

Due on Monday February 9 by 14.15.

1. **Transformation rule of the connection coefficients.** Derive the transformation rule (3.6) of the connection coefficients.
2. **Rules for derivatives.** Show the following identities in a coordinate basis ($g \equiv \det(g_{\alpha\beta})$).
 - a) $g_{,\alpha} = gg^{\mu\nu}g_{\mu\nu,\alpha}$
 - b) $\Gamma_{\alpha\beta}^\alpha = \frac{1}{2}g^{-1}g_{,\beta} = (\ln \sqrt{-g})_{,\beta}$
 - c) $U^\alpha_{;\alpha} = (\sqrt{-g})^{-1}(\sqrt{-g}U^\alpha)_{,\alpha}$
 - d) $F^{\alpha\beta}_{;\beta} = (\sqrt{-g})^{-1}(\sqrt{-g}F^{\alpha\beta})_{,\beta}$, where $F^{\alpha\beta}$ is antisymmetric. Is this true if $F^{\alpha\beta}$ is symmetric?
 - e) $\square f \equiv g^{\alpha\beta}f_{;\alpha\beta} \equiv g^{\alpha\beta}f_{;\alpha;\beta} = (\sqrt{-g})^{-1}(\sqrt{-g}g^{\alpha\beta}f_{,\alpha})_{,\beta}$

3. **Euclidean connection.** The Euclidean metric is

$$ds^2 = \delta_{ij}dx^i dx^j$$

in Cartesian coordinates, i.e. $g_{ij} = \delta_{ij}$. Consider other coordinates $x'^i(x)$.

- a) Express g'_{ij} in terms of the partial derivatives

$$\frac{\partial x^i}{\partial x'^j}.$$

- b) The equation for a straight line is

$$\frac{d^2x^i}{d\lambda^2} = 0.$$

in Cartesian coordinates. (Are there any requirements for the curve parameter λ ?) Transform this equation into the new coordinates x'^i and compare to the geodesic equation. What are Γ_{jk}^i ?

4. **The merry-go-round connection.** Find the connection coefficients for the rotating coordinate system (for Minkowski space) of exercise 1.4.
5. **Parallel transport on a 2-sphere.** Consider a 2-sphere with the metric (a is a constant)

$$ds^2 = a^2(d\theta^2 + \sin^2\theta d\varphi^2).$$

- a) Show that lines of constant longitude ($\varphi = \text{constant}$) are geodesics, and that the only line of constant latitude ($\theta = \text{constant}$) that is a geodesic is the equator ($\theta = \pi/2$). (Hint: start by calculating the Christoffel symbols.)
- b) Take a vector with components $U^\alpha = (1, 0)$ and parallel transport it once around a circle of constant latitude. What are the components of the resulting vector, as a function of θ ?