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Preface

These are the lecture notes of the courses General relativity I and II at the Univer-
sity of Helsinki. They owe a heavy debt to the lecture notes of Hannu Kurki-Suonio,
which were in turn influenced by Sean Carroll’s lecture notes and his book Space-
time and Geometry. Most of the figures are from Hannu Kurki-Suonio. I thank
Fernando Bracho Blok for LaTeXing parts of these lecture notes. Any errors are my
responsibility; let me know when you catch them.1

General relativity (GR) is one of the two fundamental theories we currently have.
The other is quantum field theory, in particular the Standard Model of particle
physics. Both of these pillars grew from addressing the shortcomings of Newtonian
mechanics in the 20th century. Quantum physics was developed in bits and pieces
in close interaction between theory and observations as the classical description of
matter was found to be inadequate. In contrast, observations played second fiddle
to theoretical and mathematical arguments in the development of the theory of
relativity. Special relativity (SR) was discovered by Albert Einstein in 1905, and GR
was unveiled by him and David Hilbert in 1915, after a long process that involved also
other collaborators. In contrast to the piecewise development of quantum theory,
the structure of SR and GR was laid out almost in its entirety when they were first
uncovered.

Quantum field theory describes matter and its non-gravitational interactions,
and GR covers spacetime and its interaction with matter, i.e. gravity. GR tells
how spacetime behaves when it contains given kind of matter, but it is agnostic
on what sort of matter exists. In the 1940s, quantum mechanics was unified with
SR in Quantum Electrodynamics, the first quantum field theory. The unification

1Apparently, some early 20th century Arabic books included a disclaimer along the lines of “this
book contains errors, but they can be easily picked up by an intelligent reader”. That guideline is
not unsuitable for these lecture notes.
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of quantum physics with GR remains one of the greatest open questions in physics.
It has been achieved to a limited extent in the theory of cosmic inflation, where
linear perturbations of spacetime are quantised, and their quantum properties have
been calculated and compared to observations of the cosmic microwave background
and large scale structure with great success. We will consider the intersection of
quantum physics and GR only in passing when we discuss the Hawking radiation of
black holes; otherwise we stick to classical (i.e. non-quantum) physics.

The essence of GR is that gravity is an aspect of spacetime curvature and locally
spacetime is flat. The first chapter is therefore a refresher on flat spacetime, i.e.
SR formulated in terms of spacetime. We will also go through electrodynamics,
which was historically important in the development of SR, and will provide a useful
comparison to GR. In the first chapter we’re rather informal. In chapter 2 we
introduce manifolds to describe a general spacetime, and will be more careful with
notation and definitions. In chapter 3 we bring in spacetime curvature. In chapter 4
we discuss how curvature is generated by matter and consider the Newtonian limit.
We conclude part I in chapter 5, where we consider the Schwarzschild solution and
calculate the precession of the perihelion of Mercury and the bending of light by the
Sun. We open part II in chapter 6 with GR in the action formulation, and discuss
reducing the number of assumptions in the theory. The rest of part II is dedicated
to particularly important solutions of the equations of motion. In chapter 7 we
discuss black holes, in chapter 8 we consider perturbation theory around Minkowski
space and gravitational waves, and in chapter 9 we conclude with symmetries and
cosmology.

1 Special relativity

1.1 Spacetime notation

We assume familiarity with Newtonian mechanics and SR. The structure of SR is
rather simple, the most difficult part is unlearning Newtonian ideas about space and
time. Relativistic spacetime consists of events, corresponding to spacetime points
that can be labelled with an integer number d of real numbers, called coordinates.2

There are infinitely many different ways to assign numbers to spacetime points, i.e.
different coordinate systems.

We label the coordinates xα, where α = 0, 1, . . . , d− 1. We will mostly consider
four-dimensional spacetime, d = 4, where there is one time direction and three
spatial directions. (We will soon say what space and time directions mean.) The
time coordinate is assigned the number α = 0, and it is also denoted x0 = ct, where
c is the speed of light (we will discuss the physical meaning of c in section 1.3.2). We
use Greek letters for spacetime indices and Latin indices for spatial indices, which
run from 1 to d−1. Just as the components of a vector in Newtonian mechanics are
labelled xi, the coordinates xα are the components of a vector in spacetime. Vectors
in four-dimensional spacetime are sometimes called four-vectors for emphasis. We
use the following notations for xα (and similarly for other vectors):

xα = (x0, x1, . . . , xd−1) = (x0, xi) = (x0, x⃗) . (1.1)

2When we come to GR in the next chapter, we will be more precise about the structure of
spacetime and the meaning of coordinates.
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In the arguments of functions we often drop the index and write f(x) instead of
f(xα). The notation xα refers both to the set of components and to the specific
component numbered α, as is also the case for xi. Once we have understood the
relation between the components and the vector, we will even lazily refer to xα as the
vector. We denote three-vectors with an arrow on top, x⃗, and four-vectors with an
underline, x. In SR, we mostly stick to Cartesian coordinates that are familiar
from elementary treatments of Newtonian mechanics. We could also treat SR in
general coordinates, but this would require introducing half of the machinery of
GR. We begin with a brief overview of Newtonian mechanics in terms of symmetry,
and then approach SR the same way.

