

√
3/Λ when

√
3/Λ ≫ rs). We will discuss

the physical meaning of this in chapter 9 when we consider maximally symmetric
spacetimes, including de Sitter space. We take Λ = 0 for the rest of this chapter.
Let us now look at the physical structure of the Schwarzschild metric.

5.1.3 Spatial structure

Let us consider the hypersurface of constant time. Its induced metric is

ds2 = gijdx
idxj =

dr2

1− rs
r

+ r2dθ2 + r2 sin2 θdφ2 . (5.28)

The hypersurfaces where both t and r are constant are two-spheres, by construction.
The proper distance along a radial line (radial lines are geodesics, as it is easy to
see) from radial coordinate r1 to radial coordinate r2 is

L =

∫ 2

1
ds =

∫ r2

r1

dr√
1− rs

r

=
√
r2(r2 − rs)−

√
r1(r1 − rs) + rs ln

√
r2 +

√
r2 − rs√

r1 +
√
r1 − rs

> r2 − r1 , (5.29)
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Thus, while the circumference of a sphere is 2πr and its area is 4πr2, its volume
is larger than 4

3πr
3, because the proper distance from the centre to the sphere is

larger than r. This is an expression of the fact that the space is non-Euclidean. We
could have chosen the proper distance along a radial line as the radial coordinate
(i.e. adopted grr = 1), or defined the radial distance so that we get the same volume
as in the Euclidean case. The coordinate-invariant statement is that the volume of
a sphere in the Schwarzschild spacetime is larger than in Euclidean (or Minkowski)
space, if the surface area is equal. The lesson is that there are different ways to
generalise the spherical coordinates used in the Euclidean case to a non-Euclidean
space.

In the limit r1, r2 ≫ rs the distance (5.29) reduces to L ≈ r2− r1+
1
2rs ln(r2/r1).

The distance does not reduce to the Euclidean case for radial coordinates far away
from the Schwarzschild radius. The extra term can be sizeable if the difference
between r2 and r1 is large (in units of rs). Even though the space becomes flatter
with larger r, the residual curvature has an effect if we consider points far enough
apart.

Let us now consider the cut of the three-dimensional space along the equator,
θ = π

2 . (Because of rotational symmetry, all hypersurfaces where both t and θ are
constant are identical.) The metric of the equatorial plane is

ds2 = gijdx
idxj =

dr2

1− rs
r

+ r2dφ2 . (5.30)

Exercise. Show that the equatorial plane has the geometry of a two-dimensional
surface in three-dimensional Euclidean space that you get by starting with a parabola
lying sideways off the z-axis and rotating it around the z-axis. Find the equation
for this surface in the cylindrical coordinates (r, z, ϕ).

5.1.4 Time dilation

Consider a line with (r, θ, φ) = constant. The infinitesimal proper time interval
along the line is

dτ =

√
1− rs

r
dt < dt . (5.31)

So the coordinate time t is the proper time measured by observers at constant
(r, θ, φ) in the limit r → ∞, when the spacetime is flat. The proper time measured
by an observer at constant (r, θ, φ) at finite r is smaller: clocks closer to r = rs
run slower. This is an example of gravitational time dilation. The deeper you
are in the gravitational well, the slower time passes. This effect grows without
limit when approaching the Schwarzschild radius. From (5.31) it looks as if time
stood still at r = rs, but recall that the metric we have used does not apply there.
While time dilation does not exist in Newtonian theory, a closely related effect, the
gravitational redshift, can be understood in Newtonian terms.
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Figure 1: Light emission and reception at fixed spatial points E and R, respectively.

5.1.5 Gravitational redshift

Let us look how the frequency of light changes as it travels in the Schwarzschild
metric. Without extra effort, we can do the calculation for a general static metric
(∂tgαβ = 0, g0i = 0),

ds2 = −|g00(xk)|dt2 + gij(x
k)dxidxj , (5.32)

of which the Schwarzschild metric is a special case. We want to find the relation
between the proper time intervals measured by an emitter sitting at constant spatial
coordinates xiE and a receiver sitting at constant spatial coordinates xiR, as illus-
trated in figure 1. Observers at constant spatial coordinates are called stationary.
In the geometrical optics approximation, light travels on null geodesics, ds2 = 0.
Therefore the coordinate time that elapses between emission and reception is

tR − tE =

∫ R

E

√
gij(xk)

|g00(xk)|
dxidxj

=

∫ λR

λE

dλ

√
gij(xk)

|g00(xk)|
dxi

dλ

dxj

dλ
, (5.33)

where the spatial coordinates along the path are xi(λ). Consider now a signal sent
at tR + δtR and received at tE + δtE . Because the integrand does not depend on
time, and the spatial positions of the observer and receiver do not change, the result
is the same, tR + δtR − (tE + δtE) = tR − tE , so δtR = δtE . So the coordinate
time interval between two wavecrests is the same as the receiver and the emitter.
For a stationary observer, the relation between proper time and coordinate time is
dτ =

√
|g00|dt, so

δτR
δτE

=
fE
fR

=
EE

ER
=

√
|g00(xR)|
|g00(xE)|

=

√
1− rs/rR
1− rs/rE

, (5.34)



5.2 Geodesics 78

where on the last line we have applied the Schwarzschild metric (5.24). Here f is
the frequency and E is the energy of the light wave.

