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ABSTRACT
The early universe is characterized by a model based on three hypothesis:
homogeneity and isotropy, ordinary matter and standard gravity. But,
in this way, we obtain predictions that are in conflict with observations
because they cannot explain the late time expansion of the universe.
Then at least one of the three assumptions must be wrong. According to
ΛCDM, the agreement with data is restored by introducing a new term in
the Einstein equation. Depending on which side of the Einstein equation
this term is put in, we have two possibilities: to modify gravity or assume
the existence of dark energy. However, a valid alternative is provided by
constructing models in which inhomogeneities and/or anisotropies are
present. The effect of inhomogeneities/anisotropies on the expansion of
the universe is referred to as backreaction. For this reason, we study
inhomogeneous and anisotropic Szekeres models and spatially homoge-
neous but anisotropic Bianchi universes.
In this work we start by introducing the covariant formalism. Then we
describe the averaging procedure in the framework of Buchert’s approach
(considering only the dust case) and we obtain the Buchert equations,
from which we can define the backreaction variable. Finally we study
dust solutions of the Einstein field equation. First we analyze the Szek-
eres metric, then we pass to the Bianchi models. In a recent work by
M. Lavinto, S. Räsänen and S.J. Szybka the Szekeres metric has been
used to construct a Swiss Cheese dust model with Szekeres holes and
to prove that, under certain assumption, this model can provide a large
backreaction, i.e. inhomogeneity has a significant effect on the average
expansion rate of the universe.
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Chapter 1

Introduction

Cosmology is the branch of physics that studies the universe as a whole.
About 100 years ago, the prevailing view of the cosmos was that the
universe was static and consisted entirely of the Milky Way galaxy, but
soon started a revolution by means of observations by Leavitt, Hubble
and others which showed that the universe is actually expanding and
contains many distant galaxies.

In the twenties and thirties Friedmann, Lemaître and other theorists
managed to explain the expansion of the universe by using an exact solu-
tion of the Einstein field equation: the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric, that is based on the hypothesis of exact homo-
geneity and isotropy of the universe.

This expansion pointed to an extremely hot origin of the universe,
the Big Bang, and Gamow and others showed how this should leave a
thermal relic radiation, the cosmic microwave background (CMB), and
also how nucleosynthesis of the lights element would take place in the hot
early universe. However, it took many decades of observations to catch
up and confirm the theory and to lay the basis for further developments.

In the last few decades, cosmology has become an observationally
based physical science due to the growth in data from increasingly high-
precision experiments, e.g. the Cosmic Background Explorer (COBE),
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that detected the large-angle anisotropies in the CMB temperature, and
its successors, the Wilkinson Microwave Anisotropy Probe (WMAP) and
the Planck telescope.

While the measurements seem to indicate an early universe close
to homogeneity and isotropy (that can be described by a FLRW model
with linear perturbations), the observations of type Ia supernovae, CMB
anisotropies and large-scale structure provide data in disagreement with
the predictions obtained for the late time universe using the FLRWmodel
(this disagreement rests on observations of cosmological distances and
average expansion rate). The FLRW models can account for these ob-
servations only either consider modified gravity or introducing a new
form of energy with negative pressure, dark energy.

In general relativity the matter that fills the universe on a cosmic
scale is described through fluid dynamics.

Since Einstein’s theory does not tell us which kind of matter (i.e.
fluid) and which metric better characterize the universe, but we know
only that Einstein equation must be valid, then the particular cosmolog-
ical model provides us with this information.

The current “standard model of cosmology” is the inflationary cold
dark matter model with cosmological constant (ΛCDM). It describes
dark matter as being cold (i.e. made up of non-relativistic particles) and
it is based on a remarkably small number of cosmological parameters.

In this picture the universe looks like this. Approximately 13.8 billion
years ago the universe was in a very hot, dense, rapidly expanding state.
This initial state is often referred to as the Big Bang. Then a very short
period of rapid expansion, called inflation, follows. After the inflationary
epoch, the universe is described with ΛCDM model, using the FLRW
metric.

From the end of inflation up to the universe was 50000 years old we
had the radiation dominated era, because the density of radiation ex-
ceed the density of matter. When the universe was around 380000 years
old recombination occurred (i.e. electrons and protons started to form
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hydrogen atoms) and soon the photons decoupled from baryonic mat-
ter. Then the universe became transparent to photons, which constitute
the radiation we observe today, the CMB. After recombination era the
growth of baryonic structures could begin.

The epoch started when the universe was about 10 billion years old
(that lasts until today) is called the dark energy dominated era, because,
according to ΛCDM, the density of dark energy exceeds the density of
matter.

Figure 1.1: Illustration of evolution of the universe from the Big Bang
(left) according to WMAP observations. The time-coordinate increases
to the right.

In the framework of ΛCDM, dark energy is currently estimated to be
about 68% of the energy density of the present universe, dark matter is
considered to constitute the 27%, whereas the remaining 5% is due to
ordinary matter.

The early universe is characterized by a model based on three hy-
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pothesis: homogeneity and isotropy (FLRW metric), ordinary matter
(matter with non-negative pressure) and standard gravity. But, in this
way, we obtain predictions that are in conflict with observations because
they cannot explain the late time expansion of the universe. Then at
least one of the three assumptions must be wrong.

According to ΛCDM, the agreement with data is restored by intro-
ducing a new term in the Einstein equation. We have two possibilities:
we can insert it in the geometric side of the equation and consider it
a modification of the law of gravity, or we can include it in the matter
side. Both the aforementioned choices mean we have to discard one of
the three initial hypothesis: we must modify standard gravity or add
exotic matter, with negative pressure (dark energy), in addition to ordi-
nary matter. Several methods to modify gravity have been studied (even
if the use of cosmological constant is the easiest way of doing it) and we
have many candidates for dark energy too (for more details see [8] and
the references in it).

However, while trying to account for the late time expansion (which
is accelerating) of the universe, we did not consider a third hypothe-
sis: to construct models in which inhomogeneities and/or anisotropies
are present. In this way we can make predictions that fit observations
without modifying gravity or introducing dark energy.

This idea emerges from the fact that the late time (real) universe is
far from exact homogeneity and isotropy due to the formation of non-
linear structures, i.e. galaxies, clusters of galaxies, voids, etc. The effect
of inhomogeneities/anisotropies on the expansion of the universe is re-
ferred to as backreaction and is what we study in this work. Because of
backreaction, the average expansion rate can accelerate even in a dust
universe where the local expansion rate decelerates everywhere. The fact
that backreaction can provide acceleration is proved in some works by
S. Räsänen and others (see for example [35], [46], [47], [49] and [50]).

Any mathematical description of a physical system depends on an
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averaging scale that is usually not made explicit and the world looks
completely different depending on the scale of representation we choose.
For example, when a fluid is described as a continuum we are using an
averaging scale large enough to neglect the individual molecules, but, if
we shrink the averaging scale to the molecular one, then we should change
the description of the fluid and consider the individual molecules.

The same is true for cosmology and astronomy: the universe may
be statistically homogeneous and isotropic above a certain scale, but
on small and intermediate scales (up to several hundreds of Mpcs [38])
it is highly inhomogeneous, quite unlike a FLRW universe (see figure
1.2). Large-scale models of the cosmos (such as the standard model of
cosmology) are coarse-grained representations of what is actually there.
Then, an important issue for cosmology is how to relate the observations
with the homogeneous and isotropic models and whether the smaller
scale structures influence the dynamics of the universe on larger scales.

In cosmology usually we talk about an exactly homogeneous and
isotropic “background” on which galaxies and structures are seen as per-
turbations. Then the following question arise: is this the same as starting
with a more detailed truly inhomogeneous metric of spacetime and pro-
gressively smoothing it until we get to this background? The answer is
no. In fact the non-linearity of the Einstein equation ensures they are
not. Then the problem is whether the difference is important and this
has been subject of controversy. For example, Buchert’s approach (see [4]
and [39]) shows backreaction from inhomogeneity can potentially explain
the observed accelerating expansion of the universe without introducing
dark energy, but we should also mention that other physicists claim that
backreaction effect is completely negligible (see for instance [40], [41] and
[5]).

There are different approaches to compute the effects of backreaction.
Some of them consist on starting with an inhomogeneous model and
using an averaging process to produce an approximately FLRW model,
others calculate the backreaction effect perturbatively, by averaging over
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structure in the standard model.

Figure 1.2: Millenium simulation. The figure shows a projected density
field for a 15 Mpc/h thick slice of the redshift z=0 output. The overlaid
panels zoom in by factors of 4 in each case, enlarging the regions indicated
by the white squares. Yardsticks are included as well.

Now, let us give a description of the averaging problem.
The key difference between the averaged models and the standard

model is due to the fact the spatial average of a tensor field over a domain
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comoving with the fluid does not commute with the time evolution of
the tensor field, then we run into the non commutativity of the averaging
procedure and the introduction of the inhomogeneous quantities in the
Einstein equation.

In order to better explain this concept, we can start with a metric
glocalµν that gives a realistic description of the universe on a small scale
(we might represent individual stars and planets in the universe). By
averaging it (by means of a smoothing procedure) we find a metric ggalµν

at a bigger scale (for instance where galaxies are well represented but
individual stars are invisible). If we average this metric again to a further
bigger scale we obtain glssµν (in our example now only large scale structures
are considered). The largest scale possible (completely smoothed) will
be described by a FLRW model, with a metric gcosmµν , where all traces of
inhomogeneity have been removed. We will have similar averages for the
stress energy tensor Tµν.

Now, we can assume that Einstein equation holds at the “local scale”,
i.e. we have

Rlocal
µν −

1

2
Rlocalglocalµν + Λglocalµν = T localµν .

Since the averaging process does not commute with the Einstein equa-
tion, then at a larger (e.g. galaxies) scale we find

Rgal
µν −

1

2
Rgalggalµν + Λggalµν = T galµν + Egal

µν ,

where the new term Egal
µν is due to the non commutativity and it repre-

sents the effect of averaging out smaller scale structures.
For the other bigger scales there will appear similar terms Elss

µν and
Ecosm
µν . This is the backreaction from the small scales to the larger scales.
As outlined before, to compute the average of a quantity in the theory

of general relativity is a very involved problem: there are no preferred
time-slices we can average over, non-linearity of the Einstein equation
and the fact that we only know how to do the average of scalar quantities.
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For this, the problem of averaging inhomogeneous cosmologies has been
studied by many authors.

In this thesis we follow Buchert’s approach, by concentrating on aver-
aging scalars on spatial hypersurfaces1. In Newtonian gravity, an averag-
ing procedure is developed by T. Buchert and J. Ehlers in [42]. Another
approach to covariantly averaging was started and explored by R.M.
Zalaletdinov, see [5]. A further rigorous approach is based on the defor-
mation of the spatial metric of initial data sets along its Ricci flow (see
[43] and [44]). By following the work by M. Carfora and K. Piotrkowska
[7], in which a renormalization group approach to coarse-graining in cos-
mology has been studied, this method is a way of smoothing a spacetime
that can be linked to the standard renormalization group of effective field
theories.

Other methods to study backreaction (model building, perturbative
approaches) can be found in [5].

In this thesis we start (chapter 2) by introducing the 3 + 1 covariant
formalism and by giving a fluid dynamical description. We also summa-
rize some important results of general relativity. These are the basis for
what we study in the rest of the work.

The third chapter is dedicated to explain in detail what backreation
is in the Buchert’s approach. Here we treat only the dust case, since
this is what we are interested in. After a brief introduction, we describe
the averaging procedure and give the Buchert equations, from which we
obtain the expression for the backreaction variable. Finally we derive
the integrability condition, i.e. the relation between the evolution of the
spatial curvature and the backreaction.

Then we pass to describe dust solutions of the Einstein field equation.
In chapter 4, we study the Szekeres metric. This is the most gen-

eral known inhomogeneous dust solution: it describes an inhomogeneous
and anisotropic spacetime. The Lemaître-Tolman-Bondi (LTB) model

1We will give a complete description of this averaging method in chapter 3.
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is contained in the Szekeres metric as the spherically symmetric special
case. We first give the solutions of the Einstein equation for the Szekeres
metric and then its physical interpretation. After that, we calculate the
dynamical quantities. Finally, after a brief discussion of the LTB model,
we compute the average quantities and the backreaction variable.

The last chapter is focused on Bianchi models, which describe ho-
mogeneous but anisotropic universes. We start giving a modern clas-
sification of Bianchi models. Then we specialize in non-tilted Bianchi
models: after a general discussion of the spatially homogeneous model in
the synchronous system, we study all the different types of dust metrics,
with their properties.

The two appendices are dedicated to a classification of cosmologi-
cal models by means of their symmetries and to the original Bianchi’s
classification of metrics respectively.

Notations
• Spacetime indices are denoted by Greek letters (α, β, γ, . . . ) and

run from 0 to 3.

• Spatial indices are denoted by Latin letters (a, b, c, . . . ) and run
from 1 to 3.

• The metric tensor is denoted by gµν.

• The signature of the metric is (−+ ++).

• We use Einstein summation convention.

• We employ units such that the speed of light and the Newton
gravitational constant satisfy c = 1 = 8πGN

c2 .

• Symmetrization is denoted by round brackets, e.g. T(µν)
.
= 1

2 (Tµν + Tνµ).
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• Antisimmetrization is denoted by square brackets, e.g.
T[µν]

.
= 1

2 (Tµν − Tνµ).

• The partial derivative with respect to xµ is denoted by ∂µ or by a
comma, e.g. uν,µ = ∂µuν.

• The covariant derivative with respect to xµ is denoted by ∇µ or
by a semicolon, e.g. uν;µ = ∇µuν.
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Chapter 2

The covariant formalism

The goal of cosmology is to find a model in order to describe the universe
in the most suitable way. Moreover from any such model the observa-
tional predictions have to be extracted. Since Einstein field equations
are not particularly intuitive, they are usually splitted in a new set of
equations (by keeping their covariant character), introducing at the same
time directly measurable quantities.

In order to have a complete cosmological model, in addition to a
metric defined on a manifold, we must specify a family of observers
spread out in spacetime. The velocity of these observers is described
by a velocity vector field that gives rise to a family of preferred world
lines representing their motion.

By means of the velocity vector field we can split a tensor in its
parallel and orthogonal to the world lines parts. This is the so called 3+1
splitting of quantities. Moreover, the splitting is covariant because we
can define the velocity vector field uniquely and without any coordinates.

In this chapter, by following [1], [2], [3], [8] and [37], we summarize
the 3 + 1 covariant approach together with the evolution and constraint
equations that arise from Einstein equation (here we consider only the
dust case, for a more general description see the references given above).
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2.1 Curvature tensor
In general relativity, we describe spacetime as a manifold M on which is
defined a Lorentzian metric gµν.

The curvature of spacetime is described by the Riemann curvature
tensor, defined as

Rα
βγδv

β .
= (∇γ∇δ −∇δ∇γ) v

α , (2.1)

where vα is an arbitrary vector field. The Riemann tensor’s components
satisfy the following properties:

R[αβ][γδ] = Rαβγδ , (2.2a)
Rαβγδ = Rγδαβ , (2.2b)
Rα[βγδ] = 0 . (2.2c)

The Riemann tensor has twenty independent components1. Of these,
ten are the Ricci tensor’s components, while the remaining ten are the
Weyl tensor’s components, where the Ricci and Weyl tensors are defined
as

Rβδ
.
= Rα

βαδ = −Rα
βδα , (2.3)

Cαβγδ
.
= Rαβγδ −

(
gα[γRδ]β + gβ[γRδ]α

)
+

1

3
Rgα[γ gδ]β . (2.4)

In the last equation R is the Ricci scalar:

R
.
= Rα

α . (2.5)

The Ricci tensor is symmetric, i.e.