1.2 Newtonian spacetime

1.2.1 Illustrating the structure of Newtonian spacetime

In Newtonian mechanics, a physical system consists of point particles moving in
space. (Extended objects can be understood as composites of point particles.) The
state of a system is fully determined by the position xi of each point particle as a
function of time t: the central object is the particle trajectory xi(t). The line drawn
in spacetime (which here is the direct product of space and time) by a particle is
called its worldline. The structure of Newtonian spacetime is illustrated in terms
of worldlines in figure 1.

In Newtonian spacetime, spatial slices of constant time are absolute, i.e. they are
the same for all observers. In other words, Newtonian physics has absolute space.
This also implies that simultaneity is absolute: all observers agree on whether two
points lie on the same time slice. There are three kinds of directions in spacetime,
illustrated in figure 2. Spacelike directions are parallel to the slices of constant
time, future timelike directions point up from the slices of constant time and
past timelike directions point down from the slices of constant time. Particle
trajectories always move up (i.e. are future timelike), but are otherwise arbitrary3.
In particular, the slope of the line, corresponding to the velocity, can have any value.

Figure 1: Newtonian time slices.
Events A and B are simultaneous, as
are C and D. All depicted worldlines
are future timelike.

Figure 2: The three kinds of direc-
tions in Newtonian spacetime.

3Apart from being continuous and sufficiently differentiable.
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1.2.2 Symmetries of Newtonian spacetime

Newtonian spacetime is symmetric under the coordinate transformations

t → t′(t) = t+A (1.2)

xi → x′i(t, x⃗) = Ri
jx

j +Ai + vit , (1.3)

where A is a constant, Ri
j is a constant rotation matrix (we discuss this in more

detail in section 1.3.3), and Ai and vi are constant vectors. We have adopted the
Einstein summation convention, according to which any index that appears once
up and once down is summed over, unless otherwise noted. This applies equally to
Latin and Greek indices. Such an index is called a summation index, internal index,
or dummy index. So Ri

jx
j ≡

∑
j=1...3R

i
jx

j . The spacetime is also symmetric under
time reversal, t→ −t, and spatial reflections (also called parity transformations),
xi → −xi (for any or all of the spatial directions).

Symmetry under coordinate transformations means that the spacetime before
and after the transformation describes the same physical situation. Quantities that
do not remain invariant are relative, while those that are invariant are absolute.
The transformations (1.2) and (1.3) of involve four separate symmetries.

Invariance under constant time shifts means that the value of the time coordinate
is not absolute. However, time intervals are absolute (and hence simultaneity is
absolute), so we say that time is absolute. Invariance under constant translations
means that there is no absolute position in space. However, spatial intervals are
absolute, i.e. lengths are absolute. Invariance under spatial rotations means there
is no absolute direction in space. However, relative angular positions are absolute.
Overall, we say that space is absolute as the symmetry transformations map points
on a slice of constant time to points on the same slice. The time-dependent shift
by vit is called the Galilei transformation. Invariance under it, called Galilei
symmetry, means that there is no absolute velocity. However, velocity differences
are absolute as far as their amplitude is concerned. This includes change in velocity
over time, so the amplitude of acceleration is absolute. The direction of velocity
differences (and of acceleration) is relative, as it changes with rotation.

The laws of physics have to respect the above symmetries. Consider Newton’s
second law:

ai ≡ d2xi

dt2
=

1

m
F i , (1.4)

where ai is acceleration, F i is force, and m is the mass of the particle. Under
the symmetry transformations, the direction of the acceleration and of the force
changes. However, the equation retains its shape under spatial rotations, because
both sides are vectors and transform in the same way under rotations. As the
transformed quantities satisfy the same equation, the equation is called covariant
under rotations, rather than invariant. (Although physicists are somewhat sloppy
with language, and sometimes the term invariant is used here as well.) Also, equation
(1.4) is invariant under the constant translations of time and space, the Galilei
transformation, and time reversal, as long as the force F i is invariant. It is covariant
under parity transformations if the components F i switch their sign under xi → −xi.
For observers moving at constant velocity (and only for observers moving at constant
velocity) the equations of motion take the form (1.4). Such observers are called
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inertial. If an observer is not inertial, there are new terms contributing to (1.4),
such as the Coriolis effect. We will discuss this in more detail when we come to GR,
whose formalism makes these effects transparent.

An example of a force that is covariant under the above symmetries is Newton’s
law of gravity, which states that the force exerted by particle 1 on particle 2 is

F⃗12 = −GNm1m2
x⃗2 − x⃗1
|x⃗2 − x⃗1|3

, (1.5)

where GN is Newton’s constant and mn are the masses of the particles. In index
notation, (1.5) reads

F i
12 = −GNm1m2

∆xi

|∆x⃗|3
, (1.6)

where we have introduced the coordinate difference ∆xi ≡ xi2 − xi1. As the force
depends only on the separation of the particles and not on their absolute positions,
it is invariant under spatial translation and the Galilei transformation. As the force
is independent of time, it is invariant under time translation and time reversal. Its
components change sign under a parity transformation.

Note that while symmetries (1.2) and (1.3) constrain the equation of motion (1.4)
and the force (1.5), they do not determine them. For example, the symmetry would
allow the gravitational force to have |∆x⃗|5 in the denominator instead of |∆x⃗|3 – in
fact any functional dependence on |∆x⃗| is allowed. In the case of GR, the laws of
physics are covariant under a larger group of transformations (although these are
not associated with symmetries of the spacetime; the construction is more subtle),
and we will see that this determines the relativistic law of gravity almost uniquely.