So just as clocks deeper down run slower, the wave frequency is larger. If a signal
is sent from rR to rE > rR, it will arrive with less energy than it had when it was
sent. Correspondingly, a signal sent down into the gravitational well arrives with
more energy than it had initially. This phenomenon is familiar from the Newtonian
physics of massive particles: a particle loses kinetic energy when climbing up from
a gravitational well, because its kinetic plus potential energy is conserved. In the
limit r ≫ rs, we in fact recover the Newtonian result quantitatively if we identify
the initial energy with mass (but note that we consider light, not massive particles):

EE − ER

EE
≃ GNM

(
1

rE
− 1

rR

)
. (5.35)

5.2 Geodesics

5.2.1 The geodesic equation

Let us look at geodesic motion of both massive and massless particles (i.e. time-
like and null geodesics) in the Schwarzschild geometry. As discussed in chapter
3, geodesic equations are easily obtained from the variational principle with the
Lagrangian L = 1

2gαβẋ
αẋβ. For the Schwarzschild metric (5.24) we have

L = −1

2

(
1− rs

r

)
ṫ2 +

1

2

(
1− rs

r

)−1
ṙ2 +

1

2
r2θ̇2 +

1

2
r2 sin2 θφ̇2 , (5.36)

where ˙≡ d
dλ , and λ is an affine parameter along the geodesic.

The Euler–Lagrange equation is

d

dλ

∂L

∂ẋα
− ∂L

∂xα
= 0 . (5.37)

This shows that if the Lagrangian does not depend on the coordinate xα, the quan-
tity ∂L

∂ẋα is conserved along the path, an application of Noether’s theorem. In
particular, the Schwarzschild metric is independent of the time t, so we have

∂L

∂ṫ
= −

(
1− rs

r

)
ṫ = constant ≡ −k . (5.38)

The constant k is related (we will later see precisely how) to the energy of the
particle, and also determines (together with rs/r) the time dilation ṫ. In Newto-
nian mechanics, energy is conserved because the Hamiltonian (and therefore the
Lagrangian) is independent of time. In GR, we get a similar conservation law along
a geodesic for any static metric.

The Schwarzschild metric is also independent of the angle φ, so we get another
conserved quantity:

∂L

∂φ̇
= r2 sin2 θφ̇ = constant ≡ h . (5.39)

This quantity corresponds to the conserved angular momentum per unit mass in
Newtonian mechanics.
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Let us now look at the θ component of the Euler–Lagrange equation. We have

∂L

∂θ
= r2 sin θ cos θφ̇2 (5.40)

∂L

∂θ̇
= r2θ̇ . (5.41)

Inserting these into (5.37) gives

θ̈ +
2

r
ṙθ̇ − sin θ cos θφ̇2 = 0 . (5.42)

If we choose coordinates such that that the initial particle location and velocity lie
on the equatorial plane, θ = π

2 , θ̇ = 0, the above equation shows that θ = π
2 at all

times. (That geodesic motion is confined to a plane is obvious from the spherical
symmetry, but it’s nice to see how it comes out from the equations of motion.) We
now choose such coordinates.

The radial component of the equation of motion remains. We have

∂L

∂r
= −1

2

rs
r2

ṫ2 − 1

2

rs(
1− rs

r

)2 ṙ2r2 + rφ̇2 (5.43)

∂L

∂ṙ
=

ṙ

1− rs
r

. (5.44)

Inserting these into the Euler–Lagrange equation (5.37), we get the radial equation
of motion:

r̈ +
1

2

(
1− rs

r

) rs
r2

ṫ2 − 1

2

rs

1− rs
r

ṙ2

r2
−
(
1− rs

r

)
rφ̇2 = 0 . (5.45)

We can now solve ṫ from (5.38) and φ̇ from (5.39) and insert them into (5.45) to
get an ordinary differential equation for one unknown r(λ). However, this equation is
second order and non-linear, making it difficult to solve. It is often easier to instead
use the extra condition on ẋα that arises from the normalisation of the four-velocity.
We have (with uα = dxα

dλ as usual)

gαβu
αuβ = −

(
1− rs

r

)
ṫ2 +

1

1− rs
r

ṙ2 + r2φ̇2 =

{
−1 for a timelike curve

0 for a null curve
, (5.46)

where in the timelike case we have taken λ to be the proper time τ .
Let us first look at some simple cases, before analysing the leading GR corrections

to the motion of Mercury and motion of light in the Solar system.