Rβδ = Rδβ . (2.6)
1In a n-dimensional manifold the number of algebraically independent components of the Rie-

mann tensor is 1
12n

2(n2 − 1).
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We can think of it as the trace part of the Riemann tensor Rαβγδ.
The Weyl tensor Cαβγδ has all the symmetries of the Riemann tensor

Rαβγδ and the following property:

Cαβ
αγ = 0 . (2.7)

We can think of it as the trace-free part of the Riemann tensor.
In general relativity, the Weyl tensor describes that part of the grav-

itational field that propagates into vacuum (is a solution of the vacuum
Einstein field equation) and is detectable outside the sources, gravita-
tional waves among other things.

The Ricci tensor Rβδ, instead, is determined locally at each point
by the energy-momentum tensor through the Einstein equation and it
vanishes identically in the vacuum case2.

The two tensors Cαβγδ and Rβδ completely represent the Riemann
curvature tensor Rαβγδ, which can be decomposed as

Rαβγδ = Cαβγδ − gα[δRγ]β − gβ[γRδ]α −
R

3
gα[γ gδ]β . (2.8)

2.2 Comoving coordinates
In cosmology we can make a physically motivated choice of preferred
motion due to the matter components (e.g. the CMB frame). Such a
choice corresponds to a preferred four-velocity field uµ that generates a
family of preferred world lines3.

To describe the spacetime geometry it is convenient to use comoving
coordinates, adapted to the fundamental world lines.

Comoving coordinates
(
t, xi

)
are defined by choosing a surface S

that intersects each world line only once and labelling the intersections
2As we can see from Einstein field equation (2.68), this is true only for vanishing cosmological

constant, otherwise, in the vacuum case, the Ricci tensor is proportional to the metric tensor.
3This family of preferred world lines is called a congruence (for the definition see [2, sec. 9.2]).
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by coordinates xi. Then we extend this labelling off the surface S by
maintaining the same tagging for the world lines at later and earlier
times. In this way the flow lines in spacetime are the curves xi = const
and t defines the time coordinate along the world lines.

There are two coordinate freedoms which preserve the form: time
transformations (t′ = t′

(
t, xi

)
, xi′ = xi), corresponding to a new choice

of time surfaces, and relabelling of the world lines (t′ = t, xi′ = xi
′ (
xi
)
),

by choosing new coordinates on the initial surface.
A particular and often convenient choice for the time coordinate t is

the normalized time s = s0 + τ , where τ is the proper time measured
along the fundamental world lines from the surface S and s0 is an arbi-
trary constant. With this choice, xµ =

(
s, xi

)
are normalized comoving

coordinates, s measuring the proper time from the surface S.
It is worth giving some quantities in terms of comoving coordinates.

2.2.1 Four-velocity
The preferred matter motion implies a preferred four-velocity at each
point. If the preferred world lines are given in terms of local coordinates
(xµ = xµ (τ)), then the preferred four-velocity is the unit timelike vector

uµ
.
=
dxµ

dτ
, (2.9)

where τ is the proper time along the world lines. The normalization is

uµu
µ = −1 . (2.10)

In normalized comoving coordinates4 xµ =
(
s, xi

)
equation (2.9)

becomes
uµ = δµ0 , (2.11)

4In the rest of this work we will refer to normalized comoving coordinates simply as comoving
coordinates, omitting the word “normalized”.
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where δµ0 is the Kronecker delta.
Throughout this work we use this particular choice of coordinates.

2.2.2 Time derivative and acceleration vector
The covariant time derivative along the flow lines of any tensor Sα...βγ...δ
is

Ṡα...βγ...δ
.
= uµ∇µS

α...β
γ...δ . (2.12)

Using the definition of covariant derivative, this can be written as

Ṡα...βγ...δ =
∂

∂τ
Sα...βγ...δ + uµΓαµνS

ν...β
γ...δ + . . .+ uµΓβµνS

α...ν
γ...δ

−uµΓνµγS
α...β

ν...δ − . . .− u
µΓνµδS

α...β
γ...ν . (2.13)

We define the acceleration vector u̇µ as

u̇µ = uν∇νu
µ (2.14)

=
∂

∂τ
uµ + uνΓµνρu

ρ .

The acceleration vector represents the degree to which the matter moves
under the influence of non-gravitational interaction and (2.14) vanishes
iff the flow lines are geodesic, if matter moves under inertia and gravity
alone (matter is in free fall).

In addition, from (2.14) and the normalization condition (2.10) it
follows that

u̇µuµ = 0 . (2.15)

In comoving coordinates, since uµ = δµ0, the acceleration vector can
be expressed in terms of the Christoffel symbols:

u̇µ = Γµ00 . (2.16)
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2.2.3 Volume element
Since (M, g) is a pseudo-Riemannian manifold by construction, we can
write the natural volume form as

η =
1

4!
εα1α2α3α4

√
|g|dxα1 ∧ dxα2 ∧ dxα3 ∧ dxα4

=
√
|g|dx1 ∧ dx2 ∧ dx3 ∧ dx4 , (2.17)

where g .
= det(gµν) < 0 and εα1α2α3α4

is the four-dimensional Levi-Civita
symbol.

Thus the four-dimensional volume element is

ηαβγδ =
1

4!
εαβγδ

√
|g| , (2.18)

so ηαβγδ = η[αβγδ].
From (2.18) we define the three-dimensional volume element:

ηαβγ
.
= ηαβγδu

δ , (2.19)

with the following properties

ηαβγ = η[αβγ] and ηαβγu
γ = 0 . (2.20)

2.3 Projection tensors
The existence of a preferred velocity at each point implies the existence
of preferred rest frames at each point; locally these define surfaces of
simultaneity for the fundamental observers.

We define unique projection tensors :

Uµν
.
= −uµuν (2.21)

and
hµν

.
= gµν + uµuν . (2.22)
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Tensor (2.21) projects parallel to the four-velocity vector uµ, while (2.22)
projects onto the instantaneous rest space of an observer moving with
four-velocity5 uµ.

The two tensors above satisfy the following properties:

Uµ
γU

γ
ν = Uµ

ν , Uµ
µ = 1 , Uµνu

ν = uµ , (2.23)
hµγh

γ
ν = hµν , hµµ = 3 , hµνu

ν = 0 . (2.24)

We also define a fully orthogonally projected covariant derivative ∇̂
for any tensor Sα...βγ...δ as

∇̂µS
α...β

γ...δ
.
= hαρh

λ
γ . . . h

β
σh

κ
δh

τ
µ∇τS

ρ...σ
λ...κ , (2.25)

with total projection on all free indices. The three-dimensional covariant
derivative ∇̂ is defined as operator in a three-dimensional manifold only
if the vorticity vanishes6. When vorticity in non-zero, ∇̂ is only an
operator in the tangent hyperplane at each point and not on a manifold.

Because of the definition (2.22) we can split the metric tensor in its
parallel and perpendicular to uµ parts, given by

gµν = hµν + Uµν = hµν − uµuν . (2.26)

In this way the interval ds2 can be decomposed as

ds2 = gµνdx
µdxν = hµνdx

µdxν − (uµdx
µ)2 . (2.27)

Finally we introduce the brackets 〈·〉 to denote the orthogonal pro-
jections of vectors and the orthogonally projected symmetric trace-free

5If we consider another four-velocity vector nµdifferent from uµ, we can construct two analogous
projectors (2.21) and (2.22). In general, the two observers, moving with four-velocity nµ and
uµ respectively, measure different values of the same physical quantity because of the different
projectors.

6For the definition of vorticity see section 2.4 and for an exhaustive discussion about its role see
[8, chapter 3].
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part of tensors

v〈µ〉
.
= hµνv

ν, S〈µν〉
.
=

[
h(µ

γh
ν)
δ −

1

3
hµνhγδ

]
Sγδ . (2.28)

The same brackets are also used to indicate orthogonal projections of
covariant time derivatives along uµ (called Fermi derivatives):

v̇〈µ〉
.
= hµν v̇

ν, Ṡ〈µν〉
.
=

[
h(µ

γh
µ)
δ −

1

3
hµνhγδ

]
Ṡγδ . (2.29)

2.4 The kinematic quantities
Referring to the previous section, we are now able to split the covariant
derivative of the four-velocity uµ into its irreducible parts, defined by
their symmetry properties7:

uµ;ν = ∇νuµ = −uνu̇µ + ∇̂νuµ = −uνu̇µ +
1

3
Θhµν + ωµν + σµν , (2.30)

where Θ is the expansion rate, ωαβ is the vorticity tensor and σαβ is the
shear tensor.

Before defining and giving the properties of the new quantities in-
troduced above, it is worth deriving a couple of useful equations (the
generalized Hubble law and the rate of change of relative distance).

Let us start denoting by γs (t) a smooth one-parameter family of time-
like curves (for each s ∈ R, the curve γs is a timelike curve, parametrized
by affine parameter t, see figure 2.1). The map (t, s) −→ γs (t) is
smooth, one-to-one and has smooth inverse.

7It is worth noting that in this work we define ωµν
.
= ∇̂[νuµ] (like [1] and [8]), while some authors

use a different convention. For instance, [3] uses ωµν
.
= ∇̂[µuν] and in this case instead of (2.30) we

have ∇µuν = −uµu̇ν + ∇̂µuν = −uµu̇ν + 1
3Θhµν + ωµν + σµν . Also in some other equations the

signs differ from ours.

21



Figure 2.1: A one-parameter family of geodesics γs, with tangent vector
uµ and deviation vector ηµ.

Let Σ denote the two-dimensional submanifold spanned by the curves
γs (t). We may choose s and t as coordinates of Σ. Then the vector field
uµ =

(
∂
∂t

)µ is tangent to the family of timelike curves and, thus, satisfies
uµ∇µu

ν = 0. The vector field ηµ =
(
∂
∂s

)µ represents the displacement
to an infinitesimally nearby timelike curve and is called the deviation
vector. These two vectors satisfy8:

uµ∇µη
ν = ηµ∇µu

ν . (2.31)

We obtain a relative position vector by using the projector (2.22):

ηµ⊥ = hµνη
ν (2.32)

and decompose it as
ηµ⊥ = δleµ , (2.33)

8For a full description see [2, p. 46].
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where δl is the relative distance for the family of world lines and eµ is
the relative direction vector, for which eµe

µ = 1 (thus ėµeµ = 0) and
eµu

µ = 0.
At this point we can express η̇µ⊥ in two ways:

η̇µ⊥ = uµ∇µη
ν = ηµ∇µu

ν (2.34)

and
η̇µ⊥ = δlėµ + δ̇leµ . (2.35)

By comparing these two expressions and projecting with eµ we get
the rate of change of relative distance (generalized Hubble law):

δ̇l

δl
=

1

3
Θ + σµνe

µeν . (2.36)

This equation, considered in a cosmological model, describes both isotropic
and anisotropic expansions.

Finally, matching (2.34) with (2.35) and using (2.30) and (2.36) we
obtain the following propagation equation:

ė〈µ〉 =
[
σµν −

(
σαβe

αeβ
)
hµν − ωµν

]
eν . (2.37)

This last expression is the rate of change of direction and it gives the
rate of change of position in the space of neighboring clusters of galaxies
with respect to an observer at rest in a local inertial frame.

Now we come back to the kinematic quantities introduced at the
beginning of this section.

2.4.1 Expansion rate
The scalar quantity Θ (expansion rate) is defined as the trace of the
velocity gradient:

Θ
.
= ∇µu

µ = ∇̂µu
µ , (2.38)
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where the last term comes out from (2.10) and (2.15).
In the case of pure expansion (σµν = 0 and ωµν = 0), from (2.36) the

rate of change of relative distance becomes

l̇

l
=

1

3
Θ , (2.39)

where we have defined a representative length l, while the rate of change
of direction becomes

ė〈µ〉 = 0 . (2.40)

So, if we consider a sphere of galaxies of radius dl at time t, at time
t+ δt, from (2.39), the distances to all of the galaxies have increased by

dl =
Θδlδt

3
, (2.41)

while their directions have all remained unchanged. Thus the galaxies
form a larger sphere (assuming Θ > 0) with each galaxy lying in the same
direction as before. Hence we have distortion-free expansion without any
rotation.

In other words, thinking of a sphere of fluid particles that changes
according to (2.39) during a small increment of proper time, Θ describes
the isotropic volume expansion of that sphere (see figure 2.2).

Figure 2.2: The expansion rate Θ describes the isotropic volume expan-
sion of a sphere of fluid particles that changes according to (2.39) during
a small increment of proper time.
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The quantity l, which represents completely the volume behavior of
the fluid, in a Friedmann-Lemaître-Robertson-Walker (FLRW) model
(where isotropy holds by construction) corresponds to the scale factor
a(t)9.
From it we can define the Hubble parameter as

H (t)
.
=
l̇

l
=

1

3
Θ . (2.42)

So the the Hubble parameter H (t) is the slope of the curve l (t). Let
us call Hubble constant the value H0

.
= H (t0) assumed today by this

parameter (t0 being the present age of the universe).
Finally, it is worth giving the expression of the expansion rate Θ in

comoving coordinates10, i.e.

Θ =
1√
|g|
∂0

(√
|g|
)

= ∂0

(
ln
√
|g|
)
, (2.43)

or, using Christoffel symbols11,

Θ = Γµµ0 . (2.44)

These two last expressions of Θ will be used in chapters 4 and 5.
Equation (2.43) is particularly useful for calculations when the metric

gµν is non-diagonal.
9For a review of FLRW model see [9].

10We can obtain (2.43) using either the expression for the divergence of a four-vector ∇µvµ =
1√
|g|
∂µ

(√
|g|vµ

)
or the expression of the covariant derivative in terms of the Christoffel symbols

and the property Γµνµ = ∂νg
2g = ∂ν

(
ln
√
|g|
)
.

11Equation (2.44) is obtained using the definition of covariant derivative in terms of Christoffel
symbols, i.e. ∇µuν = ∂µu

ν + uρΓνµρ.
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2.4.2 Vorticity
The vorticity tensor ωµν is defined as

ωµν
.
= ∇̂[νuµ] , (2.45)

i.e. it is the skew-symmetric part of the orthogonally projected covariant
derivative of the velocity vector field12.

In the case of pure vorticity (Θ = 0 and σµν = 0), the rate of change
of relative distance becomes

δ̇l

δl
= 0 , (2.46)

so all the relative distances are unchanged, while now the rate of change
of direction is

ė〈µ〉 = −ωµνeν . (2.47)
By definition, a rotation preserves all distances, so these relations show
that the change is a pure rotation. So the vorticity tensor ωµν determines
a rigid rotation of a fluid sphere of particles with respect to a local inertial
frame (see figure 2.3).

Figure 2.3: The vorticity tensor ωµν determines a rigid rotation of a fluid
sphere of particles with respect to a local inertial frame.

The vorticity tensor ωµν obeys the following properties:

ωµν = ω[µν] , ωµνu
ν = 0 , ωµµ = 0 . (2.48)

12See footnote 7 (chapter 2) for different definitions.
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It follows from (2.45) that the tensor ωµν has only three independent
components, then we can use without loss of generality the vorticity
vector, defined as

ωµ
.
=

1

2
ηµνρωνρ , (2.49)

from which we obtain the vorticity tensor by

ωµν = ηµνρω
ρ . (2.50)

From this equation, using the second expression in (2.20), we can see
that ωµ is orthogonal to the velocity uν, i.e.

ωµu
µ = 0 , (2.51)

and it is an eigenvector of ωµν with eigenvalue zero, i.e.

ωµωµν = 0 . (2.52)

This shows that the direction of the vorticity vector ωµ is the axis of
rotation of matter13.