In the Newtonian case, let us now restrict ourself to space, leaving time aside.
The fact that the symmetry under rotations and translations leaves lengths invariant
can be expressed by saying that the quantity4

(∆s)2 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 ≡ δij∆x

i∆xj (1.7)

is invariant; we have labelled the Cartesian coordinates as xi = (x, y, z). We could
reverse this reasoning, starting from the assumption that the interval (1.7) is invari-
ant and looking for the transformations xi → x′i(x⃗) that leave it invariant. Keeping
to linear transformations, we would then arrive at the six-parameter group of spatial
rotations and translations (plus reflections).

When we rotate space, the intervals ∆x, ∆y and ∆z change but the combination
(1.7) stays the same, as illustrated in figure 3:

(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2 = (∆x′)2 + (∆y′)2 + (∆z′)2 . (1.8)

This is why we think of three-dimensional space instead of a set of three one-
dimensional spaces. In SR, this idea is extended to the four-dimensional spacetime.

The statement (1.7), Pythagoras’ law, expresses the fact that Newtonian space
is Euclidean. Space is Euclidean precisely when the distance ∆s between points
with coordinates xi1 and xi2 is given by (1.7). We say that δij is the metric (more

4The symbol δij is the Kronecker delta, defined to be 1 if i = j and 0 otherwise. The position
of its indices carries no meaning, δij = δi

j = δij = δij .
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Figure 3: Rotation on the xy-plane.

precisely, components of the metric) of Euclidean space, in Cartesian coordinates.
The metric depends on the chosen coordinate system. For example, if we used
spherical rather than Cartesian coordinates, both the components of the vectors
and the metric would be different, but (∆s)2 would be the same. If the distance is
not given by (1.7) or a coordinate transformation thereof (but the notion of distance
is still defined), the space is non-Euclidean. In SR, we encounter the simplest
(four-dimensional) example of a non-Euclidean space(time).

1.3 Minkowski space

1.3.1 The Minkowski metric

The spacetime of SR is called Minkowski space. (A misleading name, as it is a space-
time, not a space!) Just as Euclidean space is defined by the invariance of the spatial
interval (1.7), Minkowski space is defined by the invariance of the following spacetime
interval between two events (using the Cartesian coordinates xα = (ct, x, y, z)):

(∆s)2 = −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 ≡ ηαβ∆x
α∆xβ , (1.9)

where we have introduced the Minkowski metric in Cartesian coordinates, ηαβ ≡
diag(−1, 1, 1, 1).5 The difference between Euclidean geometry and the geometry of
Minkowski space is entirely due to the minus sign in front of c2(∆t)2. Depending on
the relative size of the time separation c∆t and the spatial separation, the interval
(∆s)2 can be positive, negative or zero. If (∆s)2 is positive or zero, the distance is√

(∆s)2. If (∆s)2 is negative or zero, the distance is
√
−(∆s)2. In this case, (∆s)2

should not be thought of as the square of anything, despite the notation.
If (∆s)2 > 0, the separation of the events is spacelike. If (∆s)2 < 0, the

separation is timelike.6 If (∆s)2 = 0, the separation is lightlike, also called null.
The set of points whose separation from a given point P is null (i.e. whose distance
to P is zero) form the lightcone at that point.

5Let the reader beware: some authors, especially in particle physics, prefer to define ηαβ with
the opposite overall sign. Also note that the metric used in SR and GR is not a metric in the sense
that the term is usually used in mathematics, as it is not positive-definite.

6Expressed in a way that is independent of the sign convention of ηαβ , the spacetime interval is
timelike if the time interval is longer than the spatial interval, and spacelike if the reverse is true.



1 SPECIAL RELATIVITY 7

There are correspondingly five kinds of directions in spacetime. Straight lines
from P to a point inside the lightcone are future timelike if oriented up and past
timelike if oriented down. A point at timelike separation from P is in the future
of P if its time coordinate is larger than that of P , and in the past of P if its
time coordinate is smaller than that of P . Massive particles and objects move on
future timelike lines, i.e. worldlines. Directions along the lightcone are called future
lightlike (also called future null) or past lightlike (past null), depending on
whether they are in the positive or negative time direction, respectively. Massless
particles and electromagnetic waves travel on such lines, called lightlike lines (or
equivalently null lines). A line from P to a point outside the cone is spacelike, and
there is no absolute ordering into the past or future of P for such points. Particles
and objects cannot move on spacelike lines. Observers whose worldlines have a
different tilt have different time directions: time is relative, as is space. There is
no absolute simultaneity of different events. Also, the time ordering of events that
are not connected by timelike or lightlike lines is not absolute. Unlike in Newtonian
spacetime, there are no absolute time slices. These features are illustrated in figures
4 and 5.

Figure 4: Intervals in spacetime.

• (∆s)2 < 0: timelike separated from P (points A and B).

• (∆s)2 = 0: null separated from P (points C and D).

• (∆s)2 > 0: spacelike separated from P (points E and F ).

• Events A and C are in the future of P .

• Events B and D are in the past of P .

• The time ordering between P and events E and F depends on the observer.

The speed of light c has a similar role in SR as infinite speed in Newtonian
physics: it cannot be exceeded. Just as in Newtonian physics going faster than at
infinite speed would mean that the time taken to travel between two points would
be less than zero, in SR moving faster than the speed of light would correspond
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Figure 5: The five kinds of directions in Minkowski space.

to moving backward in time. Heuristically, for c → ∞ the SR lightcone flattens
into a plane, and spacetime structure reduces to Newtonian physics with absolute
time slices, as illustrated in figure 6. However, we have to be careful with limits
like this, because c is a dimensional quantity, so it can only be large or small with
respect to another quantity of the same dimension. This argument is best regarded
as a geometric heuristic for why SR looks like Newtonian physics for velocities much
smaller than c.