5.2.2 Circular motion

Consider circular motion, i.e. take ṙ = 0. The radial equation of motion (5.45)
reduces to

1

2

rs
r2

ṫ2 − rφ̇2 = 0 , (5.47)
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which gives, writing rs = 2GNM ,(
dφ

dt

)2

=
GNM

r3
. (5.48)

Over one period ∆φ = 2π, so

(∆t)2 =
4π2

GNM
r3 . (5.49)

This is similar to Kepler’s third law: the square of the orbital period is proportional
to the third power of the radius. Kepler’s law of course holds also for elliptical orbits,
and we here consider only circular orbits. Another difference is that t here is the
coordinate time, which equals the proper time measured by a stationary observer at
asymptotic infinity. The proper time interval measured by an observer at finite r is
∆τ =

√
1− 2GNM/r∆t.

We haven’t specified whether the orbit is timelike or null. Consider now the
proper time measured by an an observer on a timelike orbit. Combining (5.47) with
the normalisation condition (5.46) gives

∆τ =

√
1− 3GNM

r
∆t = 2π

√
r3

GNM

(
1− 3GNM

r

)
. (5.50)

The orbital period goes to zero as r approaches 3GNM = 3
2rs. There are no circular

timelike geodesic orbits closer than this to the Schwarzschild radius. The spacetime
is so curved that geodesics will turn and spiral towards the Schwarzschild radius. It
is still possible to move on a circular non-geodesic curve by applying sufficient force.
If we consider a stationary observer hovering above the Schwarzschild radius (such
an observer is non-geodesic), the proper period they measure is

∆τhov = 2π

√
r3

GNM

(
1− 2GNM

r

)
. (5.51)

Note that this is longer than the proper period measured by a geodesic observer.
Timelike geodesics give a local maximum of the proper time between two points,
but not necessarily the global maximum. Here the worldline of a stationary (and
thus accelerated) observer is not a small perturbation of the worldline of a geodesic
observer.

What about null geodesics? Combining the equation of motion (5.47) with the
normalisation condition (5.46) in the null case, a solution exists only for r = 3GNM .
Above this radius photon trajectories are not sufficiently curved to remain in orbit,
below it photons spiral down towards the Schwarzschild radius just like massive
particles.

5.2.3 Radial motion

Let us now look at radial motion, i.e. φ̇ = 0. Considering first timelike motion,
combining energy conservation (5.39) and the normalisation (5.46) gives

1

2
(k2 − 1) =

1

2
ṙ2 − GNM

r
. (5.52)
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Comparison to Newtonian equations shows that (k2− 1)/2 corresponds to the New-
tonian total energy per unit mass. (In this analogy, there is no energy associated
with the mass of the particle, i.e. no rest energy.) If k ≥ 1, the particle can escape
to infinity, whereas solutions with k < 1 represent gravitationally bound particles.
As the equation (5.52) has exactly the same form as in Newtonian theory, the solu-
tions are identical in terms of the proper time. The only difference comes from the
distinction between proper time and coordinate time.

As we know from the Newtonian theory, a bound particle falls down to any radius
smaller than the initial radius (in this case to the Schwarzschild radius, where our
coordinate system ends) in a finite time. To find how this looks to an observer
at fixed spatial coordinates, let’s find coordinate time as a function of coordinate
radius for a particle dropped from r = r0 > rs with initial zero velocity. (The
particle can also be initially heading up, in which case r0 is the maximum radius it
reaches before turning around.) Using (5.52), we can determine the constant k in
terms of the initial condition r0:

1

2
ṙ2 = GNM

(
1

r
− 1

r0

)
, (5.53)

i.e. k2 = 1− 2GNM
r0

. The coordinate time in terms of the coordinate radius is

dt

dr
=

dt

dτ

dτ

dr
=

ṫ

ṙ
, (5.54)

so inputting ṫ from the energy constraint (5.38) and ṙ from (5.53), the coordinate
time to fall from coordinate radius r0 to the Schwarzschild radius rs is

∆t =

√
r0 − rs

rs

∫ r0

rs

dr
r3/2√

r0 − r(r − rs)

>

√
r0 − rs

rs

r
3/2
s√

r0 − rs

∫ r0

rs

dr
1

r − rs

= ∞ . (5.55)

The gravitational time dilation between the time t measured by stationary observers
at asymptotic infinity and stationary observers at a finite radius larger than rs is
finite. However, an infalling observer reaches the Schwarzschild radius in a finite
time according to their own clock, while from the point of view of an observer sitting
still, the infalling observer never reaches the Schwarzschild radius, approaching it
ever more slowly. Because the redshift grows without limit when approaching the
Schwarzschild radius, the infalling observer is lost to sight in a finite time: beyond
some point, they no longer have enough energy to send up signals that can be
observed (assuming outside observers have a limit on how small energy signals they
can detect).