We can also define a scalar quantity ω, the vorticity scalar, as14

ω
.
=

(
1

2
ωµνω

µν

) 1
2

= (ωµω
µ)

1
2 . (2.53)

In comoving coordinates, the vorticity tensor becomes

ω0µ = 0 , ωij = ∂[ju i] + u[j ∂0u i] , (2.54)

where ui = g0i.
If the vorticity vanishes, hµν is the (induced) effective metric tensor

for the surfaces of simultaneity for the fundamental observer.
13For more details about vorticity see [8, chapter 3].
14Note that ωµν = 0 ⇔ ωµ = 0 ⇔ ω = 0, i.e. the conditions of vanishing vorticity tensor,

vanishing vorticity vector and vanishing vorticity scalar are equivalent.
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2.4.3 Shear
The shear tensor is defined as the trace-free symmetric part of the or-
thogonally projected covariant derivative of the velocity vector field:

σµν
.
= ∇̂〈νuµ〉 = ∇̂(νuµ) −

1

3
Θhµν . (2.55)

In the case of pure shear (Θ = 0 and ωµν = 0), the rate of change or
relative distance becomes

δ̇l

δl
= σµνe

µeν , (2.56)

while for the rate of change of direction we have

ė〈µ〉 =
[
σµν −

(
σαβe

αeβ
)
hµν
]
eν . (2.57)

Since the shear tensor σµν is symmetric, we can always choose an or-
thonormal basis of shear eigenvectors in order to have σµν = diag (0, σ1, σ2,
σ3), where σ1 +σ2 +σ3 = 0. Then if there is expansion in the 1-direction
(σ1 > 0), there must be contraction in at least one other direction (say
σ2 < 0). If in this case we consider a sphere of fluid particles (in a cos-
mological model it could be a sphere of galaxies around the observer) at
time t, at time t + δt the distances to particles in the principal j-axis
direction will have change by

dl = σjδlδt (2.58)

and their direction (from eqn. (2.57)) unchanged. Thus the fluid par-
ticles form an ellipsoid, expanded in the 1-direction but contracted in
the 2-direction, with the same volume as before. Each fluid particle (or
galaxy) lying in a shear eigendirection will be in the same direction as
before; all the others will appear to have moved, but the average change
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of direction will be zero (see figure 2.4). Hence we have a pure distortion,
without rotation or change of volume of the sphere.

Figure 2.4: The shear tensor σµν describes a pure distortion, without
rotation or change of volume of the sphere.

From the definition of shear (2.55), we can easily obtain the following
properties:

σµν = σ(µν), σµνu
ν = 0, σµµ = 0 . (2.59)

As for the vorticity tensor, we can define a scalar quantity σ, the
shear scalar, as15

σ
.
=

(
1

2
σµνσ

µν

) 1
2

. (2.60)

In comoving coordinates the shear tensor can be written as16

σµ0 = 0 , σi j =
1

2
δi0∂0uj −

1

3
Γρρ0h

i
j + Γi00uj + Γij0 . (2.61)

2.5 Electric and magnetic Weyl tensors
In this section we give the decomposition of the Weyl tensor, writing it
also in comoving coordinates.

15Note that σ = 0 ⇔ σµν = 0.
16Where (2.22) and (2.25) have been used.
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The Weyl tensor can be split relative to the four-velocity uµ in two
parts: the electric and magnetic Weyl tensors. The former is defined as

Eαβ
.
= Cαγβδu

γuδ , (2.62)

and has the properties

Eα
α = 0 , Eαβ = E(αβ) , Eαβu

β = 0 , (2.63)

while the magnetic Weyl tensor is

Hαβ
.
=

1

2
ηαγδC

γδ
βνu

ν , (2.64)

for which

Hα
α = 0 , Hαβ = H(αβ) , Hαβu

β = 0 . (2.65)

Both Eαβ and Hαβ are, by construction, projected orthogonally to the
four-velocity uµ and they are what an observer with four-velocity uµ

measures. So if we consider an observer moving with a different four-
velocity, the Weyl tensor Cαβγδ is the same, but the values of Eαβ and
Hαβ are different.

In comoving coordinates the electric and magnetic Weyl tensors are

Eαβ = Cα0β0 , (2.66a)

Hαβ =
1

2
ηαγδC

γδ
β0 =

1

2
ηαγδg

γξgδψCξψβ0 . (2.66b)

Finally we give the expression of the Weyl tensor Cαβγδ in terms of
Eαβ and Hαβ

17:

C γδ
αβ = 4

(
u[αu

[γ + h
[γ

[α

)
E

δ]
β] +2ηαβκu

[γH δ]κ+2ηγδκu[αHβ]κ . (2.67)

17See [1, p. 87]
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2.6 Dynamics

2.6.1 Einstein field equation
In the theory of general relativity, the spacetime is specified once a metric
tensor gµν(xρ) is given. The behavior of the matter is described by the
energy-momentum tensor, whereas the Einstein field equation describes
the interaction between geometry and matter, i.e how matter determines
the geometry, which in turn determines the motion of matter.

The Einstein field equation is18:

Gµν
.
= Rµν −

1

2
Rgµν = Tµν − Λgµν , (2.68)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci
scalar, Tµν the energy-momentum tensor and Λ the cosmological con-
stant19.

Equation (2.68) is a set of coupled non-linear second order partial
differential equations for the components of the metric gµν.

Each tensor quantity in (2.68) possesses ten independent compo-
nents20, so in principle we have ten independent equations. Actually,
we have to consider four differential twice contracted Bianchi identities

∇µGµν = 0 . (2.69)

In this way the number of independent equations can be reduced to six
by the choice of the coordinates21.

18The cosmological constant Λ can be added to the left-hand side of the Einstein equation and
thus we consider it as a geometric term, but we can also add an identical term to the matter, on
the right-hand side of Einstein equation. This second choice is the vacuum energy case.
For vanishing cosmological constant the Einstein equation assumes the original form Gµν = Tµν .

19We have included the cosmological constant Λ for the sake of generality, but throughout this
work we consider only dust (see subsection 2.6.2.1) solutions of Einstein equation with Λ = 0.

20In the n-dimensional case the independent components of the metric, Einstein tensor and Ricci
tensor are 1

2n(n+ 1).
21See [2, p. 259, 260].
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Now, by taking the covariant derivative of the Einstein equation
(2.68), since ∇µgµν = 0 (∇µ is the derivative operator naturally as-
sociated with the metric gµν) and ∇µΛ = 0 (i.e. Λ is defined as constant
in space and time) we obtain22

∇µTµν = 0 . (2.70)

In the case Tµν = 0, the Einstein equation (2.68) reduces to the
vacuum field equation

R− 1

2
Rgµν + Λgµν = 0 . (2.71)

Contracting (2.71) with the metric we have

R = 4Λ , or equivalently Rµν = Λgµν . (2.72)

Examples of vacuum solutions are the Minkowski spacetime (used in
special relativity), the Schwarzschild solution (describing static black
holes) and the Kerr solution (for rotating black holes).

2.6.2 Energy-momentum tensor
The energy-momentum tensor Tµν enters in the Einstein field equation
(2.68) as the source term and it describes the properties of the matter
in spacetime.

The tensor Tµν can be decomposed relative to uµ in the following
form:

Tµν = ρuµuν + phµν + 2q(µuν) + πµν , (2.73)
where ρ is the total energy density of the matter relative to uµ, defined
as

ρ
.
= Tµνu

µuν , (2.74)
22Note that (2.70) means ∂µTµν = gµρΓγρµTγν + ΓγρνT

ρ
γ , where we have used the decomposition

of the covariant derivative in terms of Christoffel symbols ∇ρTµν = ∂ρTµν − ΓγρµTγν − ΓγρνTµγ .
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p is the isotropic pressure

p
.
=

1

3
Tµνh

µν , (2.75)

πµν is the trace-free anisotropic pressure, defined as

πµν
.
= Tγρh

γ
〈µh

ρ
ν〉 , (2.76)

and, finally, qµ is the relativistic momentum density (which represents
also the energy flux relative to uµ)

qµ
.
= −Tνρuνhρµ . (2.77)

Both the relativistic momentum qµ and the anisotropic pressure πµν are
orthogonal to uµ, i.e.

qµu
µ = 0 and πµνu

ν = 0 . (2.78)

Above we gave the full expression for the energy-momentum tensor,
but in this thesis only the case of dust (see subsection 2.6.2.1) is consid-
ered.

2.6.2.1 Particular fluids

Often we may consider a simpler form of the energy-momentum tensor
Tµν, instead of the full expression (2.73), to describe a particular physical
situation.
An interesting case is the perfect fluid one, especially its sub-case of dust
(at which we will refer in this work).

Perfect fluid

The energy-momentum tensor Tµν for a perfect fluid is given by23

Tµν = ρuµuν + phµν = ρuµuν + p (gµν + uµuν) . (2.79)
23Choosing in eqn. (2.73) qµ = 0 and πµν = 0.
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This is a good approximation when the momentum density qµ and
anisotropic pressure πµν are smaller with respect to the energy density
ρ and isotropic pressure p.

In this case the equation of state relates p to ρ, i.e. it has the form
p = p(ρ). For instance, the main component of the radiation content
of the universe (the CMB) can be represented as an ideal fluid with the
equation of state24

p =
1

3
ρ . (2.80)

Dust

This case refers to pressure-free matter (also called cold dark matter)
and it has the dynamical restrictions

p = qµ = πµν = 0 . (2.81)

Now, also the pressure p (in addition to qµ and πµν) is much smaller than
the energy density ρ, so the matter is represented only by its four-velocity
uµ and its energy density ρ > 0.

The expression (2.73) for the energy-momentum tensor Tµν now be-
comes

Tµν = ρuµuν . (2.82)

In this case, from (2.103), we have

ρ ∝ a−3 , (2.83)

and25
u̇µ = 0 . (2.84)

24See [1, p. 99].
25Equation (2.84) comes out from the following propagation equation, which derives from the

twice-contracted Bianchi identities (2.69): ∇̂µp = − (ρ+ p) u̇µ − q̇µ − ∇̂νπµν − 4
3Θqµ − σµνqν −

u̇νπ
µν + ηµνκωνqκ. For more details see [8, subsection 2.4.3].
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Moreover, in comoving coordinates (2.11) the energy-momentum ten-
sor for dust assumes the form:

Tµν = ρg0µg0ν . (2.85)

It is worth giving the expression of the Einstein equation (2.68) in the
dust case using comoving coordinates (at which we refer in this work):

Gµν
.
= Rµν −

1

2
Rgµν = ρg0µg0ν , (2.86)

in this way (2.68) reduces to the following system:
G00 = ρ

G0i = −ρg0i

Gij = ρg0ig0j

. (2.87)

We discuss the exact solutions to Einstein equation in the dust case
in chapters 4 and 5.

2.6.3 Riemann tensor
It is useful to give the (3 + 1)-decomposition of the Riemann tensor
Rαβγδ, that is26

Rαβ
γδ = Rαβ

P γδ +Rαβ
E γδ +Rαβ

H γδ , (2.88)

26Here P stands for perfect fluid part, E marks the part due to the electric Weyl curvature and
H the one due to the magnetic Weyl curvature.
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where27

Rαβ
P γδ =

2

3
ρ
(
u[αu[γh

β]
δ] + hα[γh

β
δ]

)
, (2.89a)

Rαβ
E γδ = 4u[αu[γE

β]
δ] + 4h

[α
[γE

β]
δ] , (2.89b)

Rαβ
H γδ = 2ηαβκu[γHδ]κ + 2ηγδκu

[αH β]κ . (2.89c)

The former term derives from the decomposition of the Ricci tensor,
while the latter two terms from the splitting of the Weyl tensor.

Here we gave the expression of (2.89a)-(2.89c) in the particular case
of dust with the cosmological constant Λ set to zero. For the general
expressions see [8, subsection 2.3.3].

2.7 Propagation and constraint equations
There are three sets of equations to be considered, resulting from Einstein
equation (2.68) and its associated integrability conditions. These three
sets come out from Ricci identities, Bianchi identities contracted once
and twice respectively28.

In all the equations we set Λ = p = qµ = πµν = 0, i.e. we consider
the dust case with zero cosmological constant.

2.7.1 Ricci identities
Let us start with the first set of equations, which arise from the Ricci
identities for the vector field uµ. Using the definition of Riemann tensor

27To get this splitting we have started from (2.8), i.e. from the decomposition of the Riemann
tensor in terms of the Weyl tensor Cαβγδ and the Ricci tensor Rαβ , and used (2.67) and the Einstein
equation (2.68) to express the Ricci tensor Rαβ in terms of the energy-momentum tensor (equation
(2.73)).

28Here we give only a brief description of how obtain them, for more details see [3] and [13].
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(2.1), these identities are:

2∇[γ∇δ]v
α = Rα

βγδv
β . (2.90)

Now, two classes of equations can be obtained: the propagation and
constraint equations by projecting (2.90) by means of the projection
tensors (2.21) and (2.22) respectively. Then every class can be further
split in three equations by separating out the trace, antisymmetric part
and symmetric trace-free part.

Propagation equations

Using the projection tensor (2.21) to project along the vector field uµ and
recalling (2.30), (2.68) and (2.73), we obtain three evolution equations
for the quantities Θ, ωµ and σµν respectively.

1. Separating out the trace, we get the Raychaudhuri equation:

Θ̇ +
1

3
Θ2 = −1

2
ρ− 2σ2 + 2ω2 . (2.91)

This is the basic equation of gravitational attraction and leads to
identification of ρ as the active gravitational mass density.

2. Taking the skew-symmetric part, we obtain the vorticity propaga-
tion equation:

ω̇α = −2

3
Θωα + σαβω

β , (2.92)

which is independent of the matter content and the Einstein equa-
tion (2.68).

3. Taking the spatially projected symmetric trace-free part, by means
of second of (2.28), and splitting the Riemann tensor as in (2.88),
we get the shear propagation equation:

σ̇〈αβ〉 = −2

3
Θσαβ − σ〈αγσ β〉γ − ω〈αω β〉 − Eαβ . (2.93)
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This equation shows that the Weyl tensor (which represents tidal
gravitational forces) induces shear through its electric part Eαβ,
which then feeds into Raychaudhuri and vorticity propagation equa-
tions, influencing the nature of the fluid flow.

Constraint equations

Using the projection tensor (2.22) to project (2.90) orthogonally to the
vector field uµ and recalling (2.30), (2.68) and (2.73), we obtain the three
following constraint equations.

1. Separating out the trace, we obtain the shear divergence con-
straint :

∇̂βσ
αβ =

2

3
∇̂αΘ− ηαβγ∇̂βωγ . (2.94)

2. Taking the antisymmetric part, we get the vorticity divergence con-
straint :

∇̂αω
α = 0 . (2.95)

3. Finally, separating out the spatially projected symmetric trace-
free part, by means of second of (2.28), and splitting the Riemann
tensor as in (2.88), we get the magnetic constraint :

Hαβ = ∇̂〈αωβ〉 + ηγδ〈α∇̂γσδ β〉 , (2.96)

which characterizes the magnetic Weyl tensor and is independent
of the matter content and Einstein equation (2.68).

2.7.2 Bianchi identities
The second set of equations arises from the fact that the Riemann tensor
satisfies the following Bianchi identities :

Rα
β[γδ;ε] = 0 , or ∇[εRγδ]αβ = 0 . (2.97)
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Now, inserting the splitting (2.8) of the Riemann tensor, using the Ein-
stein equation (2.68) and contracting (2.97) over the indices ε and δ, the
once contracted Bianchi identities are found to be

∇δCαβγδ +∇[αRβ]γ +
1

6
δγ[α∇β]R = 0 . (2.98)

We can then project it along the world lines originated by uµ and on the
orthogonal surfaces, to find two further propagation equations and two
further constraint equations.

Propagation equations

These two equations show how gravitational radiation arises29.