Figure 6: Flattening of the lightcone.

1.3.2 Natural units

The value of c has no physical meaning, it is a piece of historical baggage that just
relates units of length and time. Due to the fact that velocities in the everyday
environment relevant for our survival are much smaller than the speed of light, our
brains have evolved to view time and space as fundamentally different entities, so we
are used to measuring them with different units. In SR, time and space directions
are not absolute but mix, so it is unnecessary and unwieldy to use different units for
them. Doing so would be analogous to measuring spatial distance along the surface
of the Earth with nautical miles and in the radial direction in fathoms: c has the
role of the conversion factor that tells how many fathoms there are in a nautical
mile.

We use natural units, where c = 1. In SI units c = 299 792 458 m/s (exactly),
so this means that 1 s = 299 792 458 m, and 1 second = 1 light second, 1 year =
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1 light year, and so on. Velocity is a dimensionless quantity, which is smaller than
one for massive objects, and one for light moving in vacuum.

In natural units, the reduced Planck constant is also unity, ℏ = h/2π = 1. In SI
units h = 6.626 070 15 ×10−34 Js (exactly), so in natural units the dimensions of
mass, energy, momentum and wavenumber are the same, and equal to the dimension
of 1/time or 1/distance. Finally, in natural units Boltzmann’s constant is unity,
kB = 1, so temperature and energy are measured in the same units. In SI units
kB = 1.380649× 10−23 J/K (exactly), so in natural units 1 K = 1.380649× 10−23 J.

1.3.3 Poincaré transformations

Taking the coordinate difference in (1.9) to be infinitesimal, we can write the interval
in the form commonly used in SR,

ds2 = −dt2 + dx2 + dy2 + dz2 = ηαβdx
αdxβ . (1.10)

The infinitesimal quantity ds2 is called the line element.
Taking the line element (1.10) as fundamental, we now look for transformations

that leave it invariant. We demand that the coordinate differences transform in the
same way everywhere in spacetime (i.e. there are no preferred points in spacetime:
spacetime is homogeneous), so the transformations have the form

xα → x′α(x) = Λα
βx

β +Aα , (1.11)

where Λα
β and Aα are constants. (We use x in the argument to collectively denote all

spacetime coordinates, as mentioned earlier.) An infinitesimal coordinate difference
then transforms as

dxα → dx′α = Λα
βdx

β , (1.12)

and the interval transforms as

ds2 = ηαβdx
αdxβ → ηαβdx

′αdx′β = ηαβΛ
α
γΛ

β
δdx

γdxδ . (1.13)

The invariance of ds2 therefore implies

ηγδ = ηαβΛ
α
γΛ

β
δ . (1.14)

Written in matrix form, this reads ΛT ηΛ = η, where T denotes transpose. (Recall
that in matrix multiplication, the rightmost index of the matrix on the left is summed
over with the leftmost index on the right, (AB)ij =

∑
k A

i
kB

k
j .) The solutions to

this equation are the Lorentz matrices that are a representation of the Lorentz
transformations, which form the Lorentz group. The Lorentz group is denoted
O(1, 3). Excluding reflections and time reversal by demanding Λ0

0 > 0, detΛ > 0,
we get the proper orthochronous Lorentz matrices and transformations. They
form the proper orthochronous Lorentz group, denoted SO(1, 3)↑.

As the Lorentz transformations are described by the 4 × 4 matrices Λα
β (note

how loosely we identify the matrix and its components), they have 16 components.
As (1.14) is a symmetric 4×4 matrix equation, it has 10 independent components,
leaving the Lorentz matrices with 6 independent components. So the Lorentz group
is a six-parameter group. Including spacetime translations, we get the Poincaré
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Euclidean space Minkowski space

line element ds2 = δijdx
idxi ds2 = ηαβdx

αdxβ

symmetry transformation xi → Ri
jx

j +Ai xα → Λα
βx

β +Aα

condition for transformation matrix RTR = 1 ΛT ηΛ = η
full symmetry group E(3) P (1, 3)

symmetry group without translations O(3) O(1, 3)
symmetry group w/o translations, reflections or time reversal SO(3) SO(1, 3)↑

Table 1: Comparison of 3d Euclidean space and 4d Minkowski spacetime in terms
of symmetry.

transformations written in (1.11), which form the 10-parameter Poincaré group
P (1, 3).

We could have followed the same route in the case of three-dimensional Euclidean
space. To do so, we would replace the Poincaré transformations (1.11) with the spa-
tial rotations and translations xi → x′i = Ri

jx
j + Ai, and the Minkowski metric

ηαβ with the Euclidean metric δij . This would give the condition RTR = 1. The
matrices that satisfy this condition are a representation of the orthogonal group
O(3). Together with the translations, they form the Euclidean group E(3). Ex-
cluding reflections by demanding detR > 0 gives the special Euclidean group
SE(3). Excluding translations then gives the rotation group SO(3). Euclidean
and Minkowski space are summarised in terms of symmetries in table 1.