Let us now consider null geodesics. The energy constraint (5.38) and the nor-
malisation (5.46) give

dr

dt
= 1− rs

r
, (5.56)
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so the time to fall from radius r1 to rs is

∆t =

∫ r1

rs

dr
r

r − rs
= ∞ . (5.57)

So like massive objects, light never reaches the Schwarzschild radius from the point
of view of a stationary observer outside. From their point of view, nothing can reach
rs (and nothing can come up from rs; we will look at this in the next chapter when
we consider coordinates that extend beyond rs).

Let us finally comment on the relation of (k2 − 1)/2 as a measure of energy to
the energy measured by an observer moving at four-velocity vα,2 E = −vαp

α, where
pα = muα, and m is particle mass. The quantity E depends on the observer. Let us
consider stationary observers, vi = 0. The normalisation condition −1 = gαβvαvβ
then gives v0 = −1/

√
−g00 = −

√
−g00 = −

√
1− rs/r, so we have, applying (5.38),

E

m
= −v0u

0 = −v0ṫ =
k√

1− rs/r
. (5.58)

This quantity depends on position, as it measures only the kinetic and rest energy
of the particle, unlike (k2 − 1)/2, which also contains gravitational energy (but not
rest energy), and which is defined as a constant of motion.

5.2.4 General non-radial orbits

Let us now consider general orbits where φ̇ ̸= 0. Except in the case ṙ = 0, which
we have already considered, they are curves parametrised by λ in effectively three
dimensions (t(λ), r(λ), φ(λ)), as the motion is on the equatorial plane. The curve
xα(λ) never intersects itself, as t(λ) is monotonic. If we project the trajectory on
the (r, φ) plane, we get a curve that can intersect itself. For a general curve, neither
r(λ) nor φ(λ) is monotonic, so they cannot be inverted. However, for trajectories
that do not change the rotation direction on the (r, φ)-plane, there is a function r(φ)
if we extend the range of φ from 0 ≤ φ < 2π to −∞ < φ < ∞. Let us consider such
trajectories and find the equation for the function r(φ).

We use the conservations equations (5.38) and (5.39) and the normalisation con-
dition (5.46), (

1− rs
r

)
ṫ = k (5.59)

r2φ̇ = h (5.60)

(
1− rs

r

)
ṫ2 − ṙ2

1− rs
r

− r2φ̇2 =

{
1 for massive particles

0 for photons
. (5.61)

Dividing (5.61) by φ̇2, we get

(
1− rs

r

)( ṫ

φ̇

)2

− 1

1− rs
r

(
dr

dφ

)2

− r2 =


1

φ̇2

0

. (5.62)

2 Not to be confused with uα, which is the four-velocity of the particle considered.
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Inputting now ṫ from (5.59) and φ̇ from (5.60), we get(
dr

dφ

)2

+ r2
(
1− rs

r

)(
1 +

{
r2/h2

0

})
− k2

h2
r4 = 0 . (5.63)

We can make the equation nicer by switching to the variable u ≡ 1/r (⇒ du =
−dr/r2) and multiplying by 1/r4 to get(

du

dφ

)2

+ u2 =
k2

h2
−

{
1/h2

0

}
+

{
rs/h

2

0

}
u+ rsu

3 . (5.64)

We can write this separately for timelike curves as(
du

dφ

)2

+ u2 =
k2 − 1

h2
+

rs
h2

u+ rsu
3 , (5.65)

and for null curves as (
du

dφ

)2

+ u2 =
k2

h2
+ rsu

3 . (5.66)

5.2.5 Precession of the perihelion of Mercury

The equation (5.65) provides a convenient starting point for evaluating GR correc-
tions to trajectories that are close to Newtonian. Let us first consider the timelike
case and bound orbits. In particular, we will look at the GR correction to the or-
bit of Mercury. Mercury is the closest planet to the Sun and therefore its orbit is
most affected by post-Newtonian effects. An observation of particular importance
is the change in the perihelion distance, i.e. the shortest distance from the Sun.
If a planet were to move under Newtonian gravity in the gravitational field of the
Sun alone (and the Sun were perfectly spherical), the orbit would be an ellipse,
and the perihelion distance would be the same for every period. GR effects change
this in two ways: they deform the shape of the closed orbit (such corrections are
periodic in φ), and also turn the orbit on the orbital plane so that it no longer
closes (such corrections are non-periodic in φ). The non-periodic corrections lead
to the near-ellipse rotating on the orbital plane, a phenomenon called precession.
This precession of the perihelion of Mercury is the first observational GR effect that
was calculated; Einstein did the calculation and compared to observation before the
publication of GR. Let us now do the same: unlike Einstein, we can start from the
exact Schwarzschild solution.

