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4 Gravitation

4.1 The Einstein equation
4.1.1 Geometrisation of Newtonian gravity

In the previous chapters, we set up the machinery to describe the curvature of man-
ifolds and established how it determines the motion of matter. We are missing one
piece: how is the curvature determined? We take the metric to be the fundamental
variable that describes spacetime geometry, so we need an equation of motion for
the metric, sourced by matter.

We want the equation of motion to be written in terms of tensors (i.e. defined
on the manifold), and we want it to be second order. Equations higher than second
order generally have violent instabilities, as the Hamiltonian will be linear instead
of quadratic in one or more of the canonical momenta. There do exist stable higher
derivative theories that extend GR, and they have been extensively studied. We will
only consider GR,, where the equation of motion is second order and linear in the
second derivatives. It is then linear in the Riemann tensor and has the form (part
of the Riemann tensor) = (matter source). The word “part” is key here. The entire
Riemann tensor cannot be locally sourced by matter. One reason is phenomenologi-
cal: for such an equation of motion, the curvature would vanish outside matter, and
there would be no gravity in vacuum, so the theory does not describe our world.
Another, more fundamental, reason is mathematical: the Riemann tensor has 20
independent components while the metric has 10. So only 10 components of the
Riemann tensor can enter into the equation of motion of the metric, otherwise it
will be overdetermined. (We will also have to factor in the feature that we have four
coordinate degrees of freedom.)

To get an idea of which part of the Riemann tensor to pick and why, it is
instructive to look at Newtonian gravity in terms of a manifold, in other words to
geometrise Newtonian gravity. The Newtonian equation of motion for a particle
under the influence of gravity alone is

d2at

0="75 +38Y99;¢ , (4.1)
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where ¢ is the gravitational potential. In chapter 3 we used the Euler-Lagrange
equations to obtain the connection coefficients by identifying the equation of motion
of a free particle with the geodesic equation. We will do the same here in the
Newtonian case, but now this is not just a calculational device, but a definition: we
demand that (4.1) agrees with the geodesic equation

A2 5 dx® dzf
0= + _—
dr? B dr dr

(4.2)

Equation (4.1) does not have a zero component. However, if Fgﬂ =0, then (4.2)

is just % = 0, which gives t = A7 + B. This is just the statement that Newtonian
proper time equals (up to a change of units and origin of time) coordinate time, i.e.
time is absolute. The spatial components give F}a =0 and

bo =070 . (4.3)

Inserting this into the definition of the Riemann tensor in (3.68), we find that its
only non-zero component is

Riojo = 0%¢ 4 . (4.4)

Contracting the first and the third index, we see that the only non-zero component
of the Ricci tensor is

Roo = V¢ . (4.5)

As we noted in chapter 3, the Riemann tensor is defined in terms of the connection
alone, the metric does not make an appearance. This is also true for the Ricci tensor.
However, without a metric, we cannot raise or lower indices nor take traces of down-
down or up-up indices, so the Ricci scalar and the Weyl tensor are not defined.
Newtonian spacetime is an example of a manifold that has a connection but no
metric. It is possible to introduce metric structure, but we need one metric with
down indices and another with up indices, both being degenerate (i.e. the matrix
formed by the components of the metric has zero determinant) and not the inverse
of each other. Such a construction actually provides an elegant way to understand
Newtonian gravity as the limit of GR where the metric becomes degenerate. But
let us not continue in that direction, recalling that we are in the process of finding
the equation of motion of GR.

In table 1 we compare various quantities in GR and Newtonian gravity. In
Newtonian gravity, the gravitational field is described by the potential ¢, which
enters the particle equation of motion via the gradient 0;¢. The equations of motion
are second order in derivatives, so they involve 0;0;¢. This is a symmetric 3 x 3
tensor, and thus has 6 independent components. Since the gravitational potential
involves only one field, its equation of motion can have only one component (or
rather, the number of components minus constraints must be 1). In other words,
an equation of the form 0;0;¢ = A;; does not have a solution for general symmetric
tensor A;; = A(;;) that describes a matter source. It is the trace of the second
derivative, V2¢, that is proportional to the matter source. The procedure is that we
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GR Newtonian gravity
field Jap 10)
appears in particle EOM FZ(,B 0;¢
curvature R%.s 0;0;¢
trace of the curvature R,z V24
non-locally determined part of the curvature Casys 0;0;¢ — %5UV2¢

particle EOM
field equation

B+ TG40 =0
Gap = 8TGNT g

i+ 69,6 =0
V2¢ — 47TGNPm

Table 1: Comparison of GR in arbitrary coordinates and Newtonian gravity in
Cartesian coordinates. EOM stands for equation of motion.