1. The electric propagation equation is:

Ėαβ = −ΘEαβ+3σ γuµ

〈α Eβ〉γ−
1

2
ρσαβ+ηγδ〈α

(
∇̂γH δ

β〉 − ωγH δ
β〉

)
.

(2.99)

2. The magnetic propagation equation is:

Ḣαβ = −ηγδ〈α
(
∇̂γE δ

β〉 − ωγH δ
β〉

)
−ΘHαβ + 3σ γ

〈α Hβ〉γ . (2.100)

Constraint equations

1. The electric constraint equation is:

∇̂βE
αβ = −3ωβH

αβ + ηαβγσβδH
δ

γ +
1

3
∇̂αρ , (2.101)

with source the spatial gradient of the energy density.
29See [3, p. 11].
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2. The magnetic constraint equation is:

∇̂βH
αβ = −3ωβE

αβ − ηαβγσβδE δ
γ + ρωα , (2.102)

with source the fluid vorticity.

2.7.3 Twice-contracted Bianchi identities
Finally, the last propagation equation arise from the twice contracted
Bianchi identities (2.69). Using the Einstein equation we obtain the
vanishing of the covariant derivative of the energy-momentum tensor, i.e.
(2.70). Inserting the expression of Tµν (2.73), using (2.30) and projecting
parallel to the four-velocity uµ by means of (2.21) we have

ρ̇ = −Θρ . (2.103)

40



Chapter 3

Average quantities and
backreaction in the dust
case

In this chapter we explain what backreaction is.
After a brief introduction in order to describe the physical idea that

underlies the concept of backreaction, we restrict ourselves to a universe
filled with irrotational dust. Then, we describe an averaging procedure
in order to introduce the Buchert equations, from which we define the
backreaction variable.

Some references for this chapter are [4], [8], and [14].

3.1 An introduction to backreaction
Observations of the cosmic microwave background (CMB) and large scale
structures have verified that the early universe is close to exact homo-
geneity and isotropy and it can be described by a FLRW model with lin-
ear perturbations. But then, at late times, the homogeneity and isotropy
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are broken because of the growth of non-linear structures.
However the universe appears to be homogeneous and isotropic when

averaged over sufficiently large scales, i.e. the universe is statistically
homogeneous and isotropic. So, if we take a box anywhere in the universe
larger than the homogeneity scale, the mean quantities inside it do not
depends on its location, orientation or size. In this way we can study the
average quantities, instead of the local ones.

Physically we should first plug the inhomogeneous quantities into
the Einstein equation and then take the average. In fact, because the
Einstein equation is non-linear, these two procedures are not equivalent,
i.e. the operations of time evolution and averaging do not commute.

The fact that the average evolution of a clumpy space is not the same
of a smooth space is referred to as backreation.

The aim of this work is to list all the exact solutions of the Einstein
equation (2.68) with the cosmological constant Λ and the vorticity ωµν
set to zero. Then in this chapter we consider only the case of irrotational
dust. For a description of the average procedure in the general case of
matter with non-zero vorticity see [8, section 4.3].

3.2 Irrotational dust
Let us start describing the universe considering the matter as dust1. In
this case the energy-momentum tensor Tµν has the form

Tµν = ρuµuν, (3.1)

i.e. we are assuming that the energy density of matter dominates every-
where over the pressure, the anisotropic stress and the energy flux. In
this way (we have chosen the pressure to be zero) the fluid elements do
not interact each other, the motion is then geodesic and the four-velocity
uµ is a tangent vector to timelike geodesics, i.e. u̇µ = 0.

1See subsection 2.6.2.1.
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From Frobenius’ theorem2 we know that if and only if the vorticity is
zero, the tangent spaces orthogonal to uµ form spatial hypersurfaces and
provide a foliation that fills the spacetime exactly once. If the vorticity
is non-zero, the hypersurfaces of constant proper time are no longer
orthogonal to the fluid flow.

In this thesis the case ωµν = 0 have been studied. Vorticity con-
tributes positively to acceleration Θ̇ and setting it to zero gives a lower
bound to acceleration, which in the irrotational case is always non-
positive (see (2.91)).

3.3 Defining the average
Before defining the backreaction variable, we have to define a procedure
of averaging.

Taking the average of quantities in general relativity is an involved
issue. The metric is a dynamical variable and it enters non-linearly in
the Einstein equation (2.68). Moreover, if the vorticity ωµν vanishes then
we have a three-dimensional space to average on, but in the general case
of non-zero vorticity none of these (local) three-dimensional spaces is
preferred.

In this subsection we follow [8, subsection 4.2.1] and [19]. So the
spatial average 〈f〉 of a scalar quantity f is defined as

〈f〉 (t) .
=

´
t fη´
t η

, (3.2)

i.e. it is the integral of f over the hypersurface of constant proper time
t orthogonal to uµ , divided by the volume of the hypersurface.
In (3.2) η is the volume form of the spatial hypersurface considered and,

2For an exhaustive discussion on Frobenius’ theorem see [2, p. 434-436] and [8, chapter 3].
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recalling subsection 2.2.3, it is written as

η =
√
|(3)g|dx1 ∧ dx2 ∧ dx3 , (3.3)

where (3)g is the determinant of the metric (3)gµν on the hypersurface of
constant proper time t.

In the case of irrotational dust the metric (3)gµν coincides with the re-
striction of the projector hµν, defined in (2.22), to the three-dimensional
hypersurface of averaging.

Now, defining the scale factor a (t) as the volume of the hypersurface
of constant proper time to the power 1

3 , i.e.

a (t)
.
=

( ´
t η´
t0
η

) 1
3

, (3.4)

where a (t) has been normalized to unity at time t0 (which we take to be
today), the average expansion rate 〈Θ〉 turns out to be

〈Θ〉 (t) .
=

´
t Θη´
t η

=
∂t
´
t η´

t η
= 3

ȧ

a
. (3.5)

The Hubble parameter in now defined as3

H (t)
.
=
ȧ (t)

a (t)
. (3.6)

The last important thing to say is that, as stated in section 3.1, the
time evolution and the average procedure do not commute. Then we
have the following commutation rule:

∂t
〈
f
〉

=
〈
ḟ
〉

+
〈
fΘ
〉
−
〈
f
〉〈

Θ
〉
. (3.7)

3See the relation (2.42).
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To prove this equation let us take the derivative with respect to the time
t of the definition (3.2) of spatial average of the quantity f :

∂t 〈f〉 = ∂t

(´
t fη´
t η

)
=
∂t
(´

t fη
)

´
t η

− 〈f〉
∂t
(´

t η
)

´
t η

. (3.8)

Now, since from eqn. (3.5) we have

∂t

(ˆ
t

η

)
= 〈Θ〉 (t)

ˆ
t

η , (3.9)

and
∂t

(ˆ
t

fη

)
=

ˆ
t

(∂tf) η +

ˆ
t

fΘη , (3.10)

using definition (3.2) again, we get (3.7) from (3.8).

3.4 The Buchert equations
In section 2.7, a set of propagation and constraint equations have been
obtained from Einstein equation (2.68) in the dust case. It is worth
writing the corresponding equations for averaged quantities (we are in-
terested in the overall geometry).

3.4.1 The scalar equations
Only scalar quantities can be straightforwardly averaged in a curved
spacetime, so let us consider the scalar part of the Einstein equation
(2.68).

The only equations we are interested in are the Raychaudhuri equa-
tion (2.91), the continuity equation (2.103) and the Hamiltonian con-
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straint, i.e. respectively4

Θ̇ +
1

3
Θ2 = −1

2
ρ− 2σ2 , (3.11)

ρ̇+ Θρ = 0 , (3.12)
1

3
Θ2 = ρ− 1

2
(3)R + σ2 , (3.13)

where (3)R is the Ricci scalar on the three-dimensional space orthogonal
to uµ.

Equations (3.11) and (3.13) are local generalizations of the Friedmann
equations5, while equation (3.12) shows that mass is conserved (because
the energy density is proportional to the inverse of the volume).

3.4.2 Buchert equations and backreaction
Let us now take the average of the equations (3.11)-(3.13), using the
procedure outlined in subsection 3.3. Recalling the commutation rule
(3.7) and the relation (3.6), we obtain the Buchert equations :

3
ä

a
= −1

2

〈
ρ
〉

+Q (averaged Raychaudhuri eqn.) , (3.14)

∂t
〈
ρ
〉

+ 3
ȧ

a

〈
ρ
〉

= 0 (averaged continuity eqn.) , (3.15)

3
ȧ2

a2
=
〈
ρ
〉
− 1

2

〈
(3)R

〉
− 1

2
Q (averaged Hamiltonian constr.) .

(3.16)

In these equations, Q is the backreaction variable, defined as

Q .
=

2

3

(〈
Θ2
〉
−
〈
Θ
〉2
)
− 2
〈
σ2
〉
, (3.17)

4All these three equations have been written in the case of irrotational dust, i.e. setting vorticity
to zero in (2.91) and (2.103).

5See [8, appendix A] and [9].
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and it contains the effects of inhomogeneities and anisotropies.
The Buchert equations differ from the Friedmann equations6 in two

ways. First of all, here the scale factor is the total volume of a region
(as follow from its definition (3.4)), so it is not part of the metric and
it does not describe the local behavior of the space like in the FLRW
case. Second, they are different from a mathematical point of view,
in the sense that they include the backreaction term Q, which does not
appear in in the Friedmann equations. This new term expresses the non-
commutativity of time evolution and averaging and it allows acceleration
and a non-trivial evolution of the average spatial curvature.

So, the Buchert equations are the generalization of the Friedmann
equations to an inhomogeneous dust universe.

As we can see from (3.17), the variable Q has two parts: the variance
of the expansion rate and the average of the shear scalar.

The average of the shear scalar is also present in the local equations.
Since it is always negative, it acts to decelerate the expansion, unless
in the case of homogeneous and isotropic spacetime that it vanishes. In
contrast, the variance of the expansion rate has no local counterpart.
It also vanishes if the expansion is homogeneous, but if not, being a
variance, this term is always positive, so it accelerates the expansion.

So, from (3.14) we can see that, if the variance is sufficiently large
compared to the shear and the energy density, the average expansion
rate accelerates even though the Raychaudhuri equation (3.11) shows
that the local expansion rate decelerates everywhere. This is precisely
the way backreaction provides acceleration, which in the homogeneous
and isotropic case requires the presence of either dark energy or the
cosmological constant.

6For the Friedmann equations see [8, appendix A.2] or [9].
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3.4.3 The integrability condition
The averaged Raychaudhuri equation (3.14) and the averaged Hamilto-
nian constraint (3.16) form an underdetermined system: we have in fact
three unknown variables, a (t),

〈
(3)R

〉
(t) and Q (t).

We need then another condition, which can be obtained taking the
time derivative of the averaged Hamiltonian constraint (3.16) and plug
into the result both equation (3.14) and (3.16). In this way we get the
following relation between the average spatial Ricci scalar

〈
(3)R

〉
and the

backreaction Q:

∂t
〈

(3)R
〉

+ 2
ȧ

a

〈
(3)R

〉
= −∂tQ− 6

ȧ

a
Q . (3.18)

Equation (3.18) is a necessary integrability condition between equa-
tions (3.14) and (3.16). So, in general, the evolution of backreation Q
influence the evolution of the average spatial Ricci scalar

〈
(3)R

〉
and

vice-versa.
There are three interesting particular solutions of the variablesQ and〈

(3)R
〉
, expressed as function of a (t):

1. considering a spatially flat on average portion of the universe,〈
(3)R

〉
= 0, and solving equation (3.18) we have:

Q = Q (t0) a
−6 ; (3.19)

2. if the backreaction vanishes, i.e. Q = 0, then〈
(3)R

〉
=
〈

(3)R
〉

(t0) a
−2 , (3.20)

where a (t) is given by the Friedmann equations. Here we are
describing a system which is FLRW on average, i.e. the effects of
inhomogeneities compensate each other and backreaction is zero;
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3. the two prior solutions give a solution of (3.18) in the case of non-
vanishing backreation Q and non-vanishing average spatial Ricci
scalar

〈
(3)R

〉
:

Q = Q (t0) a
−6 and

〈
(3)R

〉
=
〈

(3)R
〉

(t0) a
−2 . (3.21)

Here we have independent evolution of the backreaction variable Q
and the average spatial Ricci scalar

〈
(3)R

〉
(both sides of equation

(3.18) vanish).
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Chapter 4

Szekeres models

The Szekeres metric is an exact inhomogeneous and anisotropic dust
solution of the Einstein equation (2.68) and it has no Killing vector fields
(and then no symmetries). We write this metric in comoving coordinates.

The Lemaître-Tolman-Bondi (LTB) model is contained in the Szek-
eres metric as the spherically symmetric special case.

We first give the solutions of the Einstein equation for this metric and
then its physical interpretation. After that, we calculate the dynamical
quantities for the Szekeres metric.

Finally, after a brief discussion of the LTB model, we compute the
average quantities and the backreaction variable (3.17).

The Szekeres metric has been used in [48] to construct a Swiss Cheese
dust model with Szekeres holes. In that paper the authors have proven
that, under certain conditions, the average expansion rate is close to the
FLRW model, but if one of the assumptions is violated then the first
statistically homogeneous and isotropic solution in which inhomogeneity
has a significant effect on the average expansion rate (i.e. backreaction
is large) has been built.

In all this chapter we follow [14], [16], [20] and [23].
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4.1 Szekeres metric

4.1.1 Einstein equation’s solutions
The Szekeres metric is

ds2 = −dt2 +X2 (t, r, p, q) dr2 + A2 (t, r, p, q)
(
dp2 + dq2

)
, (4.1)

where

X2 (t, r, p, q) =

(
R′ −RE′

E

)2

ε+ f
and A2 (t, r, p, q) =

R2

E2
. (4.2)

In (4.2) ′ ≡ ∂
∂r , ε = 0, ±1, f = f (r) ≥ −ε is an arbitrary function

of r, R = R (t, r) and the function E is given by

E (r, p, q) =
S

2

{(
p− P
S

)2

+

(
q −Q
S

)2

+ ε

}
, (4.3)

where S = S (r), P = P (r), Q = Q (r) are arbitrary functions and ε is
the same of (4.2). When ε ≥ 0, the range of values of the coordinates p
and q is −∞ < p, q < +∞, for the ε = −1 case see [20] and [23].

The factor ε determines whether the p - q two-surfaces are spherical
(ε = +1), pseudospherical (ε = −1), or planar (ε = 0). So it determines
how the constant r two-surfaces foliate the three-dimensional spatial sec-
tion of constant t.

The function E (4.3) determines how the coordinates (p, q) map onto
the unit two-sphere (plane, pseudosphere) at each value of r. At each r
these two-surfaces are multiplied by the areal “radius” R = R (t, r) that
evolves with time. Thus the r - p - q three-surfaces are constructed out of
a sequence of two-dimensional spheres (pseudospheres, planes) that are
not concentric, since the metric component g11 depends on p and q, but
also on r and t.
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The two relations (4.2) can be obtained by means of the Einstein
equation for dust (2.87).

Now, let us start from the diagonal components of the Einstein equa-
tions (2.87): {

G00 = ρ

Gii = 0
. (4.4)

Inserting in (4.4) the explicit form for the Einstein tensor we obtain
the following four equations:

ρ =
2ȦẊ

AX
+

(∂pA)2

A4
+

(∂qA)2

A4
−
∂2
pX

A2X
−
∂2
qX

A2X
− 2A′′

AX2

+
2A′X ′

AX3
−
∂2
pA

A3
−
∂2
qA

A3
+
Ȧ2

A2
− (A′)2

A2X2
, (4.5a)

0 = −(∂pA)2X2

A4
− (∂qA)2X2

A4
− 2ÄX2

A
+

(
∂2
pA
)
X2

A3

+

(
∂2
qA
)
X2

A3
− Ȧ2X2

A2
+

(A′)2

A2
, (4.5b)

0 = −AȦẊ
X

+
(∂pA) (∂pX)

AX
− (∂qA) (∂qX)

AX
− AÄ

+
AA′′

X2
− AA′X ′

X3
+
∂2
qX

X
− A2Ẍ

X
, (4.5c)

0 = −AȦẊ
X
− (∂pA) (∂pX)

AX
+

(∂qA) (∂qX)

AX
− AÄ

+
AA′′

X2
− AA′X ′

X3
+
∂2
pX

X
− A2Ẍ

X
, (4.5d)
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where ˙ = ∂
∂t .