We consider a situation where the GR correction is a small perturbation to the
Newtonian solution. To that end, it is convenient to use the dimensionless variable

x ≡ 2h2u

rs
. (5.67)

In terms of x, the equation of motion (5.65) reads

x′2 + x2 =
4h2(k2 − 1)

r2s
+ 2x+

r2s
2h2

x3 , (5.68)
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where prime denotes derivative with respect to φ. We can simplify this equation by
taking a derivative with respect to φ:

x′′ + x− 1 = εx2 , (5.69)

where

ε ≡ 3r2s
4h2

. (5.70)

Notice that the dependence on the constant k has disappeared; it is encoded in the
extra initial condition that we have to provide now that the equation is second order
rather than first order.

The parameter ε is tiny for all Solar system orbits. To see this in a simple
manner, consider a circular orbit, x′ = 0. The equation (5.69) is then a quadratic
algebraic equation for x, with the solution

x =
1

2ε

(
1−

√
1− 4ε

)
. (5.71)

Inputting the definition of x in (5.67) into the definition of ε in (5.70), we get

ε =
3r2s
4h2

=
3rs
2xr

, (5.72)

so using (5.71) we get

3rs
2r

= εx =
1

2

(
1−

√
1− 4ε

)
. (5.73)

Taking into account rs/r ≪ 1, we get

ε =
3rs
2r

. (5.74)

Given that the Schwarzschild radius of the Sun is 2.95 km and the perihelion distance
of Mercury is 46.0×106 km, we have ε ∼ 10−7, so the approximation ε ≪ 1 is pretty
good. The orbit of Mercury is not quite circular, but taking the ellipticity into
account does not change the order of magnitude of ε.

The Newtonian orbit corresponds to ε = 0, and the post-Newtonian corrections
can be organised in a power series in ε. We consider the first order correction, and
write

x(φ) = x0(φ) + εx1(φ) . (5.75)

Inputting this into the equation of motion (5.69), we get (dropping terms higher
than first order in ε),

x′′0 + x0 − 1 + ε(x′′1 + x1) = εx20 . (5.76)

We first solve x0 from the above equation neglecting ε, and then use this solution
as the source term for ε. So (5.76) splits into two equations:

x′′0 + x0 = 1

x′′1 + x1 = x20 . (5.77)
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Let us first consider the background equation. It is linear, so the general solution
is the sum of the general solution of the homogeneous equation plus any one solution
of the inhomogeneous equation. One solution of the inhomogeneous equation is
simply x0 = 1, so we have

x0 = 1 +A cosφ+ Ã sinφ

= 1 + e sin(φ− φ0)

= 1 + e sinφ , (5.78)

where A and Ã are constants (as are e and φ0). Without loss of generality, we have
chosen the phase so that φ0 = 0 (we can rotate the plane), i.e. x0(0) = 1. We will
use this choice also for the full solution, x(0) = 1, so we also have x1(0) = 0.

The parameter e is called the eccentricity, and its value for Mercury is e =
0.2056. The perihelion distance is the smallest value of r, i.e. the largest value of x,
which is at φ = π

2 : x0 = 1 + e. Let us denote the perihelion distance by r−. From
the definition of x (5.67) we then get the value of h2:

h2 =
1

2
(1 + e)rs r− . (5.79)

Inputting the solution (5.78) into the first order equation (5.68) and using the result
(5.79) for h gives the constant k:

1− k2 =
1

2
(1− e)

rs
r−

. (5.80)

We can check that we have k < 1 for the bound orbit, as 0 ≤ e < 1 (because x0 > 0
in (5.78)).