first solve ¢ from the Poisson equation V2¢ = 47GNpm, then calculate 9;¢ which
determines particle trajectories, and from that we get the traceless combination
0;0j¢ — %(L-jVQqﬁ, which gives tidal effects.

We will want to use Newtonian gravity as a guide to finding the equation of mo-
tion of GR. We will later derive the equation of motion from an action principle a la
Hilbert, bypassing the assumptions we make here, but it is useful to also understand
this Einsteinian route to the equations of motion.

In GR, the gravitational field is described by the metric g,g, which has 10 inde-
pendent components. We want an equation of motion that is linear in the Riemann
tensor. It cannot involve all of the components of the Riemann tensor, i.e. it cannot
be of the form R,gys = Aapys, Where Aypgys is some tensor that describes matter.
Instead, we need an equation with 10 components.

In the Newtonian case, the Poisson equation written in terms of the Ricci tensor
reads Rog = 47GNpm- As a first try, we could guess that the GR equation of motion
would be R,g = k1,3, where x is a constant and 7,3 is the energy-momentum
tensor that describes matter. We would then solve for the metric, and take deriva-
tives of it to find the Weyl tensor, which gives tidal effects, in analogy with the
Newtonian case. This was Einstein’s first attempt. It’s wrong, for reasons that will
soon become clear. However, the more general ansatz

kTop = Rop + AgapR | (4.6)

where A is a constant, works. To determine the value of A, we consider properties
of the energy-momentum tensor.

4.1.2 The energy-momentum tensor

Given an arbitrary timelike unit vector field u®, we can without loss of generality
decompose the energy-momentum tensor as

Top = puqug + Phog + 2q(qup) + s , (4.7)

where hog = gag + Uqug projects orthogonally to the time direction given by u®, p
is the energy density, P is the pressure, ¢, is the energy flux or momentum
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density, and I3 is the anisotropic stress or anisotropic pressure. Both ¢,
and Il,g are orthogonal to u®, g,u® = 0, Haguﬂ = 0, and II,g is symmetric and
traceless, Ilap = I(4p), gO‘BHag = 0. Taking different projections of (4.7), we find
that these quantities are given in terms of the energy-momentum tensor as

p = uo‘uﬁTag (4.8)
1
P = ghaﬁTaﬁ (4.9)
Ga = —h"u'T, (4.10)
1
Mog = ha'hs" T = 0" Tywhas - (4.11)

Observers with different «“ have different decompositions of the energy-momentum
tensor and so measure different values of the energy density and other quantities.
(Compare to the fact that energy of a particle with momentum p® as measured by an
observer with four-velocity u® is £ = —u,p®.) The trace of the energy-momentum
tensor is the same for all observers, T, = —p+3P. If g, = 0,1l,3 = 0, we say that
matter is an ideal fluid:

Taﬂ = puqupg + Pha,g . (4.12)

If also P = 0, we say that matter is dust. Two observations are in order. First, these
conditions say nothing about the microscopic properties of matter, in particular it
need not consist of a gas of particles in thermal equilibrium. (In chapter 6 we
will see that the energy-momentum tensor of a scalar field has the ideal fluid form,
for example.) Second, the ideal fluid (and dust) form is observer-dependent. We
say that observers for which the energy-momentum tensor has the ideal fluid form
are comoving with the fluid. Observers who move with respect to the comoving
observers do not see the energy-momentum tensor as having the ideal fluid form.
So, precisely speaking, matter is an ideal fluid if and only if there exists a timelike
unit velocity field such that when the energy-momentum tensor is decomposed with
respect to that field, g, = 0,113 = 0.