From (4.5b), using (4.2) and (4.3) and calculating explicitly all the
derivatives, we get

2RR̈ + Ṙ2 = f . (4.6)
By the integration of (4.6), we see that the function R satisfies the

Friedmann equation for dust:

Ṙ2 =
2M

R
+ f , (4.7)

where M = M (r) is another arbitrary function of the coordinate r.
From (4.7) it follows that the acceleration of R is negative

R̈ = −M
R2

. (4.8)

Equation (4.7) shows that the evolution of R depends on the value
of f . It can be:
• hyperbolic, f > 0:

R =
M

f
(cosh η − 1) , (4.9)

sinh η − η =
f

3
2σ (t− a)

M
; (4.10)

• parabolic, f = 0:

R =

[
9M (t− a)2

2

] 1
3

; (4.11)

• elliptic, f < 0:

R =
M

(−f)
(1− cos η) , (4.12)

η − sin η =
(−f)

3
2 σ (t− a)

M
. (4.13)
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In the expressions above we have introduced the last arbitrary function
a = a (r), giving the local time of the big bang or big crunch R = 0, and
σ = ±1 allows time reversal.

The six arbitrary functions f , M , a, S, P and Q give us five func-
tions to control the physical inhomogeneity, plus a coordinate freedom
to rescale r. The behavior of R (t, r) is identical to that in the LTB
model1.

Finally, from (4.5a), using also (4.5c) and (4.5d), doing again the
same procedure that brought to (4.6) and plugging (4.7) and (4.8) into
the result, we obtain the following expression for the density:

ρ =
2
(
M ′ − 3ME′

E

)
R2
(
R′ − RE′

E

) . (4.14)

Singularities

We can see that the bang or the crunch occur when R = 0, so when
t = a or t = 2πM

(−f)
3/2

+ a, and the density (4.14) is here divergent.

From (4.14) we can also see that there are singularities at R′ =
RE′

E and M ′ = 3ME′

E , when shell crossings happen, i.e. when surfaces
(“shells”2) of different values of r intersect.

Special cases

As already stated, the LTB model is a subcase of the Szekeres one, in
particular it is the spherically symmetric special case ε = +1, E ′ = 0.

In the vacuum case we have
(
M ′ − 3ME′

E

)
= 0, which implies E ′ =

M ′ = 0 ⇒ S ′ = P ′ = Q′ = 0. For M 6= 0, this gives pseudospherical
and planar equivalents of the Schwarzschild metric.

1For a description of the LTB model see section 4.3.
2We call the comoving surfaces of constant r “shells” and paths that follow constant p and q

“radial”. However, the shells are quite different from spheres.
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Finally, the null limit is obtained by taking, after a suitable transfor-
mation, f → ∞. In this limit the “dust” particles move at light speed
and the metric becomes a pure radiation Robinson-Trautman metric of
Petrov type D3.

4.1.2 Physical restrictions
Here we describe the physical restrictions of the Szekeres metric (4.1).

First of all, the metric should remain Lorentzian, i.e. (−, +, +, +),
so we must have ε + f ≥ 0. In particular ε + f > 0 and R′ − RE′

E 6= 0,
while ε+ f = 0 where R′ = RE′

E .
Obviously, pseudo-spherical foliations require f ≥ 1 and then are

only possible for regions with hyperbolic evolution (f > 0). In the
same way, planar foliations are allowed only for regions with parabolic
or hyperbolic evolution (f ≥ 0), while spherical foliations are possible
for all f ≥ −1.

Second, the metric should be non-degenerate and non-singular, ex-
cept at the bang or crunch. For a well behaved r coordinate we do need
to specify

0 <

(
R′ −RE′

E

)2

ε+ f
<∞ . (4.15)

Failure to satisfy this requirement may only be due to a bad choice of
coordinates, so there should exist a choice of the coordinate r for which
it holds.

The density should be non-negative and this adds the following re-
striction:

0 ≤
M ′ − 3ME′

E

R′ − RE′

E

<∞ . (4.16)

3For a discussion on the Petrov classification see [15, p. 48], while for the Robinson-Trautman
pure radiation field see [15, p. 435].
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Then we choose R ≥ 0, M ≥ 0 and S > 0 (but the sign of S, and
hence of E, can be flipped without changing the metric signature).

Finally, the various arbitrary functions should have sufficient conti-
nuity (C1 and piecewise C3) except possibly at a spherical origin.

4.1.3 Physical interpretation
The role of R

The factor R2 multiplies the unit sphere or pseudo-sphere both in the
metric (4.1) and in the area integral A = R2

´
1
E2dpdq, and therefore

determines the magnitude of the curvature of the constant (t, r) surfaces.
We can see it as an “areal factor” or a “curvature scale”. However, when
ε < 0 it is not at all like a spherical radius.

The role of M

If we look at (4.7) we see that M looks like a mass in the gravitational
energy term, in particular, for ε = +1, M (r) it is simply the gravita-
tional mass contained within a comoving “radius” r. However, this last
interpretation is geometrically and physically correct only in the qua-
sispherical model, where the surfaces of constant r are non-concentric
spheres enclosing a finite amount of matter. But for ε ≤ 0, since the
constant t and r surfaces are not closed, R is not the spherical radius
and M is not a total gravitational mass.

The role of f

In (4.7) f (r) represents twice the total energy per unit mass of the
particles in the shells of matter at constant r.

Moreover, it also determines the geometry of the spatial sections at
constant t. In the quasispherical case (ε = +1) this three-space becomes
Euclidean when f = 0. In the quasi-pseudospherical case (ε = −1),
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instead, when f = 0 it becomes flat but pseudo-Euclidean (the signature
is (−, +, +)). In the quasiplanar case the value f = 0 is not possible,
so we do not have any flat three-dimensional subspace4.

The role of E

Here we give only a brief explanation (without any proof) of the role
of E. For a complete description see [20, sections II.E and III ] or [23,
section 3].

In the spherical and pseudospherical cases, the factor E′

E determines
the dipole nature of the shells at constant r (when ε = −1 we have the
pseudospherical equivalent of a dipole). When ε = 0 (planar case) the
effect of E′

E is to tilt adjacent shells relative to each other, with the only
zero tilt case (E ′ = 0) free of shell crossings.

Moreover, the shell separation is regulated by the factor E′

E .
Finally, we can see from (4.14) that E′

E affects also the density distri-
bution on each shell5.

4.2 Metric properties
Now, following chapter 2, we calculate all the dynamical quantities for
the Szekeres metric.

We use comoving coordinates, i.e. the four-velocity of the matter
particles is uµ = δµ0.

4For more details on the quasiplanar case see [20, section V].
5For more details about the influence of E

′

E on the density see [20, section VIII.D].
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4.2.1 Acceleration vector
The expression for the acceleration vector aµ in comoving coordinates is
(2.16):

aµ ≡ u̇µ = Γµ00 .

We need then the following Christoffel symbols: Γ0
00, Γ1

00, Γ2
00 and

Γ3
00.
Using the general expression

Γρµν =
1

2
gρλ (∂µgλν + ∂νgµλ − ∂λgµν) , (4.17)

and the metric (4.1)

gµν =


−1 0 0 0

0

(
R′−RE

′
E

)2
ε+f 0 0

0 0
(
R
E

)2
0

0 0 0
(
R
E

)2

 , (4.18)

with its inverse

gµν =


−1 0 0 0

0 ε+f

(R′−RE′E )
2 0 0

0 0
(
E
R

)2
0

0 0 0
(
E
R

)2

 , (4.19)

we get

Γ0
00 = 0 , (4.20a)

Γ1
00 = 0 , (4.20b)

Γ2
00 = 0 , (4.20c)

Γ3
00 = 0 . (4.20d)
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So the acceleration vector aµ vanishes for all µ (as we expected, be-
cause the Szekeres metric is a dust solution of the Einstein equation):

aµ = 0 ∀µ , (4.21)

and the motion of the matter particles is geodesic.

4.2.2 Expansion rate
For the expansion rate Θ in comoving coordinates we use (2.44), which
we rewrite here:

Θ = Γµµ0 .

We see then that the only Christoffel symbols we need to calculate
the expansion rate Θ are Γ0

00, Γ1
10, Γ2

20 and Γ3
30.

Using the general expression (4.17) and the metric (4.18) with its
inverse (4.19), these symbols are:

Γ0
00 = 0 , (4.22a)

Γ1
10 =

Ṙ′ − ṘE′

E

R′ − RE′

E

, (4.22b)

Γ2
20 =

Ṙ

R
, (4.22c)

Γ3
30 =

Ṙ

R
. (4.22d)

Then the expansion rate Θ is:

Θ =
Ṙ′ − 3 ṘE

′

E + 2 ṘR
′

R

R′ − RE′

E

. (4.23)
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4.2.3 Vorticity
For convenience, here we write again the expression of the vorticity tensor
ωµν in comoving coordinates (2.54):

ω0µ = 0 , ωij = ∂[ju i] + u[j ∂0u i] .

Since ui = g0i and from (4.18) g0i = 0, we see that the vorticity ωµν
always vanishes:

ωµν = 0 ∀µ, ν . (4.24)

So we are dealing with a geodesic (equation (4.21)) and rotation free
flow.

4.2.4 Shear
The shear tensor σµν in comoving coordinates is (2.61):

σµ0 = 0 , σi j =
1

2
δi0∂0uj −

1

3
Γρρ0h

i
j + Γi00uj + Γij0 .

Recalling that uj = g0j, using (4.18) and its inverse (4.19), all the
Christoffel symbols calculated above and the fact that Γij0 = 0 for i 6= j
(from (4.17)), we obtain the following diagonal form for the shear σµν:

σµν =

[
Ṙ′ − ṘR′

R

3
(
R′ − RE′

E

)] diag (0, 2, −1, −1) . (4.25)

As we can see from the definition of the backreaction variable (3.17),
it is useful to give the square of the shear σ2, defined as in (2.60). We
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have:

σ2 .
=

1

2
σµνσ

µν

=
1

2

(
σ00σ

00 + σ11σ
11 + σ22σ

22 + σ33σ
33
)

=
1

3

(
Ṙ′ − ṘR′

R

R′ − RE′

E

)2

. (4.26)

4.2.5 Electric and magnetic Weyl tensors
Finally, let us consider the expressions of the electric and magnetic Weyl
tensors in comoving coordinates (2.66a) and (2.66b):

Eαβ = Cα0β0 ,

Hαβ =
1

2
ηαγδC

γδ
β0 =

1

2
ηαγδg

γξgδψCξψβ0 .

From these relations we see that we are interested only in the com-
ponents Cα0β0 and Cξψβ0 of the Weyl tensor. After determining them,
the only ones that differ from zero are:

C1010 = −
2M

(
R′ − RE′

E

) (
R′ − M ′R

3M

)
(ε+ f)R3

, (4.27a)

C2020 =
M
(
R′ − M ′R

3M

)
E2R

(
R′ − RE′

E

) , (4.27b)

C3030 =
M
(
R′ − M ′R

3M

)
E2R

(
R′ − RE′

E

) . (4.27c)
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So, the electric Weyl tensor is6

Eα
β =

[
M
(
R′ − M ′R

3M

)
R3
(
R′ − RE′

E

)] diag (0, −2, 1, 1) , (4.28)

whereas the magnetic Weyl tensor always vanishes:

Hαβ = 0 ∀α, β . (4.29)

4.3 The Lemaître-Tolman-Bondi model
Before starting to calculate the average of the quantities estimated in
the previous section, let us describe the Lemaître-Tolman-Bondi (LTB)
model7.

As stated in subsection 4.1.1, the LTB model is a subcase of the
Szekeres metric with ε = +1 and E ′ = 0.

Following [33], let us consider a spherically symmetric dust universe
with radial inhomogeneities as seen from our location at the center. By
choosing comoving coordinates (the spatial origin xi = 0 is the symmetry
center), the line element assumes the following form:

ds2 = −dt2 +X2 (t, r) dr2 +R2 (t, r)
(
dθ2 + sin2 θdϕ2

)
. (4.30)

Now we want to determine the functions X (t, r) and R (t, r).
6Here, for convenience, the electric Weyl tensor has been written raising the first index α:

Eαβ = gαξCξ0β0.
7For a complete discussion on the LTB model see [33] and [34].
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The non-zero Einstein tensor’s components are:

G01 =
2Ṙ′

R
− 2ẊR′

RX
, (4.31a)

G00 = − (R′)2

R2X2
+

2ṘẊ

RX
+

1

R2
− 2R′′

RX2
+

2X ′R′

RX3
+
Ṙ2

R2
, (4.31b)

G11 = X2

[
2R̈

R
+

1

R2
+
Ṙ2

R2
− (R′)2

R2X2

]
, (4.31c)

G22 = −R2

[
− R′′

RX2
+
R̈

R
+
R′X ′

RX3
+
ṘẊ

RX
+
Ẍ

X

]
, (4.31d)

G33 = G22 sin2 θ . (4.31e)

The Einstein equation for dust, from (2.87), then leads to the follow-
ing system of equations: 

G00 = ρ

G11 = 0

G22 = 0

G33 = 0

G01 = 0

. (4.32)

From the last equation in (4.32) we get

Ṙ′ − ẊR′

X
= 0 , (4.33)

and from its integration we have

X = C (r)R′ , (4.34)

where the function C (r) depends only on the coordinate r.
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By defining

C (r)
.
=

1√
1− k (r)

, (4.35)

where k (r) < 1, we can rewrite the LTB metric (4.30) in its usual form

ds2 = −dt2 +
(R′)2

1− k (r)
dr2 +R2 (t, r)

(
dθ2 + sin2 θdϕ2

)
, (4.36)

where k (r) is a function associated with the curvature of t = const.
hypersurfaces8.

The Friedmann equation for R is obtained from the second equation
in (4.32). We have

RR̈ +
1

2
Ṙ2 = −1

2
k , (4.37)

and from its integration we get

Ṙ2 =
2M

R
− k , (4.38)

where M = M (r). We see that the result is the same of the Szekeres
metric (4.7).

Then, also the acceleration of R is the same. In fact we have

R̈ = −M
R2

,

which is (4.8).
To calculate the density we start from the first and third equations

in (4.32). They give{
− (R′)

2

R2X2 + 2ṘẊ
RX + 1

R2 − 2R′′

RX2 + 2X ′R′

RX3 + Ṙ2

R2 = ρ

− R′′

RX2 + R̈
R + R′X ′

RX3 + ṘẊ
RX + Ẍ

X = 0
, (4.39)

8In the limit R (t, r) −→ a (t) r and k (r) −→ kr2 we obtain the FLRW model.
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and, substituting the second equation in the first one, the expression for
the density becomes

ρ =
2M ′

R2R′
, (4.40)

which is (4.14) with E ′ = 0.
Now we calculate the properties of the LTB metric.

Acceleration vector

As in the Szekeres case, by following subsection 4.2.1, the acceleration
vector aµ always vanishes:

aµ = 0 ∀µ , (4.41)

and the motion is geodesic.

Expansion rate

As in subsection 4.2.2, the expansion rate Θ in comoving coordinates is
(2.44):

Θ = Γµµ0 .