This completes the solution of the Newtonian trajectory. Now let’s find the GR
correction. With the solution (5.78) for x0, the equation (5.77) for x1 reads

x′′1 + x1 = (1 + e sinφ)2 . (5.81)

First, as (5.81) is linear in x1, the general solution is again a sum of the general
solution of the homogeneous equation plus one solution of the inhomogeneous equa-
tion. As the perturbed homogeneous equation (5.81) is the same as the background
homogeneous equation (5.78), the general solution solution of (5.81) just adds a per-
turbation to the constants of the solution of (5.78), which can be absorbed into a
redefinition of e. So we only need a single solution of the inhomogeneous equation.
Let us change equation (5.81) into a form easier to solve. For e = 0, x1 = 1 is a
solution. So we write

x1(φ) = 1 + f(φ) cosφ , (5.82)

where the factor cosφ has been chosen so that f will drop out of (5.81), and only
f ′ and f ′′ will appear. We have

x′1 = f ′ cosφ− f sinφ

x′′1 = f ′′ cosφ− 2f ′ sinφ− f cosφ . (5.83)
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Inserting this into (5.81), we get

f ′′ cosφ− 2f ′ sinφ = 2e sinφ+ e2 sin2 φ . (5.84)

This is a linear first-order equation for f ′, which can be readily integrated. The
general solution for f is

f = −eφ+ C +D tanφ+
1

3
e2
(
cosφ+

1

cosφ

)
, (5.85)

where C and D are integration constants. The solution for the perturbation is thus

x1 = 1− eφ cosφ+ C cosφ+D sinφ+
1

3
e2
(
1 + cos2 φ

)
. (5.86)

The term D sinφ can be arbsorbed into a redefinition of the ellipticity e in the
background solution, so we drop it. The condition x1(0) = 0 gives C = −1 − 2

3e
2,

so we get

x1 = −eφ cosφ+ 1− cosφ+
1

3
e2 (1− cosφ)2 . (5.87)

The full solution is thus

x(φ) = x0(φ) + εx1(φ)

= 1 + e sinφ+ ε

[
−eφ cosφ+ 1− cosφ+

1

3
e2(1− cosφ)2

]
= 1 + e sinφ− eεφ cosφ+ ε(terms with a period of 2π) . (5.88)

The periodic correction terms correspond to deformations of the orbit that keep it
closed (orbit here referring to the projection of the curve (t, r, φ) onto the (r, φ)
plane). The first correction term, in contrast, prevents closure of the orbit, so the
planet comes to a slightly different position every period. This term is secular, the
deviation from the Newtonian prediction grows with every orbit, so it is easier to
detect than the periodic corrections – recall that ε ∼ 10−7.

The relative change of radius over one period is

r(2π)− r(0)

r(0)
=

x−1(2π)− x−1(0)

x−1(0)

= (1− 2πeε)−1 − 1

≃ 2πeε . (5.89)

As the perihelion distance of Mercury is 46.0× 106 km, the change in distance is 4.7
km (we put the numbers in below). However, traditionally the change is expressed
in terms of the change of the viewing angle, which is readily observable. Because ε
is small, we can write

x(φ) = 1 + e sinφ− eεφ cosφ+ (terms with a period of 2π)

≃ 1 + e sinφ cos(εφ)− e cosφ sin(εφ) + (terms with a period of 2π)

= 1 + e sin(φ− εφ) + (terms with a period of 2π) , (5.90)
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where we have used the relation sin(x+ y) = sinx cos y+sin y cosx. The first order
perturbative solution (5.88) is valid provided εφ ≪ 1, and since each period gives
2π, we get a limit on the number of periods n this approximation can handle as
10−72πn ≪ 1, which gives n ≪ 106. The orbital period of Mercury is 88.0 Earth
days, so the approximation becomes invalid after about 100 000 Earth years at the
latest. The change in the angular position of the planet over one period is

∆φ = 2πε

=
3

2
π
r2s
h2

=
3π

1 + e

rs
r−

≈ 3π

1 + 0.2056

2.95 km

46.0× 106 km

≈ 5.01× 10−7 rad

≈ 2.87× 10−5 ◦

≈ 0.103′′ . (5.91)

where we have inserted the definition of ε from (5.70) and the value of h2 from (5.79),
and on the last line expressed the change in terms of arcseconds. (One arcminute is
1/60th of a degree, and one arcsecond is 1/60th of an arcminute.) The change per
century is 0.103′′ × 100× 365/88 ≈ 43′′. The observed change is 575 arcsec/century,
of which 532 arcsec/century is due to other planets, leaving 43 arcsec/century to be
explained by GR.

So the GR correction matches the observations, but it is more accurate to call
this a postdiction rather than a prediction, because the extra precession was known
since 1859, over 50 years before it was explained by GR. Explanations of longstanding
observational anomalies can offer strong support for a new theory. First, if the
anomaly has been known for long, there has been time to minimise the role of
systematic errors in the observations. Second, if no one has found a convincing
explanation for decades, it is less likely that there is a simple alternative explanation.