Consider the energy-momentum tensor in Minkowski space in Cartesian coordi-
nates with the time direction taken to be the coordinate time, u® = §*°. We then
have uq = —da0 and hog = 64:03;0i5, so the non-zero components of the decompo-
sition quantities are

p = Too (4.13)
P = %T (4.14)
¢ = —Toi (4.15)
I, = Tij—%Tkkaij. (4.16)
In matrix form we have
P —q1 —q2 —q3
Tps = —q P+l I 3 (4.17)

—q2  IIis  P+1lyp Tl ’
—q3 I3 IIp3 P +Tls3
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with (5in@' =0.
An important property of the energy-momentum tensor in Minkowski space is
that (in Cartesian coordinates)

a1 =0 <= energy and momentum are conserved . (4.18)

Let us prove (4.18). Assume that the left-hand side holds, take 8 = 0 and
integrate over a fixed volume V

0 = / d32(9pT% + 0;7%)
14
= & / dBrp+ [ dSnig, (4.19)
\% oV

where on the second line we have used (4.13) and Gauss’ theorem, and n’ are the
components of the unit vector orthogonal to the boundary 9V. If there is no en-
ergy flux through the boundary 0V (i.e. ¢ = 0 there), the total energy, defined as
E = fv da3p, is conserved. Repeating the exercise for 8 = i and assuming that the
momentum flux 7;; through the boundary vanishes, we find that the total momen-
tum, defined as P = fv da3q’, is conserved. This also clarifies the physical meaning
of the components T;;. To prove the implication in the other direction, we assume
that the time derivative is zero when the flux through the boundary vanishes, and
work backwards. Requiring this to hold regardless of how V' is chosen gives the local
result.

The property 0,7 = 0 is sometimes called the energy conservation equation.
Note the similarity to the electrodynamics equation 9,j% = 0 for the charge current,
from which it follows that charge is conserved. Moving from Cartesian coordinates
to general coordinates (but still in Minkowski space), the equation 9,7*? = 0 gen-
eralises to

VT =0 in Minkowski space . (4.20)

There is no physics in the above generalisation, just coordinate transformations.
However, we now assume that the above equation generalises to the following law:

VT =0 on a general manifold . (4.21)

The physical assumption in (4.21) is that the geometry of the manifold affects the
covariant divergence of the energy-momentum tensor only via the connection. The
equation (4.21) is called the energy-momentum tensor continuity equation
or sometimes the covariant conservation law of the energy-momentum tensor. The
latter term is misleading and not recommended: because (4.21) is a tensor equation
(of rank higher than zero), it cannot be integrated on the manifold, and hence it
does not lead to a conservation law. In fact, the equation quantifies how energy is
not conserved in GR, as we will see when we discuss cosmology. (It would be more
accurate to say that in GR, total energy as a concept is not in general defined, and
when it can be defined, it is not in general conserved.)

Taking SR equations for non-gravitational physics in Cartesian coordinates and
replacing the Minkowski metric with a general metric and partial derivatives with
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covariant derivatives to obtain the equations that apply in GR is called the minimal
coupling principle. Looking only at the equations of motion, it does not follow
from other properties of the theory, it is an extra assumption. For example, were we
to add to (4.21) terms that depend on the Riemann tensor, it would still have the
desired SR limit. The minimal coupling principle is in fact not much needed in GR
once we use the action formulation, to which we come in chapter 6. We will then
see how partial derivatives in the action for scalar fields and gauge fields turn into
covariant derivatives in the equations of motion automatically via the variational
principle, without the need to invoke extra assumptions. (The fermion case is a bit
more complicated, and we will not discuss it.) We will also see in which way terms
that break the minimal coupling principle are allowed.

4.1.3 Generality of the Einstein equation

Let us now get back to our equation of motion (4.6). Contracting with the covariant
derivative gives zero on the left-hand side by the assumption (4.21). Therefore the
right-hand side must be zero as well. Comparing to (3.82), we see that we must have
A= —%, i.e. the right-hand side has to be the Einstein tensor. We end up with

Gap = Tng , (4.22)

where Gop = Rop— %galgR is the Einstein tensor. The relation (4.22) is the Einstein
equation. This is the equation of motion of general relativity that we have been
seeking.