In Cartesian coordinates, the rotation matrix on the xy-plane (one solution of
the equation RTR = 1) reads

Ri
j =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (1.15)

We see that the transformation parameter is restricted to the range 0 ≤ θ < 2π.
Equivalently, we can say that rotations are periodic, and take −∞ < θ <∞. Either
way, we see that the rotation group is compact.

The other solutions Ri
j of the equation RTR = 1 that satisfy the condition

detR > 0 can be written similarly as rotations on the xy- or the zx-plane, or as a
product of these three rotations. The three parameters of SO(3) can be taken to be
the rotation angles on the three two-dimensional planes on which the transformations
operate. The fact that the group is compact reflects the fact that in the combination
(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2 any one coordinate difference can be reduced or
increased only by a finite amount when (∆s)2 is held constant.

Returning to Minkowski space, rotations are a subgroup of the Lorentz group:
they are those transformations that leave the time interval untouched,

Λα
β =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 . (1.16)

The remaining three Lorentz transformations act on the tx-, ty- and tz-planes,
changing the time interval ∆t and one of the length intervals in (∆s)2 = −(∆t)2 +
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(a) Lorentz transformation on the xy-
plane (a rotation).

(b) Lorentz transformation on the tx-
plane (a boost).

Figure 7: Illustrating the orbits of Lorentz transformations.

(∆x)2+(∆y)2+(∆z)2. Because of the minus sign, the orbit of the transformations is
not a circle but a hyperbola, so we get hyperbolic instead of trigonometric functions,
as illustrated in figure 7. For example, the transformations on the tx-plane read

Λα
β =


coshψ − sinhψ 0 0
− sinhψ coshψ 0 0

0 0 1 0
0 0 0 1

 , (1.17)

where the transformation parameter ψ is called the rapidity. It has the range
−∞ < ψ <∞, and the transformations are non-periodic.

Exercise. Show that the matrices Λα
β in (1.16) and (1.17) satisfy (1.14).

The Lorentz transformations that involve time are called boosts, for reasons
that will become clear in section 1.3.6. Like rotations, they form a subgroup of the
Lorentz group. Unlike the rotation subgroup, the boost subgroup is non-compact.
This corresponds to the fact that (∆t)2 and, say, (∆x)2 can both be increased
without limit while keeping their difference constant. The 10 parameters of the
Poincaré group correspond to the transformation parameters on the six planes on
which rotations and boosts operate plus the translation parameters along the four
coordinate axes on which the translations happen. (In d dimensions, we would have
d(d− 1)/2 + d = d(d+ 1)/2 parameters.) Rotations and boosts on different planes
do not commute among themselves nor with each other, so the Lorentz group (like
the rotation group) is non-Abelian.

Lorentz boosts mix time and space, so

∆t ̸= ∆t′

(∆x)2 + (∆y)2 + (∆z)2 ̸= (∆x′)2 + (∆y′)2 + (∆z′)2 .

Only the spacetime interval (1.9) remains invariant. This is why it is useful to think
in terms of four-dimensional spacetime instead of a set of three-dimensional spaces
stacked together.
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1.3.4 Dot product and raising and lowering indices

In addition to defining distances in spacetime, the metric is used to define the dot
product of two vectors, and to lower and raise indices.7 For a four-vector with
components Aα, we define

Aα ≡ ηαβA
β . (1.18)

The object with components Aα is called a covariant vector8, and the object with
components Aα is called a contravariant vector.

The inverse metric, with components ηαβ (keeping to Cartesian coordinates),
is defined as the inverse matrix of the matrix whose components are ηαβ. It has the
same components, ηαβ = diag(−1, 1, 1, 1). So ηαγη

γβ = δα
β. Indices are raised with

the inverse metric as

Aα ≡ ηαβAβ . (1.19)

The dot product between vectors A and B is defined as

A ·B ≡ ηαβA
αBβ = ηαβAαBβ = AαBα = AαB

α . (1.20)

Under Poincaré transformations, contravariant vectors transform with the Lorentz
matrix and covariant vectors with the inverse matrix, so the dot product (1.20) is
invariant:

Aα → A′α = Λα
βA

β

Aα → A′
α = (Λ−1)βαAβ . (1.21)

The rule is easy to remember: up indices transform with the Lorentz transfor-
mation, down indices transform with the inverse transformation. By definition,
Λα

γ(Λ
−1)γβ = δαβ.

In the case A = B, the dot product (1.20) gives the squared norm ∥A∥ of the
vector:

∥A∥2 ≡ A ·A = ηαβA
αAβ . (1.22)

If A · A < 0, the vector A is timelike. If A · A = 0, the vector A is lightlike, also
called null. If A ·A > 0, the vector A is spacelike.

1.3.5 Spatial and timelike distances

Let us now look at distances in spacetime. Consider an arbitrary differentiable curve
with coordinates xα(λ), where λ is a real number that parametrises the position on
the curve. We have (see figure 8)

dxα =
dxα

dλ
dλ . (1.23)

7We will savor the topics of this subsection in more detail in the next chapter, this is just a quick
snack.

8This meaning of the term covariant is unrelated to its use to describe equations that retain
their form under transformations.
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Figure 8: The line element of a parametrized curve xµ(λ).

We define a curve to be timelike, null, or spacelike on a section of it if the tangent
vector dxα

dλ everywhere in the section is timelike, null, or spacelike, respectively. Most
physically relevant curves are everywhere timelike, or everywhere null, or everywhere
spacelike. In the case of a timelike curve that corresponds to particle motion, xα(λ)
generalises the Newtonian particle trajectory xi(t) and forms a (i.e. a worldline).