In the case of the precession of the perihelion of Mercury, it was proposed that the
missing 43′′ would be explained by a new planet between the Sun and Mercury. This
was a well justified first hypothesis: if 532′′ is explained by other planets, why not
the whole 575′′? (These are the modern values, which are more accurate than those
in the 19th century, but the difference is not large.) Furthermore, it was these kind
of disturbances in the orbit of Uranus that had led to the discovery of Neptune in
1846. So the planet Vulcan was proposed. This explanation was quickly confirmed
by the observation of this new planet. However, as others failed to replicate the
observation (though further sightings of Vulcan were reported), doubts grew, and
the situation remained anomalous until GR explained the missing 43′′. Vulcan was
thus consigned to the dustbin of science (although it has enjoyed a successful career
in popular culture).

It is remarkable how straightforwardly GR explains the anomalous precession of
Mercury: we just take the spherically symmetric vacuum solution, consider timelike
geodesics that are close to Newtonian, and the correct result comes out. Unlike
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in particle physics, there is little room for small adjustments to GR: we could for
example allow for non-zero torsion and complicate the action by including torsion
terms, but this is a large change in the theory, and most such changes lead to
unstable and unviable theories.

Nevertheless, since the perihelion precession was known when GR was developed,
we could argue that it’s not a test of the theory, since if it had predicted something
else, a different theory might have been proposed. Predictions are important, and
the first new effect predicted by GR and observationally confirmed was the bending
of light.

5.2.6 Bending of light by the Sun

After the timelike case, let us now look at the GR correction to the trajectory of null
geodesics. The calculation is easier than in the timelike case, because the Newtonian
solution is just a straight line. We want to find out how much the light ray bends if
its shortest distance from the centre of the Sun (called the impact parameter) is
r0.

We start from the equation of motion (5.66). As in the timelike case, we define
a new dimensionless variable, z ≡ hu/k. The equation (5.66) then reads

z′2 + z2 = 1 + εz3 , (5.92)

where we have defined

ε ≡ k

h
rs . (5.93)

As in the timelike case, ε = 0 gives the classical trajectory. Let us find the value of
h/k on the classical trajectory in terms of the impact parameter r0. As the point of
nearest approach is a minimum of the distance, the derivative of the distance is zero
there. Putting z′ = 0 in (5.92) and approximating ε = 0 gives z = 1, i.e. r0 = h/k,
and ε = rs/r0.

In the Solar system, the ε term is a small perturbation, so we write

z(φ) = z0(φ) + εz1(φ) , (5.94)

where z0 is the classical solution. Inputting this ansatz into (5.92) and linearising
with regard to ε, we have

z′0
2 + z20 + 2ε(z′0z

′
1 + z0z1) = 1 + εz30 , (5.95)

so we get the equation of motion for the background and the perturbation:

z′0
2 + z20 = 1 (5.96)

2(z′0z
′
1 + z0z1) = z30 . (5.97)

We see immediately that the solution of the background equation is

z0(φ) = sin(φ− φ0) = sinφ , (5.98)
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where we have, without loss of generality, chosen the angular coordinate so that
φ = 0 corresponds to x = 0, i.e. r = ∞, so φ0 = 0. This solution is just a straight
line: y = r sinφ ∝ z−1 sinφ = 1.

Let us now turn to the perturbation. The same initial condition applies: z1(0) =
0, i.e. we choose φ0 = 0 to correspond to the initial direction of the full perturbed
light ray. Given the background solution (5.98), the perturbed equation of motion
is

sin3 φ = 2 cosφz′1 + 2 sinφz1

= 2 cos2 φ
d

dφ

(
z1

cosφ

)
, (5.99)

which can be rewritten as

d

dφ

(
z1

cosφ

)
=

1

2

sin3 φ

cos2 φ

=
1

2
sinφ

1− cos2 φ

cos2 φ

=
1

2

(
sinφ

cos2 φ
− sinφ

)
, (5.100)

which we can straightforwardly integrate to get

z1(φ) =
1

2

(
1 + cos2 φ

)
+A cosφ , (5.101)

where A is an integration constant. The initial condition z1(0) = 0 gives A = −1,
so the full solution is

z(φ) = z0(φ) + εz1(φ)

= sinφ+
ε

2
(1− cosφ)2 . (5.102)

The light ray comes in from the direction φ = 0. We want to know how much it
is bent by the Sun, i.e. to which direction it goes out. An unbent light way goes to
spatial infinity at φ = π. When perturbed, it will instead to go spatial infinity at
φ = π + α, where α ≪ 1. So, we have

0 = z(π + α)

= sin(π + α) +
ε

2
[1− cos(π + α)]2

≃ − sinα+ 2ε

≃ −α+ 2ε , (5.103)

where we have expanded to leading order in the small parameters α and ε. The
bending angle is thus to leading order

α = 2ε = 2
k

h
rs =

2rs
r0

=
4GNM⊙

r0
≤ 4GNM⊙

r⊙
, (5.104)
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where we have input h/k = r0 and taken into account r0 ≥ r⊙. The largest deflection
is for light rays that graze the surface of the Sun. Inputting r⊙ = 0.696 × 106 km,
we get α = 1.75′′.