How general is this equation of motion? Assume that the equation of motion is
of the form xT,3 = A,p for some gravitational tensor A,z. It can be shown that if
the following conditions hold,

1) Aap = Aaply, dg,0%g) |

2) Vo A%P =0,

Y
3) Aup is linear in 9%g ,
) A

4 aff — aﬁ) y

then in addition to the Einstein tensor, A,g can consist of only one other tensor,
namely the metric itself: A,z = AGop + Agag, where A and A are constants. The
coefficient A is called the cosmological constant. It was not present in the original
formulation of the equation of motion, and the name comes from the fact that it
was added by Einstein in 1917 to obtain a static cosmological solution, as we will
discuss in chapter 9. If we demand that Minkowski space is a solution when there
is no matter, we get A = 0 (although it is not clear whether this is a reasonable
demand).

Alternatively, we can replace conditions 3 and 4 with the requirement that there
are no more than 4 spacetime dimensions, so that the set of conditions reads

1) Aaﬁ = Aag(g,(?g,é?zg) .
2) VA =0 .
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3) d<4 .

At d = 5, there is one extra tensor that satisfies the above two conditions and that
is quadratic in the Riemann tensor; every other dimension thereafter adds a new
term that is one power higher in the Riemann tensor. (The cosmological constant
term and the Einstein tensor are part of this progression, appearing at d = 1 and
d = 3, respectively.)

So either way, we end up with the equation of motion

Gaﬁ + Agaﬁ = K;Taﬁ . (4.23)

Comparing to the decomposition (4.7) of the energy-momentum tensor, we see that
if we shift the cosmological constant term to the right-hand side, it corresponds to
a contribution to the energy-momentum tensor of the ideal fluid form with p = A/k
and P = —p. This form of matter with constant energy density and pressure is
called vacuum energy. We will sometimes drop the cosmological constant term,
because it can always be considered to be included in the energy-momentum tensor
like this.

The identity V,G*? = 0 (which, recall, is just the trace of the Bianchi identity)
reduces the number of independent differential equations by 4. So (4.23) consists
of 10 equations connected by 4 constraints. This is just as well, because it should
give the 10 components of the metric, up to 4 coordinate transformations. If the
number of independent equations of motion were equal to the number of components
of the metric, the equations of motion would fix the coordinate system in addition
to fixing the physics, in violation of diffeomorphism invariance according to which
all coordinate systems are physically equivalent.

With the equation of motion (4.23), conservation of energy and momentum in
the limit of flat spacetime is a consequence of Bianchi identity. This analogous to
how charge conservation follows from the structure of the dynamical part of the
Maxwell equations, Faﬁ’g = j%. (Because Fup = Flop), 0aj® = 0 is a consistency
condition for the equation.) Of course, since we used the conservation of energy and
momentum to find the equation of motion, we cannot say that we have derived it.
This will change once we find the equation of motion from varying an action; then
VoT*? = 0 and, in the flat spacetime limit, energy conservation become results and
not assumptions.

Note how the requirement of diffeomorphism invariance has pinned down the
equation of motion. We noted in chapter 1 that the symmetries of Newtonian
mechanics do not fix the gravitational force: its magnitude could depend on the
distance between particles in an arbitrary manner. In GR, the situation is strikingly
different: we have no free functions, and only two constants. Before going to the
action, let us look at the Newtonian limit to fix one of them, x that determines the
strength of the curvature sourced by matter.

4.2 Newtonian limit
4.2.1 Weak field and small velocity

Our study of the relativistic theory of gravity so far has a major shortcoming: we
haven’t shown that it has anything to do with gravity. Let’s now demonstrate that
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Newtonian gravity is a limit of GR. We expect to need at least two conditions for
the Newtonian limit: weak gravitational fields and small velocities. The second
condition is necessary, because we know that the validity of Newtonian physics is
limited to the region where velocities are much smaller than the speed of light (i.e.
unity).