The infinitesimal proper time (i.e. physical timelike length) interval along a
timelike curve is

dτ =
√
−ds2 =

√
−ηαβdxαdxβ =

√
−ηαβ

dxα

dλ

dxβ

dλ
dλ . (1.24)

Note that λ does not have to be the proper time along the curve, although that is
often a convenient choice. The proper time from point p to q along the curve is

∆τ =

∫ λq

λp

√
−ηαβdxαdxβ =

∫ λq

λp

dλ

√
−ηαβ

dxα

dλ

dxβ

dλ
. (1.25)

A straight line maximises the proper time between two events whose separation is
timelike. One example is the “twin paradox”, where two observers start with the
same age, but one undergoes acceleration (i.e. travels in a line that is not straight)
and is thus younger when they meet again. From the spacetime point of view, it
is quite obvious that different paths between two points in general have different
lengths, and that a straight path extremises the length, as in Euclidean space (and
like for spacelike paths, as we discuss below). The reverse would be odd indeed: that
the proper length of all possible paths connecting two points would be identical.

Exercise. Consider the twins Alice and Betty. Alice stays on Earth. Betty
leaves Alice and travels to Alpha Centauri (distance 4 light years) at the speed
v = 0.8, turns around, and returns at the same speed. How much have Alice and
Betty aged when they meet again? Draw a spacetime diagram of the worldlines of
Alice and Betty
a) in the frame of Alice (K),
b) in the frame of Betty traveling towards αCen (K ′),
c) in the frame of Betty returning (K ′′).

Similarly, the infinitesimal proper length along a spacelike curve is

ds =
√
ds2 =

√
ηαβdxαdxβ =

√
ηαβ

dxα

dλ

dxβ

dλ
dλ , (1.26)
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and the proper length along a spacelike curve from p to q is

s =

∫ λq

λp

√
ηαβdxαdxβ =

∫ λq

λp

dλ

√
ηαβ

dxα

dλ

dxβ

dλ
. (1.27)

A straight line minimises the proper length between two events whose separation is
spacelike.

For a null curve ds2 = 0 everywhere, so its proper length is zero.

1.3.6 Lorentz boosts and velocity

So far, we have not said anything about the relation of Lorentz boosts and velocity.
From the spacetime point of view, the core assumption of SR is homogeneity of
spacetime. The relation of the boosts to velocities is then a result rather than an
assumption, in contrast to elementary treatments of SR. Let us see how the velocity
comes into play from the spacetime point of view.

Consider a straight worldline with coordinates xα(λ). The components of the
vector u tangent to the curve are

uα =
dxα

dλ
. (1.28)

Let us use the proper time of the observer as the parameter along the curve, λ = τ .
We first find the relation between four-velocity and coordinate three-velocity. The
norm of u is

u · u = ηαβu
αuβ . (1.29)

As the norm is independent of the coordinates, we can evaluate it in comoving co-
ordinates. They are coordinates attached to the observer, so that t(λ) = τ, xi(λ) =
0. Then uα = δα0, so we see that u ·u = −1. Back to general coordinates, we define
the coordinate three-velocity as

vi ≡ dxi

dt
. (1.30)

Note that vi are not the spatial components of a four-vector. Instead,

uα =

(
dt

dτ
,
dt

dτ
vi
)

≡ γ(1, vi) , (1.31)

where we have introduced the Lorentz factor γ ≡ dt
dτ . From the condition u·u = −1

we get γ = (1− v2)−1/2, where v2 ≡ δijv
ivj .

Now that we have the coordinate three-velocity, let’s consider the Lorentz boosts
(1.11). Under a Lorentz transformation, the components of the four-velocity (like
the components of other four-vectors) transform as

uα → u′α = Λα
βu

β . (1.32)

Let us take the original coordinates to be comoving with the observer, uα = δα0. A
Lorentz boost on the tx-plane then gives, applying (1.17),

uα = (1, 0, 0, 0) → (coshψ,− sinhψ, 0, 0) . (1.33)
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Comparing to (1.31), we have γ = coshψ, γv = − sinhψ. The minus sign comes
from the fact that as the new coordinates are moving with velocity v with respect to
the old coordinates, the old coordinates are moving with velocity −v with respect
to the new coordinates. Switching the sign (this is a matter of convention), we get
ψ = artanhv, and the Lorentz boost matrix (1.17) can be written as

Λα
β =


γ −γv 0 0

−γv γ 0 0
0 0 1 0
0 0 0 1

 . (1.34)

The Lorentz boost hence reads

t → t′ = γ(t− vx)

x → x′ = γ(x− vt)

y → y′ = y

z → z′ = z . (1.35)

Just as rotations correspond to observers with different orientation in spatial
directions, boosts correspond to observers with different orientation in directions
involving both space and time, which is to say with different velocities. The fact
that the group of Lorentz boosts is non-compact corresponds to the fact that we
can never reach the speed of light: transformations with ever larger values of the
rapidity ψ bring v ever closer to 1, but it never reaches 1.

A boosted coordinate system moves with constant velocity with respect to the
original, i.e. in a straight line. Considering motion in the x direction, velocity is
just a tilt on the tx-plane, as illustrated in figure 9. The relativity of constant
velocity is one of the fundamental assumptions in Newtonian mechanics, but in SR
it is a derived property: SR explains why velocity is relative. From the assumption
that the metric is the Minkowski metric (and remains invariant under coordinate
transformations), it follows that constant velocity is relative, just as it follows that
constant angles are relative.