Within GR, the bending of light is conceptually straightforward: light is elec-
tromagnetic waves described by the Maxwell equations, which (as we will discuss
in the next chapter) show that in the geometrical optics limit light travels on null
geodesics. In contrast, Newtonian theory is ambiguous on how light is affected by
gravity. Newton thought that light consists of small massive particles, just like ev-
erything else. In that case light falls in a gravitational field in the same way as other
massive particles, independent of how small the mass is. This leads to the deflection
angle α = 2GNM⊙

r0
, half the GR value. However, in 1801, Thomas Young published

his observations of interference of light, leading to the idea that light consists of
waves. This is not necessarily in contradiction with light being composed of massive
particles. For example, sound waves in air are the result of collective behaviour of
a large number of massive particles. But with the success of Maxwell’s electromag-
netism light became to be seen as consisting of electromagnetic fields which are not
reducible to massive particles, and in the context of quantum physics, light particles
are massless. In this case Newton’s theory is silent on how it light affected by gravity:
the equation F⃗ = ma⃗ says nothing about acceleration if m = 0. Massless particles
can be assumed to fall like massive particles, or not to be affected by gravity.

In the early years of the 20th century, there was a third contender for a theory
of gravity in addition to GR and Newtonian mechanics: Nordström’s scalar theory
of gravity discussed in chapter 2. In that theory, light is not affected by gravity.
So there were three predictions (or two predictions and one prescription – for the
Newtonian case): 1.75”, 0.874” and 0”. In fact, Einstein had in 1911 argued on
the basis of the equivalence principle that light should fall just like other matter,
predicting 0.874”. As the effect is small, the best chance to observe it is during an
eclipse, when it is possible to distinguish stars close to the Sun that are otherwise
obscured by its brightness (because of the incredible coincidence that we happen to
live in an era when the angular diameters of the Sun and the Moon are very close to
each other). One has to observe a pattern of stars close to the Sun during an eclipse
and measure the same stars afterwards far from the Sun and see how the pattern
changes: the stars closer to Sun are displaced more if light is bent by the Sun.

This prediction was due to be tested in the 1914 eclipse. Unfortunately for the
world but fortunately for the reputation of GR, the First World War broke out and
prevented this. In 1915 the full theory of GR was discovered and published, and
in 1916 Einstein made the correct prediction. The prediction was observationally
verified by two teams observing during the 1919 eclipse, one in Brazil and the other
in Principe, off the coast of West Africa. The results ruled out the Newtonian
value (whichever of the two you pick) and Nordström’s zero, and were in agreement
with the GR prediction. This was reported on the front pages of newspapers with
headlines such as “Lights All Askew in the Heavens: Men of Science More or Less
Agog Over Results of Eclipse Observation” and “Revolution in science: New Theory
of the Universe: Newtonian Ideas Overthrown”. GR was considered by many in
the science community to be confirmed (although doubts and debates lingered for
decades), and Einstein became the first science celebrity.
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Einstein highlighted the precession of the perihelion of Mercury, the bending of
light by the Sun and gravitational redshift as tests of GR. Together with the time
delay proposed by Irwin Shapiro, they are known as the four classical tests of
GR. These tests have confirmed GR (or rather the Schwarzschild metric + geodesic
motion) to a precision of 10−5. Today there is a plethora of evidence for GR, up to
and including direct detection of the precise pattern of gravitational waves emitted
by colliding black holes, and the bending of light due to gravity (called gravitational
lensing) has become a standard observational tool.

Exercise. Calculate the Shapiro time delay in the Schwarzschild solution.
A radar signal is sent from (r2, θ0, φ0) to (r1, θ0, φ0). The signal is immediately
reflected and travels back. Assume r2 > r1 > rs. Find the round-trip time ∆τ
measured by an observer at (r2, θ0, φ0). With the proper distance L between r2 and
r1 given in (5.29), we might naively expect the round-trip time to be ∆τ̃ ≡ 2L. This
is not the case, and the difference ∆τ −∆τ̃ is called the time delay. Show that for
r1 ≫ rs, the time delay is

∆τ −∆τ̃ ≈ rs

(
ln

r2
r1

− r2 − r1
r2

)
.

Explain the cause of the time delay.
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