Then we see that the only Christoffel symbols we need to calculate
the expansion rate Θ are Γ0

00, Γ1
10, Γ2

20 and Γ3
30.

Using (4.17) and the metric (4.36)

gµν =


−1 0 0 0

0 (R′)
2

1−k 0 0
0 0 R2 0
0 0 0 R2 sin2 θ

 , (4.42)
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and its inverse

gµν =


−1 0 0 0
0 1−k

(R′)
2 0 0

0 0 1
R2 0

0 0 0 1
R2 sin2 θ

 , (4.43)

we get:

Γ0
00 = 0 , (4.44a)

Γ1
10 =

Ṙ′

R′
, (4.44b)

Γ2
20 =

Ṙ

R
, (4.44c)

Γ3
30 =

Ṙ

R
. (4.44d)

Then the expansion rate Θ is:

Θ =
Ṙ′

R′
+ 2

Ṙ

R
, (4.45)

that is (4.23) with E ′ = 0.

Vorticity

Like in subsection 4.2.3, we can see that the vorticity ωµν always vanishes:

ωµν = 0 ∀ µ, ν . (4.46)

So we are dealing with a rotation free flow.
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Shear

To calculate the shear σµν, we follow subsection 4.2.4.
The shear tensor σµν in comoving coordinates is (2.61):

σµ0 = 0 , σi j =
1

2
δi0∂0uj −

1

3
Γρρ0h

i
j + Γi00uj + Γij0 .

Since from (4.36) we have uj = g0j = 0, using all the Christoffel
symbols calculated above and the fact that Γij0 = 0 for i 6= j (see
(4.17)), we obtain the following diagonal form for the shear σµν:

σµν =
1

3

(
Ṙ′

R′
− Ṙ

R

)
diag (0, 2, −1, −1) , (4.47)

i.e. (4.25) with E ′ = 0.
From (2.60), the square of the shear is

σ2 .
=

1

2
σµνσ

µν

=
1

3

(
Ṙ′

R′
− Ṙ

R

)2

. (4.48)

Spatial Ricci scalar

From the Hamiltonian constraint (3.13), we can calculate the spatial
Ricci scalar (3)R. We have:

(3)R = 2

(
ρ+ σ2 − 1

3
Θ2

)
. (4.49)

Now, using (4.40), (4.45), (4.48) and rewriting the density (4.40) by
means of the Friedmann equations (4.38), we get:

(3)R = 2
(Rk)′

R2R′
. (4.50)
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Electric and magnetic Weyl tensors

Finally, the expressions of the electric and magnetic Weyl tensors in
comoving coordinates are (2.66a) and (2.66b):

Eαβ = Cα0β0 ,

Hαβ =
1

2
ηαγδC

γδ
β0 =

1

2
ηαγδg

γξgδψCξψβ0 .

Doing again the same procedure as in subsection 4.2.5, the electric
Weyl tensor is (4.28) with E ′ = 0, i.e.

Eα
β =

M

R3R′

(
R′ − M ′R

3M

)
diag (0, −2, 1, 1) , (4.51)

whereas the magnetic Weyl tensor always vanishes:

Hαβ = 0 ∀α, β . (4.52)

4.4 Averaging in the quasispherical Szekeres
model

The quasispherical Szekeres model is a non-symmetrical generalization
of the spherically symmetric LTB model.

In this section we see that the volume averaging within the quasi-
spherical Szekeres model leads to the same solutions as those obtained
within the LTB model.

Here we consider only the quasispherical case because the averaging
procedure in the quasihyperbolic and quasiplane cases requires a special
treatment. In fact, an area of a surface of constant t and r in the quasihy-
perbolic and quasiplane models in infinite. Moreover in these two cases
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there is no origin (in the quasihyperbolic model r cannot be zero and in
the quasiplane case r can only asymptotically approach the origin9).

Now, following [14] and chapter 3, we calculate the average quantities.
The volume is calculated around the observer located at the origin.

First of all, we see that the volume in the Szekeres model is the same
as in the LTB model. To prove this, we rewrite here the Szekeres metric
(4.1) in the quasispherical case:

ds2 = −dt2 +X2 (t, r, p, q) dr2 + A2 (t, r, p, q)
(
dp2 + dq2

)
,

where now

X2 (t, r, p, q) =

(
R′ −RE′

E

)2

1 + f
and A2 (t, r, p, q) =

R2

E2
. (4.53)

The volume is then

VD
.
=

ˆ rD

0

dr

¨
dpdq

√
|(3)g| , (4.54)

where

(3)g
.
= det

 X2 (t, r, p, q) 0 0
0 A2 (t, r, p, q) 0
0 0 A2 (t, r, p, q)

 . (4.55)

So, we get

VD =

ˆ rD

0

dr

¨
dpdqXA2

=

ˆ rD

0

dr

¨
dpdq

R2

√
1 + f

(
R′ − RE ′

E

)
1

E2

=

ˆ rD

0

dr

[
R2R′√
1 + f

¨
dpdq

1

E2
+

1

2

R3

√
1 + f

∂

∂r

(¨
dpdq

E2

)]
.(4.56)

9For more details see [20].
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Since dpdq
E2 is the metric of a unit sphere, we have

¨
dpdq

E2
= 4π . (4.57)

Thus the volume becomes

VD = 4π

ˆ rD

0

dr
R2R′√
1 + f

. (4.58)

The same result is obtained if initially we set E ′ to zero, that is we
have the same volume as in the LTB model.

This also happens to the density. Using (4.14), the average density
is:

〈ρ〉D
.
=

1

VD

ˆ rD

0

dr

¨
dpdqXA2ρ

=
2

VD

ˆ rD

0

dr

¨
dpdq

1√
1 + f

1

E2

(
M ′ − 3

ME ′

E

)
=

2

VD

ˆ rD

0

dr

[
M ′
√

1 + f

¨
dpdq

E2
+

3M√
1 + f

∂

∂r

(¨
dpdq

E2

)]
, (4.59)

and recalling (4.57) we get

〈ρ〉D =
8π

VD

ˆ rD

0

dr
M ′
√

1 + f
. (4.60)

This result is the same as in the LTB model, i.e. setting from the
beginning E ′ = 0.

The average of the expansion rate is, from (4.23):
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〈Θ〉D
.
=

1

VD

ˆ rD

0

dr

¨
dpdqXA2Θ

=
1

VD

ˆ rD

0

dr

¨
dpdqXA2 Ṙ

′ − 3 ṘE
′

E + 2 ṘR
′

R

R′ − RE′

E

=
1

VD

ˆ rD

0

dr

¨
dpdq

R2

√
1 + f

1

E2

(
Ṙ′ − 3

ṘE ′

E
+ 2

ṘR′

R

)

=
1

VD

ˆ rD

0

dr
R2

√
1 + f

[¨
dpdq

E2

(
Ṙ′ + 2

ṘR′

R

)
+

3

2
Ṙ
∂

∂r

(¨
dpdq

E2

)]

=
4π

VD

ˆ rD

0

dr
R2R′√
1 + f

(
Ṙ′

R′
+ 2

Ṙ

R

)
. (4.61)

As above, E ′ does not contribute to the final result, so we have the
same average of the expansion rate as in the LTB model (see (4.45)).

Now we can give the backreaction variable, defined as in (3.17):

QD
.
=

2

3

(〈
Θ2
〉
D −

〈
Θ
〉2

D

)
− 2
〈
σ2
〉
D .

First we should calculate the following term:

2

3

〈
Θ2
〉
D − 2

〈
σ2
〉
D

.
= 2

[
1

VD

ˆ rD

0

dr

¨
dpdqXA2

(
1

3
Θ2 − σ2

)]
=

2

3VD

ˆ rD

0

dr

¨
dpdq

E2

R2

√
1 + f

(
R′ − RE′

E

)(Ṙ′ − 3
ṘE ′

E
+ 2

ṘR′

R

)2

−

(
Ṙ′ − ṘR′

R

)2

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=
2

3VD

ˆ rD

0

dr

¨
dpdq

E2

R2

√
1 + f

(
R′ − RE′

E

)[
3
Ṙ2 (R′)2

R2
+ 6

ṘR′Ṙ′

R
+ 9

Ṙ2 (E ′)2

E2

−6
ṘṘ′E ′

E
− 12

Ṙ2R′E ′

R

]

=
2

3VD

ˆ rD

0

dr

¨
dpdq

E2

R2

√
1 + f

(
R′ − RE′

E

)[
3
Ṙ2R′

R2
+ 6

ṘṘ′

R
− 9

Ṙ2E ′

RE

]
. (4.62)

Using (4.57) we get:

2

3

〈
Θ2
〉
D − 2

〈
σ2
〉
D =

8π

3VD

ˆ rD

0

dr
R2R′√
1 + f

(
3
Ṙ2

R2
+ 6

ṘṘ′

RR′

)
, (4.63)

thus the backreaction variable becomes:

QD =
8π

3VD

ˆ rD

0

dr
R2R′√
1 + f

(
3
Ṙ2

R2
+ 6

ṘṘ′

RR′

)

−2

3

[
4π

VD

ˆ rD

0

dr
R2R′√
1 + f

(
Ṙ′

R′
+ 2

Ṙ

R

)]2

. (4.64)

This result is the same if we set initially E ′ = 0, so the backreaction
does not change from the LTB model.

Finally, we can calculate the spatial Ricci scalar (3)R and then give
its average.

With the same procedure used in the LTB model, starting from the
Hamiltonian constraint (3.13), the expression for the spatial Ricci scalar
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(3)R is (4.49), which we rewrite here:

(3)R = 2

(
ρ+ σ2 − 1

3
Θ2

)
.

Now, inserting (4.14), (4.23), (4.26) and using the Friedmann equa-
tion (4.7) in the density expression (4.14), we get

(3)R = −2f

R2

(
Rf ′

f − 2RE
′

E

R′ − RE′

E

+ 1

)
, (4.65)

which reduces to the LTB expression (4.50) when E ′ = 0 and f = −k.
Averaging the relation (4.65) yields〈

(3)R
〉
D

.
=

1

VD

ˆ rD

0

dr

¨
dpdqXA2(3)R

=
1

VD

ˆ rD

0

dr

¨
dpdq

E2

R′ − RE′

E√
1 + f[

−2f

(
Rf ′

f − 2RE
′

E

R′ − RE′

E

+ 1

)]
=

1

VD

ˆ rD

0

dr

¨
dpdq

E2

(−2f)√
1 + f(

Rf ′

f
− 2

RE ′

E
+R′ − RE ′

E

)
, (4.66)

and inserting (4.57) we have〈
(3)R

〉
D = −8π

VD

ˆ rD

0

dr
(Rf)′√
1 + f

. (4.67)

This expression, as above, is the same if we set E ′ to zero from the
beginning, so we have the same average spatial Ricci scalar as in the
LTB model.
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So, in this section we have proved that the Szekeres model is a gen-
eralization of the LTB model, in fact all our solutions are the same if
initially we had set E ′ to zero.

Thus all the results found when studying the average within the LTB
model also apply to the Szekeres case. For instance, we can conclude
that QD = 0 when f = 0 (as in the parabolic LTB model, i.e. when
k = 0). A proof of this fact can be found in [35, subsection 3.2].

Moreover, in [35], [49] and [50] has been proven that in the LTB
model the inhomogeneities can induce acceleration.
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Chapter 5

Non-tilted Bianchi models

Despite the success of the FLRW models, the structure that we observe
today, means that our universe is neither homogeneous nor isotropic, at
least on certain scales. To follow the late time evolution of the universe
on these scales we need models with more degrees of freedom than the
FLRW ones. For this, Bianchi models have long been studied.

Then, in this chapter we are interested in Bianchi models, which
describe homogeneous but anisotropic (q = 0, s = 3⇒ r = 3) universes.
So we are dealing with a three-dimensional group of isometries1 G3.

Here we follow [25, section 3], [24, section II] and [18, chapter 9].
First we give a modern classification of Bianchi models. Then we

specialize in non-tilted (i.e. with the flow-lines of the fluid normal to the
hypersurfaces of homogeneity) Bianchi models: after a general discussion
of the spatially homogeneous model in the synchronous system, we study
all the different types of dust metrics, with their properties.

Tilted Bianchi models go beyond the aim of this thesis, but a com-
plete description of the metrics that characterize these universes can be
found in [28]-[32].

1See section A.2 for a classification of cosmological models by means of their symmetries.
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5.1 Classification of Bianchi models
In this section we give the modern classification of Bianchi models (for
the original classification see appendix B and [27]).

The scheme for classifying the equivalence classes of three-dimensional
Lie algebras uses the irreducible parts of the structure constant tensor
under linear transformations (rather than the more complicated derived
group approach of Lie and Bianchi).

Following [25, section 3], we decompose the structure constants Ca
bc

(see (A.4)) into a symmetric contravariant tensor nab and a covariant
vector ab:

Ca
bc = εdbcn

ad + δacab − δabac , (5.1)

where εabc is the three-dimensional antisymmetric tensor and nab and ab
are defined as

ab
.
=

1

2
Ca

ba , (5.2)

nab
.
=

1

2
C

(a
cdε

b)cd . (5.3)

The structure constants Ca
bc expressed as in (5.1) clearly satisfy the

skew-symmetry property (see (A.5)). The Jacobi identity (A.6) is satis-
fied only if the vector ab has zero contraction with the tensor nab, that
is

Ca
e[bC

e
cd] = 0 ⇔ nabab = 0 . (5.4)

We can choose a convenient basis (the tetrad basis, chosen to be
invariant under the group of isometries2) to diagonalize nab to obtain
nab = diag (n1, n2, n3) and to set ab = (a, 0, 0). Then the Jacobi iden-
tity (5.4) becomes

n1a = 0 . (5.5)
2For a description of how to construct an invariant basis see [18, section 6.3].
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At this point we can classify the structure constants in two classes:

• class A: a = 0 ;

• class B: a 6= 0 .

Then both the classes can be classified further by the sign of the eigen-
values of nab (i.e. the signs of n1, n2 and n3). For this classification see
table 5.1 [25].

Group class Group type nab eigenvalues a

I 0, 0, 0 0

II +, 0, 0 0

A V I0 0, +, − 0

V II0 0, +, + 0

V III −, +, + 0

IX +, +, + 0

V 0, 0, 0 +

IV 0, 0, + +

B V Ih 0, +, − +

III 0, +, − n2n3

V IIh 0, +, + +

Table 5.1: Classification of homogeneous cosmological models into ten
equivalence classes.

The parameter h in class B is defined by the scalar constant of pro-
portionality in the following relation

abac =
h

2
εbikεcjln

ijnkl . (5.6)

In the case of diagonal nab, the factor h has a simple form: h = a2

n2n3
.

In addition to the classification given above we can distinguish two
further Bianchi models:
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• orthogonal models : here the fluid flow lines are orthogonal to the
surfaces of homogeneity. So, the fluid four-velocity uµ is parallel
to the normal vector nµ to the surfaces. In this case the matter
variables will be just the fluid density and pressure;

• tilted models : the fluid flow lines are no longer orthogonal to the
surfaces of homogeneity, thus the four-velocity uµ is not parallel to
the normal vector nµ. Here, in addition to the fluid pressure and
density, we need the peculiar velocity of the fluid relative to the
normal vectors.

In this work, as stated at the beginning of this chapter, we are dealing
only with non-tilted models.

5.2 The general spatially homogeneous model
in the synchronous system

In this section we want to calculate the Ricci tensor Rµν in the syn-
chronous system, from which the Einstein equation (2.68) can be derived.

We follow the procedure used in [18, chapter 9].
We know that, in a spatially homogeneous model described by a

manifold M , through every point it passes an invariant or homogeneous,
three-dimensional hypersurface S. This hypersurface is generated by the
three-dimensional isometry group G of the model.