Let us begin by defining that by weak gravitational fields we mean that there
exists a coordinate system where the metric is close to the Minkowski metric, g.g =
Nap + 09ap, With [0gas| < 1. We will expand to linear order in dg,p, and the
derivatives of g, are considered to be of the same order of smallness as dg,3. In
chapter 8 we will consider the full decomposition of dg,g into ten degrees of freedom
(and the impact of coordinate transformations on them). For now, we simply take
the metric to be diagonal and of the form:

ds® = —(1 +2¢)dt* + (1 — 2¢)d;;da’da? | (4.24)
i.e. gop = Nap — 20048, With |¢| < 1. To linear order, the inverse metric is
9% = Nap + 20045 - (4.25)

It is straightforward to derive the connection coefficients. To linear order, they
are

1
Fzzﬁ - 597“(8(19“/3 + 089ap — Ougap)
>~ —1y500) — NayOp® + dapn™Oud . (4.26)

Writing out the coefficients, we have

S ~ ¢ (4.27)
re, =~ ¢ (4.28)
F?j ~ 50 (4.29)
o = o (4.30)
b ~ —6i (4.31)
e = =000 — 0ijOkd + 0100 | (4.32)

where dot denotes partial derivative with respect to the coordinate time t. These
do not agree with the connection coefficients derived for the exact Newtonian case
in section 4.1.1, where the only non-zero coefficient was F%O = 0;¢. One simple
difference is the presence of ¢, but the exact Newtonian theory is also missing terms
that have the same form as F'f)o, and are not suppressed by any small factor. We
will see the reason when we look at the trajectories of observers.

4.2.2 Equation of motion of matter

Consider a timelike geodesic with unit tangent vector u® = 5% 4+ fu®. We assume
that the spatial velocity is small: in the coordinate system (4.24), |du'| < 1. The
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geodesic equation is

0 = u’Vgu®
= uﬁ(?guo‘ + Fgwuﬂtﬂ
~ dpu® + TS, , (4.33)

where we discarded all terms that are nonlinear in ¢ and/or u’ = du’. The compo-

nent o = i gives, using (4.27) and noting that u’ = ‘é—f = %%i ~ dcﬁi,
d2at .
0 = 2 +6Y0;¢ , (4.34)

the Newtonian equation of motion under gravity. We now see why the exact Newto-
nian theory is missing the non-zero parts of the terms I‘é»k (the same applies to ng).
In the geodesic equation, they couple to the velocity, and their effect is suppressed
when the velocity is small. They are thus invisible in the Newtonian limit.

The component o = 0 gives, again using (4.27), du’ ~ —¢ (demanding that
du® = 0 when ¢ = 0). Recalling that u® = g—j, this gives gravitational time dilation.
Instead of using the geodesic equation, we could get the time dilation from the
normalisation condition:

~1 = gapuu’

0,0
>~ goou u

—(1+2¢)u’u’ , (4.35)

and inputting u° = 1 4 du® gives du’ ~ —¢ to linear order.

4.2.3 Equation of motion of the gravitational field

We have shown that in the limit of weak gravitational fields and small velocities
gravity affects matter in the same way as in Newtonian theory. Let us now turn
to how matter generates gravity. For that we need the Riemann tensor. To linear
order we have, using (4.26)

R%gys = 04155 — 051,
>~ nﬂéaaavfb - 77a58687¢ + navaﬁaﬁb - nﬁvaaaé(b . (436)

Writing the Riemann tensor component by component, we have

Riojo ~ &@gb + 5z]¢ (4.37)
Rlojr, =~ 600 — 000 (4.38)
Rl ~ 0i0;0,0 — 6j1,0;01¢ + 0;10;01¢ — 0;10;01¢ . (4.39)

We thus get for the Ricci tensor (Ros = R*au3)

Rop ~ V2¢+3d (4.40)
Ry ~ 20 (4.41)
Rij =~ 6;(Vi—¢), (4.42)
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and the Ricci scalar is
R = ¢*Rap ~n*"Rap~2V?¢— 66 . (4.43)

Finally, the Einstein tensor is

1 1
Gop = Rap— §ga5R ~ Rog — inaﬁR , (4.44)

which gives
Goo =~ 2V?%¢ (4.45)
Goi ~ 20i¢ (4.46)
Gij =~ 20 . (4.47)

Note how the Einstein tensor is simpler than the Ricci tensor.