In the limit v ≪ 1, the t and x transformations (1.35) reduce to t → t − vx,
x→ x−vt. If we consider the separation between two points along the worldline of a
particle moving with a velocity that is ≪ 1, the transformation reduces to ∆t→ ∆t,
∆x → ∆x − v∆t, as ∆x ≪ ∆t. In other words, in the limit of small velocities,
Lorentz boosts reduce to Galilei transformations. Thus the Lorentz transformations
unify spatial rotations and Galilei transformations, which in Newtonian mechanics
were unrelated. However, Lorentz boosts are not Galilei transformations, and behave
very differently when velocities are not small. This corresponds to the feature that
a unified theory is generally not merely the sum of the theories it unifies, but rather
a larger whole that has those theories as its limits. In the same vein, we will see
that GR is not SR plus Newtonian gravity, but reduces to them in the appropriate
limits.
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Figure 9: The coordinate system of an observer boosted in the x direction.

1.4 Dynamics in SR

1.4.1 Generalising Newton’s second law

We have introduced the velocity of an observer (note that observers are treated as
pointlike) as the proper time derivative of their coordinate xα(τ),

uα =
dxα

dτ
. (1.36)

As the proper time is invariant under coordinate changes, taking a derivative of the
components of a vector that depend on the proper time gives the components of
a vector. The acceleration is similarly defined as the proper time derivative of the
velocity,

aα ≡ duα

dτ
=

d2xα

dτ2
. (1.37)

Note that by use of the chain rule we have duα

dτ = uβ∂βu
α, where ∂α ≡ ∂

∂xα . From
the condition u ·u = −1 it follows that a ·u = 0: velocity and acceleration are always
orthogonal. (Exercise. Show this.) This is analogous to a Newtonian particle on
a circular orbit: because the norm of the position vector is constant, velocity and
position are orthogonal.

Particle momentum is defined as

pα ≡ muα = mγ(1, v⃗) ≡ (E, p⃗) (1.38)

where m is the mass of the particle, which is a constant, and we have expressed the
velocity using (1.31). So energy is the zero component of the four-momentum. In
Newtonian mechanics, we have

E =
1

2
mv2 =

p2

2m
and p⃗ = mv⃗ , (1.39)

where p ≡
√
δijpipj . In SR we have

E = mγ and p⃗ = mγv⃗ . (1.40)

The Newtonian relations are limiting cases of the SR ones for v ≪ 1 (with the
addition of the rest mass to the energy). To obtain the relation between momentum
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and energy in SR, let us consider the norm of p. On the one hand, p · p = m2u · u =
−m2. On the other hand,

p · p = ηαβp
αpβ = −E2 + p2 . (1.41)

Combining these expressions, we get

E =
√
m2 + p2 ≃ m+

p2

2m
≃ m+

1

2
mv2 , (1.42)

where we have expanded in the non-relativistic limit p/m≪ 1.
We can now generalise Newton’s second law (1.4) to SR. We simply write

fα = maα , (1.43)

where fα is the four-force. This equation carries little meaning unless we specify
fα. Of course, this is also true for Newton’s second law. We can characterise the
four-force in terms of the three-force as

fα = γ(F⃗ · v⃗, F⃗ ) = γ
dpα

dt
= γ

(
dE

dt
,
dp⃗

dt

)
. (1.44)

(Exercise. Show that this is consistent.) This shows that the zeroth component of
the four-momentum has a similar relation to force as in Newtonian mechanics.

It follows from (1.43) and the generalisation of Newton’s third law that the
four-momentum of an isolated system is conserved:∑

all
particles

pα = constant , (1.45)

which is equivalent to the conservation of energy and three-momentum.
We can also consider SR in arbitrary coordinate systems. However, in SR, as

in Newtonian mechanics, the laws of physics only have the forms given above in
coordinate systems that move at constant velocity, i.e. for inertial observers. As an
example of a different coordinate system, consider the merry-go-round coordinates,
defined in terms of Cartesian coordinates as

t′ = t

x′ =
√
x2 + y2 cos(φ− ωt)

y′ =
√
x2 + y2 sin(φ− ωt)

z′ = z , (1.46)

where φ = arctan(y/x) and ω is a constant. We will return to the merry-go-round
coordinates when we develop the formalism for describing physics in arbitrary coor-
dinate systems in GR.

Exercise. Find the metric tensor in the merry-go-round coordinates, starting
from the line element of Minkowski space in Cartesian coordinates (1.10).
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1.5 Electrodynamics

1.5.1 Maxwell equations

In section 1.2 we gave the Newtonian gravitational force as an example of a force that
is covariant under the Newtonian symmetry transformations (1.2) and (1.3). Let us
now give an example of a force that is covariant under the Poincaré transformations,
i.e. consistent with SR. The first such force known predates SR: it is the Lorentz
force, which together with the Maxwell equations define electrodynamics. In
three-vector notation, the Maxwell equations read

∇ · B⃗ = 0 ∇ · E⃗ = ρq

∇× E⃗ = −∂B⃗
∂t

∇× B⃗ = J⃗ +
∂E⃗

∂t
,

(1.47)

where E⃗ is the electric field, B⃗ is the magnetic field, ρq is the electric charge density,

and J⃗ is the electric current. The Lorentz force law is

F⃗ = q(E⃗ + v⃗ × B⃗) , (1.48)

where q is the electric charge of the particle and v⃗ is its coordinate three-velocity.
When Maxwell originally wrote the equations, he did not use vectors. Writing

them in terms of three-vectors makes their structure more transparent. Further
clarity is achieved by using quantities adapted to Minkowski space. We define the
electromagnetic field strength in component form in Cartesian coordinates as

Fαβ =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 ⇔ Fαβ =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 . (1.49)

Note that Fβα = −Fαβ. We have written the spatial indices down in Fαβ and up in
Fαβ, but there’s really no difference, as Ei = δijEj , and similarly for Bi.