A one-parameter family of these hypersurfaces fill M and the direc-
tion of the axis of the parameter t may be chosen quite freely. Once this
choice has been made, we can find the one-forms3 ωi.

A useful choice, which defines the synchronous system, for the di-
rection of t is the timelike direction, perpendicular to each hypersurface
S. In this case, the normal to the hypersurface is given by nµ = ∇µt,

3For more details see [18, chapter 6].
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such that gµνnµnν = −1. The existence of such a timelike normal vector
assumes that the S (t) are spacelike.

By parametrizing with the proper time t, the four-dimensional metric
is written as

ds2 = −dt2 + gijω
iωj , (5.7)

where the three-dimensional metric gij depends only on t, that is gij =
gij (t).

The one-forms ωi satisfy4

dωi =
1

2
C i

stω
s ∧ ωt , (5.8)

where C i
st are the structure constants of the isometry group G.

The group structure of the manifold M implies the existence of a
vector field basis dual to

{
−dt, ωi

}
such that

[Y0, Yi] = 0 , [Yi, Yj] = −Cs
ijYs , (5.9)

and

Y0 · Y0 = −1 , Y0 · Yi = 0 , Yi · Yj = gij (t) . (5.10)

As long as the homogeneous hypersurfaces S (t) remain spacelike, the
synchronous basis is unique. This because the hypersurfaces are picked
out by the group action unambiguously. Then the vector Y0 is the unique
normal to these surfaces5.

Now we want to rewrite the metric (5.7) in the orthonormal syn-
chronous basis, defined by

σ0 = dt and σi = bis (t)ωs , (5.11)
4See [18, relation (6.19)].
5If the hypersurfaces S (t) change from spacelike to timelike, the synchronous system breaks

down and we must use another basis.

79



where bisbsj = gij and bij = bji. The matrix B = (bij) is the symmetric
square root of G = (gij).

With this choice, the metric (5.7) becomes diagonal:

ds2 = −
(
σ0
)2

+
(
σ1
)2

+
(
σ2
)2

+
(
σ3
)2
. (5.12)

Now we define the scalar (detB)
1
3 in the following way:

(detB)
1
3
.
= e−Ω(t) , (5.13)

where Ω (t) is a scalar.
We write also

eΩB
.
=
(
e
β(t)

ij

)
, (5.14)

where (βij (t)) is a 3× 3 symmetric, traceless matrix6.
Therefore we have

B =
(
e−Ωeβij

)
. (5.15)

We have then split the matrix B in its volume and distortion parts,
where the scalar Ω represents the volumetric expansion.

In order to calculate the Ricci tensor, we need to compute the affine
connection forms. To do this we need the curls of the one-forms σµ:

dσi =

(
dbis
dt

)
dt ∧ ωs + bisdω

s

=

(
−Ω̇e−Ωeβis + e−Ω ˙(

eβis

))
dt ∧ ωs + e−Ωeβisdω

s(
−Ω̇e−Ωeβis + e−Ω ˙(

eβis

))
dt ∧ ωs +

1

2
e−ΩeβisC

s
tuω

t ∧ ωu

6eβ means matrix exponentiation, i.e. eβ =
∑∞
r=0

1
r!β

r.
We have: det eβ = eTrβ = 1.
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=

(
−Ω̇δiu +

˙(
eβit

)
e−βtu

)
e−Ωeβusdt ∧ ωs

+
1

2
e−ΩeβisC

s
tuω

t ∧ ωu , (5.16)

where (5.8) has been used. Moreover, recalling the property of the exte-
rior derivative d ◦ d = 0, we have dσ0 = 0.

Now, using the expression of ωi in terms of σi (from (5.11)), i.e.

ωi = eΩe−βisσ
s , (5.17)

we can rewrite (5.16) as

dσi =

(
−Ω̇δiu +

˙(
eβit

)
e−βtu

)
eβuse

−β
sjdt ∧ σ

j

+
1

2
eβisC

s
tue
−β

tje
Ωe−βukσ

j ∧ σk

=

(
−Ω̇δij +

˙(
eβit

)
e−βtj

)
dt ∧ σj +

1

2
eΩeβisC

s
tue
−β

tje
−β

ukσ
j ∧ σk

= kijdt ∧ σj +
1

2
dijkσ

j ∧ σk , (5.18)

where we have defined

kij
.
= −Ω̇δij +

˙(
eβit

)
e−βtj , (5.19)

dijk
.
= eΩeβisC

s
tue
−β

tje
−β

uk . (5.20)

The expression for kij simplifies if β̇ commutes with β. In fact in this

case we have
˙(
eβit

)
e−βtj = β̇ij.
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We can also see that dijk has the same symmetry as C i
jk and satisfies

the two properties

dijk = −dikj (skew-symmetry) , (5.21)
das[id

s
jk] = 0 (Jacobi identity) . (5.22)

We now calculate the connection one-forms (see [18, section 2.5])

σµν = Γµνρσ
ρ . (5.23)

From (5.23) and the fact that the covariant derivative of the metric
vanishes, we have7:

σµν + σνµ = 0 . (5.24)

This equation implies8:

σ0
0 = 0 , (5.25a)

σi i = 0 , (5.25b)
σ0
i = σi0 , (5.25c)

σij = −σji . (5.25d)

Using the first Cartan equation (see [18, section 2.5])

dσρ = −σρµ ∧ σµ = Γρµνσ
µ ∧ σν , (5.26)

we have
Γ0

µνσ
µ ∧ σν = 0 , (5.27)

and
kijσ

0 ∧ σj +
1

2
dijkσ

j ∧ σk = Γiµνσ
µ ∧ σν . (5.28)

7In fact, from (5.12), which can be written as η = ηikσ
i ∧ σk,and ∇jηik = 0, it comes out that

dηik = ηik,jσ
j =

(
Γhkjηih + Γhijηhk

)
σj . Then, using (5.23) we have: dηik = σik + σki = 0.

8Note that to lower or raise the indices we should use the metric ηµν , i.e. (5.12).
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Using the last two equations and the symmetry (5.24) we have

kij = Γi0j − Γij0 , (5.29a)
dijk = Γijk − Γikj , (5.29b)

0 = Γ0
µν − Γ0

νµ . (5.29c)

The solutions of equations (5.29a)-(5.29c) are

Γ0
i0 = 0 , (5.30a)

Γ0
ij = Γ0

ji =
1

2
(kij + kji)

.
= lij , (5.30b)

Γij0 =
1

2
(kji − kij)

.
= mji = −mij , (5.30c)

Γijk =
1

2

(
dijk − dkij − d

j
ik

)
, (5.30d)

whence

σ0
i = lijσ

j , (5.31a)

σij = −mijσ
0 +

1

2

(
dijk − dkij − d

j
ik

)
σk . (5.31b)

Now we calculate the components of the Ricci tensor in the {σµ}
basis.

For the (00)-component, starting from the definition of Ricci tensor
(2.3) and using the property (2.2a) of the Riemann tensor, we have

R00 = Rµ
0µ0 = −R0

i0i , (5.32)

where the index i is summed over 1, 2, 3 and we have used the metric
ηµν to raise and lower the indices.

From the definition of the curvature two-form

Ωµ
ν = Rµ

νξρσ
ξ ∧ σρ , (5.33)
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and the second Cartan equation

Ωµ
ν = dσµν + σµρ ∧ σρν , (5.34)

we get

Ω0
i = R0

iµνσ
µ ∧ σν , (5.35)

Ω0
i = dσ0

i + σ0
ρ ∧ σ

ρ
i . (5.36)

By taking the (0i)-component of the last two equations we find

R0
i0i = l̇ii + lijkji −mjilij , (5.37)

then
R00 = −l̇ii − lijkji . (5.38)

A similar calculation brings to

R0i = Rµ
0µi = ljkd

k
ji + lkid

j
jk . (5.39)

Finally we need the spatial components of the Ricci tensor Rµν. A
tedious calculation shows that

Rij = l̇ij + lijlkk + likmkj + ljkmki +
1

2
dhhk

(
dikj − d

j
ki

)
−1

2
dkih
(
dkjh + dhjk

)
+

1

4
dikhd

j
kh , (5.40)

where we have used the fact that the Jacobi identity (5.22) implies
dhhkd

k
ij = 0.

At this point it is easy to find the Einstein equation (2.68) for dust.
In the next section we will use the comoving coordinates, then the

Einstein equation (2.68) can be written as in (2.87).
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5.3 Bianchi dust metrics and their proper-
ties

In this section we give the known Bianchi dust solutions in comoving
coordinates, i.e. writing the four-velocity as in (2.11). For the general
discussion of Bianchi perfect fluid solutions see [17, section 9.3].

Bianchi models describe spatially homogeneous universes, then we do
not need to define the averaging procedure (chapter 3) and the backre-
action variable (3.17) assumes the following simple form:

Q = −2σ2 . (5.41)

Since σ2 is always positive, in Bianchi models the backreaction vari-
able is always negative, then it acts to decelerate the expansion. We can
also see that if the shear tensor σµν vanishes, we reduce to the isotropic
case (FLRW model).

Now we study the different types of Bianchi metrics for dust.
We have dust solutions of the Einstein equation only for the following

(non-tilted) Bianchi types: I, II, III, V and V Ih. For the remaining
cases (see appendix B) we do not have dust solutions.

Since we deal with dust solutions of the Einstein equation (2.68), the
acceleration vector always vanishes (as we have seen in chapter 4 for the
Szekeres metric) and the motion is always geodesic. Then, we omit the
calculation for the different types of Bianchi metrics.

Moreover, since non-tilted Bianchi models are irrotational by con-
struction, also the vorticity always vanishes. Then, we write the calcu-
lation only for the type I and omit it for all the other types.

Finally, we give the expressions of electric and magnetic Weyl tensors
only for types I and III. The other cases can be easily found following
the calculations done for these two types.
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5.3.1 Type I
The general solution of Bianchi type I for dust is

ds2 = −dt2 + t2p1A2q1dx2 + t2p2A2q2dy2 + t2p3A2q3dz2 , (5.42)

where the function A = A (t) is defined as

A (t)
.
= α +m2t , (5.43)

with α, m = constant.
The constants p1, p2 and p3 satisfy the Kasner constraints

p1 + p2 + p3 = 1 , p2
1 + p2

2 + p2
3 = 1 , (5.44)

and the following property

qi =
2

3
− pi (i = 1, 2, 3) . (5.45)

Now we want to calculate the properties of the metric (5.42).
It turns out that the Einstein tensor Gµν, defined in (2.68), is di-

agonal. By plugging it into the Einstein equation for dust in comoving
coordinates (2.87) we get the following set of equations:

ρ =
1

A2t2
[
m4t2 (q1q2 + q1q3 + q2q3) + Atm2 (q1p2 + q2p1 + q1p3

+q3p1 + q2p3 + q3p2) + A2 (p1p2 + p1p3 + p2p3)
]
, (5.46a)

0 = m4t2
(
q2q3 + q2

2 − q2 + q2
3 − q3

)
+ Atm2 (2q2p2 + 2q3p3

+q2p3 + q3p2) + A2
(
p2

2 − p2 + p2
3 − p3 + p2p3

)
, (5.46b)
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0 = m4t2
(
q1q3 + q2

1 − q1 + q2
3 − q3

)
+ Atm2 (2q1p1 + 2q3p3

q1p3 + q3p1) + A2
(
p2

1 − p1 + p2
3 − p3 + p1p3

)
, (5.46c)

0 = m4t2
(
q1q2 + q2

1 − q1 + q2
2 − q2

)
+ Atm2 (2q1p1 + 2q2p2

q1p2 + q2p1) + A2
(
p2

1 − p1 + p2
2 − p2 + p1p2

)
. (5.46d)

We insert in (5.46a), the sum of (5.46b)-(5.46d) and recalling (5.44)
and (5.45), after some steps, we get the following expression for the
density:

ρ =
4m2

3At
. (5.47)

If m = 0, we obtain the Kasner vacuum solutions (see [15, subsection
13.3.2] and [17, subsection 6.2.2]).

Moreover, as t→ 0+, the line element assume the Kasner form with
exponents pi (see [17, subsection 9.1.1]) whereas, as t → +∞, the line
element approaches the flat FLRW metric (see [17, subsection 6.3.1]).

Now, following chapter 2 we calculate the dynamical quantities of the
metric (5.42).

Expansion rate

The expansion rate Θ in comoving coordinates is expressed in (2.44),
that is:

Θ = Γµµ0 .

Using (4.17) and the metric (5.42) with its inverse

gµν =


−1 0 0 0
0 1

t2p1A2q1
0 0

0 0 1
t2p2A2q2

0
0 0 0 1

t2p3A2q3

 , (5.48)
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we have

Γ0
00 = 0 , (5.49a)

Γii0 =
pi
t

+

(
2

3
− pi

)
m2

α +m2t
. (5.49b)

Then, recalling (5.44), the expansion rate Θ is:

Θ =
α + 2m2t

t (α +m2t)
. (5.50)

Vorticity

The expression for the vorticity tensor ωµν in comoving coordinates is
given in (2.54), which we write again here:

ω0µ = 0 , ωij = ∂[ju i] + u[j ∂0u i] .

Since ui = g0i and from (5.42) g0i = 0, we see that the vorticity ωµν
always vanishes:

ωµν = 0 ∀µ, ν . (5.51)

So we are dealing with a rotation free flow.

Shear

The shear tensor σµν in comoving coordinates is (2.61), i.e.

σµ0 = 0 , σi j =
1

2
δi0∂0uj −

1

3
Γρρ0h

i
j + Γi00uj + Γij0 .

Recalling that uj = g0j, using (5.42) and its inverse (5.48), all the
Christoffel symbols calculated above and the fact that Γi00 = 0 for all i
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and Γij0 = 0 for i 6= j (from (4.17)), we obtain the following diagonal
form for the shear σµν:

σµν =

[
α

3t (α +m2t)

]
diag (0, 3p1 − 1, 3p2 − 1, 3p3 − 1) . (5.52)

Since the determinant of the metric (5.42) is

g
.
= det (gµν) = −t2

(
α +m2t

)2
, (5.53)

the shear σµν can be written as

σµν =

[
α

3
√
−g

]
diag (0, 3p1 − 1, 3p2 − 1, 3p3 − 1) . (5.54)

So, the constant α is a measure of the shear, whereas the pi charac-
terize its dependence upon direction. The particular case α = 0 leads to
an (isotropic) FLRW universe.