We should now look at the Einstein equation. We consider a general energy-
momentum tensor and write it using the decomposition (4.7) for the observer velocity
u®. Because we treat the derivatives of ¢ as of the same order of smallness as ¢ and
the velocity, it follows that the source terms in the energy momentum tensor must
also be small, so we linearise with respect to them. To linear order, as Ju’ is small,
the orthogonality of u® with ¢ and Il,g implies gy ~ 0, Ilp, ~ 0. Linearising the
Einstein equation (4.23) (and dropping the cosmological constant), we get

2V2p =~ kp (4.48)
20,0 ~ —kg (4.49)
25@@5 ~ R(P&ij + Hij) . (4.50)

We immediately note that (4.50) is inconsistent unless II;; is smaller than the other
source terms so that it can be neglected, II;; ~ 0. (We will see later that II;; would
generate a difference between dgoo and dg;;, which we have not accounted for, and
which is not present in the Newtonian limit, where there is only one gravitational
potential.) The equation (4.48) gives the Poisson equation if kK = 817Gy and if the
energy density is dominated by the mass density, i.e. if matter consists of a gas
of particles whose masses are much larger than their kinetic energies, p ~ py. In
general, not only rest energy due to mass but also other forms of energy contribute
to the energy density. When we discuss cosmology in chapter 9, we will see how
massless particles contribute to the energy density.

What about the other two equations, (4.49) and (4.50) (with the latter sourced
only by pressure)? These equations are not independent: taking a time derivative
of (4.48) and a spatial derivative of (4.49) gives p + 9;¢" = 0. (Note the analogy
between the energy density of GR and charge density of electrodynamics, and the
energy flux of GR and charge current of electrodynamics.) From (4.49) and (4.50)
we likewise get 9; P + ¢; = 0. These relations are in fact just the 0 and ¢ components
of the linearised continuity equation Vo7 ~ 9,7, This is related to our earlier
comment that not all components of the Einstein equation are independent, because
they are related by the Bianchi identity.
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If we want the Newtonian limit to include the condition that only the mass
density has an effect on gravity (as in Newtonian theory), then we should impose
the conditions P ~ 0,¢; ~ 0. Together with II;; ~ 0, this amounts to demanding
that the energy density is much larger than any other contribution to the energy-
momentum tensor. In this case qb ~ (), i.e. the gravitational potential varies slowly in
time, and so does the energy density, p ~ 0. So this version of the Newtonian limit
corresponds to not only slow motion of sources, but also to slow evolution of the
metric. We see that the Newtonian limit implies conditions not just on the strength
of the gravitational fields and observer velocities, but also on the energy-momentum
tensor. For matter that consists of a gas of particles, the conditions that II;;, ¢; and
P are small reduce to the demand that the particle velocities are small, which also
guarantees p >~ pn,. So they can be considered part of the small velocity assumption,
if it is extended to cover not only the velocity of the observer but also the velocity
of the sources.

The Poisson equation, which we end up with, is elliptic: time derivatives have
disappeared. This is because in Newtonian theory, the gravitational field does not
have its own degrees of freedom, it is fixed by the matter via a constraint equation.
This is not true in GR: for suitable conditions on the matter content, the Einstein
equation is hyperbolic and has a well-defined initial value problem. This difference
means that the Newtonian limit is singular: solving the Einstein equation and tak-
ing the Newtonian limit do not commute. There are solutions of the Newtonian
equations that are not the limit of any GR solution, even if the velocities are small.
(There are also, less surprisingly, GR solutions that have no Newtonian limit.) De-
scribing the Newtonian limit in detail, correctly accounting for this feature, is an
interesting problem that we cannot stop to further discuss, as our itinerary calls for
us to move on to the orbit of Mercury and the bending of light in the Schwarzschild
solution.



	Gravitation
	The Einstein equation
	Geometrisation of Newtonian gravity
	The energy-momentum tensor
	Generality of the Einstein equation

	Newtonian limit
	Weak field and small velocity
	Equation of motion of matter
	Equation of motion of the gravitational field