The source term of Maxwell equations can be written as the electric current
four-vector

jα ≡ (ρq, J⃗) . (1.50)

In terms of Fαβ and jα, Maxwell equations assume simple form:

Fαβ
,β = jα (1.51)

F[αβ,γ] = 0 , (1.52)

where Fαβ,γ ≡ ∂γFαβ, and [] refers to antisymmetrisation over all indices; this is
defined in (2.33). Using the fact that Fβα = −Fαβ, equation (1.52) can be written
as (Exercise. Show this.)

Fαβ,γ + Fγα,β + Fβγ,α = 0 . (1.53)

The Lorentz force law reads
fα = qFα

βv
β , (1.54)

where vα is the four-velocity of the charged particle (not to be confused with the
observer four-velocity uα).
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The field strength can be written in terms of the electromagnetic vector po-
tential Aα. The general solution of (1.52) is

Fαβ = 2∂[αAβ] = ∂αAβ − ∂βAα . (1.55)

The Maxwell equations can be further simplified by using the freedom to make
transformations of Aα. The field strength (and hence the physics) is invariant under
the gauge transformation

Aα → A′
α = Aα + ∂ασ , (1.56)

where σ is an arbitrary scalar function. A choice of σ is called a gauge choice.
With (1.55), the equation of motion (1.51) becomes

∂α∂βA
β − ηβγ∂β∂γAα ≡ ∂α∂βA

β −□Aα = jα , (1.57)

where □ ≡ ηαβ∂α∂β. Doing a gauge transformation (1.56) and choosing σ as the
solution of the equation □σ = −∂αAα, we get ∂αA

′α = 0.9 So (dropping the prime)
the equation of motion for the components Aα separates, and the Maxwell equations
reduce to

□Aα = −jα . (1.58)

We will come back to electromagnetism and this equation when discussing how to
generalise the non-gravitational laws of physics (in particular, electromagnetism)
when going from SR to GR.

1.5.2 The road in reverse

Let us conclude the section on electrodynamics and the chapter on SR by comment-
ing on the route by which Einstein originally discovered SR via electromagnetism.
Einstein started from the assumption that the laws of physics are the same in all
coordinate systems that move with constant velocity (inertial observers), as is the
case in Newtonian mechanics. In particular, he demanded that this holds for the
Maxwell equations. Since the speed of electromagnetic waves follows from (1.47)
and is constant (in vacuum), it follows that the speed of light is the same for all
observers. Assuming that the coordinate transformations between different inertial
coordinates are linear (i.e. that coordinate differentials transform in the same way
everywhere in space and time – spacetime is homogeneous), Einstein derived the
Lorentz transformation

t→ t′ = γ(t− vx)

x→ x′ = γ(x− vt)

y → y′ = y

z → z′ = z .

(1.59)

Taking (1.59) and demanding that Maxwell equations (1.47) retain their form, Ein-
stein found that the components Ei and Bi transform as

Ex → E′x = Ex

Ey → E′y = γ(Ey − vBz)

Ez → E′z = γ(Ez + vBy)

Bx → B′x = Bx

By → B′y = γ(By + vEz)

Bz → B′z = γ(Bz − vEy) .

(1.60)

9This is called the Lorenz gauge. Note that there is no “t”. The gauge is named after Ludvig
Lorenz, the transformations etc. after Hendrik Lorentz.
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Exercise. Check Einstein’s result by showing that, indeed, Maxwell equations
retain their form if you apply the transformations (1.59) and (1.60). (Hint: start with
the fact that Fαβ defined in (1.49) transforms with an inverse Lorentz transformation
matrix for each index.)

Hermann Minkowski, who had taught mathematics and mechanics to Einstein,
realised in 1907 that SR was not only a theory of relative space and time, it was also
a theory of absolute spacetime. We have followed the road in the opposite direction.
We started from absolute spacetime: from our point of view the Maxwell equations
are covariant under Poincaré symmetry because they live in Minkowski space, in-
stead of Minkowski space following from the covariance of Maxwell equations. From
this perspective, the association of the speed of light to SR is fortuitous. SR has a
maximum velocity for causal influence. Massless fields travel at this maximum ve-
locity. In particular this is true for electromagnetic waves, as shown by the Maxwell
equations (1.47). Since electromagnetic radiation is the first massless field known,
the maximum signal velocity c was identified with the speed of light. But light as
such, or its laws, has no fundamental role in SR. If the laws of electromagnetism
were modified by giving the photon a small mass, it would travel slower than c = 1,
but this would have no impact on SR.

In 1908 Minkowski expressed the radical new vision of spacetime as follows:

Henceforth space by itself, and time by itself, are doomed to fade away
into mere shadows, and only a kind of union of the two will preserve an
independent reality.

With GR, Einstein, Hilbert, and their coworkers took the next step and discovered
that spacetime is not a passive stage where the interactions of matter play out, but
a dynamical entity that interacts with matter and itself.
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