The square of the shear σ2 is

σ2 .
=

1

2
σµνσ

µν

=
α2

3t2 (α +m2t)

= −α
2

3g
, (5.55)

and the backreaction (5.41) becomes

Q = − 2α2

3t2 (α +m2t)

=
2α2

3g
. (5.56)
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Electric and magnetic Weyl tensors

The electric Weyl tensor Eα
β in comoving coordinates is given in (2.66a),

which we rewrite here9
Eα

β = gαξCξ0β0

The Weyl tensor’s components we need here are:

C0000 = 0 , (5.57a)

C0101 = −t
2p1A2q1

6A2t2

(
−q1q2Ȧ

2t2 − q1q3Ȧ
2t2 + 2q2q3Ȧ

2t2 + 4p1q1AȦt

−2p2q2AȦt+ 2q2
1Ȧ

2t2 − 2q1Ȧ
2t2 − q2

2Ȧ
2t2 + q2Ȧ

2t2 − 2p1A
2

+2p2
1A

2 + p2A
2 − p2

2A
2 + p3A

2 − p2
3A

2 + q2
3Ȧ

2t2 − q3Ȧ
2t2

−2p3q3AȦt− p2q1AȦt− p1q2AȦt− p3q1AȦt− p1q3AȦt

+2p3q2AȦt+ 2p2q3AȦt− p1p2A
2 − p1p3A

2 + 2p2p3A
2
)
,

(5.57b)

C0202 = −t
2p2A2q2

6A2t2

(
q1q2Ȧ

2t2 − 2q1q3Ȧ
2t2 + q2q3Ȧ

2t2 + 2p1q1AȦt

−4p2q2AȦt+ q2
1Ȧ

2t2 − q1Ȧ
2t2 − 2q2

2Ȧ
2t2 + 2q2Ȧ

2t2 − p1A
2

+p2
1A

2 + 2p2A
2 − 2p2

2A
2 − p3A

2 + p2
3A

2 + q2
3Ȧ

2t2 − q3Ȧ
2t2

+2p3q3AȦt+ p2q1AȦt+ p1q2AȦt− 2p3q1AȦt− 2p1q3AȦt

+p3q2AȦt+ p2q3AȦt+ p1p2A
2 − 2p1p3A

2 + p2p3A
2
)
,

9For convenience, here, we have written the electric Weyl tensor (2.66a) raising the index α.
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C0303 = −t
2p3A2q3

6A2t2

(
−2q1q2Ȧ

2t2 + q1q3Ȧ
2t2 + q2q3Ȧ

2t2 + 2p1q1AȦt

+2p2q2AȦt+ q2
1Ȧ

2t2 − q1Ȧ
2t2 + q2

2Ȧ
2t2 − q2Ȧ

2t2 − p1A
2

+p2
1A

2 − p2A
2 + p2

2A
2 + 2p3A

2 − 2p2
3A

2 − 2q2
3Ȧ

2t2 + 2q3Ȧ
2t2

−4p3q3AȦt− 2p2q1AȦt− 2p1q2AȦt+ p3q1AȦt+ p1q3AȦt

+p3q2AȦt+ p2q3AȦt− 2p1p2A
2 + p1p3A

2 + p2p3A
2
)
,

(5.57c)
C0i0j = 0 for i 6= j . (5.57d)

Then, using the Einstein equations (5.46b)-(5.46d) and the properties
(5.44) and (5.45), the electric Weyl tensor Eα

β assumes the following
diagonal form:

Ei
i = giiCi0i0

=
1

3

(
Ȧ

A

)2(
pi − 3p2

i +
2

3

)
+

2Ȧ

3At

(
3p2

i − 2pi −
1

3

)
+

1

t2

(
pi − p2

i

)
. (5.58)

For magnetic Weyl tensor Hαβ in comoving coordinates we have the
expression (2.66b), i.e.

Hαβ =
1

2
ηαγδC

γδ
β0 =

1

2
ηαγδg

γξgδψCξψβ0 .

Since the non-zero components of the Weyl tensor are (5.57b)-(5.57c)
and C1212, C1313, C2323, we get

Hαβ = 0 ∀α, β . (5.59)
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5.3.2 Type II
The Bianchi type II metric for dust is

ds2 = −dt2 + t2p1A2p1 (dx+ bzdy)2 + t2p2A2p3dy2 + t2p3A2p2dz2 , (5.60)

where the function A = A (t) is defined as in (5.43) and the constant b
is given by

b
.
=

1

4
m2 , (5.61)

with m = constant.
The constants p1, p2 and p3 satisfy the Kasner constraints (5.44) and

are given by

p1 =
1

3
(1− 2 cosψ) , (5.62)

p2,3 =
1

3

(
1 + cosψ ±

√
3 sinψ

)
, (5.63)

with cosψ = 1
8 .

With the same procedure used in subsection 5.3.1, we find the density
to be

ρ =
5m2

4At
. (5.64)

As for the type I solution, if m = 0 we obtain the Kasner vacuum
solution.

Now we compute the dynamical quantities for the metric (5.60).

Expansion rate

The expansion rate Θ in comoving coordinates is given by (2.44).
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As in subsection 5.3.1, using (4.17) and the metric (5.60), we have

Γ1
10 = p1

(
1

t
+
Ȧ

A

)
, (5.65a)

Γ2
20 =

1

3b2z2t2p1A2p1 − t2p2A2p3

[
3b2z2p1t

2p1A2p1

(
1

t
+
Ȧ

A

)
− t2p2A2p3

(
p2

t
+ p3

Ȧ

A

)]
, (5.65b)

Γ3
30 =

p3

t
+ p2

Ȧ

A
. (5.65c)

Then, since Γ0
00 = 0, the expansion rate Θ becomes:

Θ =

(
p1 + p3

)
1

t
+

(
p1 + p2

)
Ȧ

A

+
1

3b2z2t2p1A2p1 − t2p2A2p3

[
3b2z2p1t

2p1A2p1

(
1

t
+
Ȧ

A

)
− t2p2A2p3

(
p2

t
+ p3

Ȧ

A

)]
. (5.66)

Shear

The shear tensor σµν in comoving coordinates is (2.61).
We need also the following Christoffel symbols:

Γ1
20 = −

2bzt2p2A2p3
(
p1A+ p1Ȧt− p2A− p3Ȧt

)
At
(

3b2z2t2p1A2p1 − t2p2A2p3

) , (5.67a)
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Γ1
30 = 0 , (5.67b)

Γ2
10 = 0 , (5.67c)

Γ2
30 = 0 , (5.67d)

Γ3
10 = 0 , (5.67e)

Γ3
20 = 0 . (5.67f)

Recalling, from the metric (5.60), that uj = g0j = 0 and all the
Christoffel symbols calculated above, since Γi00 = 0 for all i, the non-
zero components of the shear tensor σµν are:

σ1
1 =

2

3
p1

(
1

t
+
Ȧ

A

)
− 1

3

(
p3

t
+ p2

Ȧ

A

)
− 1

9b2z2t2p1A2p1 − 3t2p2A2p3[
3b2z2p1t

2p1A2p1

(
1

t
+
Ȧ

A

)
− t2p2A2p3

(
p2

t
+ p3

Ȧ

A

)]
, (5.68a)

σ2
2 = −1

3

[(
p1 + p3

)
1

t
+

(
p1 + p2

)
Ȧ

A

]
+

2

9b2z2t2p1A2p1 − 3t2p2A2p3[
3b2z2p1t

2p1A2p1

(
1

t
+
Ȧ

A

)
− t2p2A2p3

(
p2

t
+ p3

Ȧ

A

)]
, (5.68b)

σ3
3 =

2

3

(
p3

t
+ p2

Ȧ

A

)
− 1

3
p1

(
1

t
+
Ȧ

A

)
− 1

9b2z2t2p1A2p1 − 3t2p2A2p3[
3b2z2p1t

2p1A2p1

(
1

t
+
Ȧ

A

)
− t2p2A2p3

(
p2

t
+ p3

Ȧ

A

)]
, (5.68c)

σ1
2 = − bzt2p2A2p3

3b2z2t2p1A2p1 − t2p2A2p3

[(
p1 − p2

)
1

t
+

(
p1 − p3

)
Ȧ

A

]
.

From these expressions we can easily calculate the square of the shear,
that is σ2 = 1

2σµνσ
µν.
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5.3.3 Type III
The Bianchi type III line element for dust is

ds2 =
A4

λ2

(
−dt2 + dx2 + e4xdy2

)
+

B2

λ2A2
dz2 , (5.69)

where λ = constant.
The functions A = A (t) and B = B (t) are given in three subcases

by

1. A = cosh t , B = α sinh t+ β2 (t sinh t− cosh t) ;

2. A = sinh t , B = α cosh t+ β2 (t cosh t− sinh t) ;

3. A = et , B = et
(
α + β2t

)
;

where α and β are constants.
The Einstein tensor Gµν, defined in (2.68), is diagonal and its com-

ponents are given by

G00 =
4

AB

(
ȦḂ − AB

)
, (5.70a)

G11 = − 1

AB

(
ÄB − 2ȦḂ + AB̈

)
, (5.70b)

G22 = e4xG11 , (5.70c)

G33 =
4B2

A7

(
−Ä+ A

)
. (5.70d)

Before writing the Einstein equation for dust, we should note that
the (00)-component of the metric (5.69) is g00 = −A4

λ2 , so in comoving
coordinates, the four-velocity is given by

uµ =
λ

A2
δµ0 . (5.71)
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Then, from the Einstein equation (2.68) for dust, we get the following
set of equations:

4λ2

A5B

(
ȦḂ − AB

)
= ρ , (5.72a)

ÄB − 2ȦḂ + AB̈ = 0 , (5.72b)
−Ä+ A = 0 . (5.72c)

By plugging the second and third equations in the first one we obtain

ρ =
4λ2

A3B

(
B̈ −B

2A

)
. (5.73)

In all the three subcases listed above we have(
B̈ −B

2A

)
= β2 , (5.74)

so the final expression for the density is

ρ =
4λ2β2

A3B
, (5.75)

and if β = 0, we obtain the vacuum limits.
Now we calculate the properties of the metric (5.69).

Expansion rate

To calculate the expansion rate Θ we can use both method (2.43) and
(2.44).

Here we choose the first, so we have10

Θ =
1√
|g|
∂µ

(√
|g|uµ

)
.

10See footnote 10, chapter 2.
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Recalling (5.71), the expression of the expansion rate Θ can be rewrit-
ten as

Θ =
λ

A2

(
ġ

2g
− 2Ȧ

A

)
, (5.76)

where g .
= det (gµν) and ġ = ∂g

∂t .
From the metric (5.69), we see that

g = −e
4xA10B2

λ8
, (5.77)

ġ = −2e4xA9B

λ8

(
5ȦB + AḂ

)
, (5.78)

and then

Θ =
λ

A2

(
3
Ȧ

A
+
Ḃ

B

)
. (5.79)

Shear

The shear tensor σµν in comoving coordinates, with the four velocity
given by (5.71), is

σµ0 = 0 , σi j = −1

3
Θhi j + λ2Γi00uj +

λ

A2
Γij0 , (5.80)

where we have dropped the term containing the vorticity.
Recalling that uj = g0j = 0 (see the metric (5.69)), (5.79), since

Γ0
00 = 2 ȦA , Γi00 = 0 for all i and Γij0 = 0 for i 6= j (from (4.17)), we

obtain the following diagonal form for the shear σµν:

σµν =

[
λ

3A2

]
diag

[
0,

3Ȧ

A
− Ḃ

B
,

3Ȧ

A
− Ḃ

B
, 2

(
3Ȧ

A
− Ḃ

B

)]
. (5.81)
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Then the backreaction variable (5.41) is

Q = −2λ2

A4

3

(
Ȧ

A

)2

+
1

3

(
Ḃ

B

)2

− 2
ȦḂ

AB

 . (5.82)

Electric and magnetic Weyl tensors

The electric Weyl tensor Eα
β in comoving coordinates, with four-velocity

(5.71), is given by

Eα
β =

λ2

A4
gαξCξ0β0 . (5.83)

The Weyl tensor’s components we need here are:

C0000 = 0 , (5.84a)

C0101 = − A2

6λ2B

(
−12Ȧ2B + 3AÄB + 4A2B

+6AȦḂ − A2B̈
)
, (5.84b)

C0202 = −e
4xA2

6λ2B

(
−12Ȧ2B + 3AÄB + 4A2B

+6AȦḂ − A2B̈
)
, (5.84c)

C0303 =
B

3λA4

(
−12Ȧ2B + 3AÄB + 4A2B

+6AȦḂ − A2B̈
)
, (5.84d)

C0i0j = 0 for i 6= j . (5.84e)

So, recalling (5.72b) and (5.72c), the non-zero electric Weyl tensor’s
components Eα

β are:
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E1
1 =

λ2

A2

2

(
Ȧ

A

)2

− B̈

3B
− 5

3

 , (5.85a)

E2
2 = E1

1 , (5.85b)

E3
3 = − 2

A2
E1

1 . (5.85c)

For the magnetic Weyl tensor Hαβ in comoving coordinates we have

Hαβ =
λ

2A2
ηαγδC

γδ
β0 , (5.86)

and, as i subsection 5.3.1, it always vanishes.
In fact the non-zero components of the Weyl tensor are (5.84b)-

(5.84d) and C1212, C1313, C2323, then

Hαβ = 0 ∀α, β . (5.87)

5.3.4 Type V
The Bianchi type V metric for dust is

ds2 = −N 2dt2 + t2
[
dx2 + e2rx

(
e2h(t)dy2 + e−2h(t)dz2

)]
, (5.88)

where the function N = N (t) is defined as

N 2 =

(
m2

t
+

3s2

t4
+ r2

)−1

, (5.89)

and
ḣ (t) =

3sN

t3
, (5.90)
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and m, s and r are constants.
Following subsection 5.3.3, from the Einstein equation for dust, we

get the following expression for the density:

ρ =
3m

t3
. (5.91)

In a way totally analogous to subsection 5.3.3 we calculate the dy-
namical quantities of the metric (5.88).

Expansion rate

By proceeding as in subsection 5.3.3, we start from

Θ =
1√
|g|
∂µ

(√
|g|uµ

)
.

Since the four-velocity uµ in comoving coordinates is

uµ =
1

N
δµ0 , (5.92)

then the expansion rate Θ becomes

Θ =
ġ

2Ng
− Ṅ

N 2
, (5.93)

where ġ = ∂g
∂t and

g
.
= det (gµν)

= −N 2t6e4rx . (5.94)

Then we have
Θ =

3

Nt
. (5.95)
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Shear

Proceeding as in subsection 5.3.3, the shear tensor σµν in comoving co-
ordinates, with the four velocity given by (5.92), is

σµ0 = 0 , σi j = −1

3
Θhi j +

1

N 2
Γ
Ṅ
N ,i
00 uj +

1

N
Γij0 . (5.96)

From the metric (5.88) we can see that uj = g0j = 0 and, recalling
(5.95), since Γ0

00 = Ṅ
N , Γi00 = 0 for all i and Γij0 = 0 for i 6= j (from

(4.17)), we obtain:

σµν =

[
ḣ

N

]
diag [0, 0, 1, −1] . (5.97)

Then the backreaction variable (5.41) is

Q = −4ḣ2

N 2
. (5.98)

5.3.5 Type V Ih
Four classes of dust solutions of Bianchi type V Ih have been found.

The line-element for each class has the following form:

λ2ds2 = −A2a0B2b0dt2+A2a1B2b1dx2+A2a2B2b2e2c2xdy2+A2a3B2b3e2c3xdz2 ,
(5.99)

where A = A (t), B = B (t) and λ = constant. The two constants c2

and c3 determine the group type. The two sets of constant exponents
aµ, bµ (µ = 0, 1, 2, 3) are related to the Kasner exponents, which satisfy
the Kasner constraints (5.44) and are defined as

p1 =
1

3
(1− 2k) , p2,3 =

1

3

(
1 + k ∓

√
3 (1− k2)

)
, (5.100)

q1 =
1

3
(1 + 2k) , q2,3 =

1

3

(
1− k ±

√
3 (1− k2)

)
, (5.101)
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where the constant k is related to the group parameter h according to

k =
1√

1− 3h
. (5.102)

The costants pi and qi (i = 1, 2, 3) satisfy also (5.45).
Now we give a list of the different classes of Bianchi type V Ih metrics

with their properties.

First class: k = 1
4. The functions A and B are

A = t , (5.103)

B = α +m2t+
3

5
β2t

5
3 , (5.104)

where α, β andm are arbitrary constants. The other constants are given
by

a0 = b0 = 0 , ai = pi , bi = qi , (5.105)

and
c2,3 =

β

2 (1− k)

(√
1− k2 ±

√
3k
)
. (5.106)

With the same procedure used in the previous subsections, the den-
sity is found to be

ρ =
4λ2m2

3
(AB)−2q1 . (5.107)

Second class: k = 5
8. There are three different forms for the functions

A and B, that are:

1. A = cosh t , B =
[
α + β2

´
coshr t
sinh2 t

dt
]

sinh t ;

2. A = sinh t , B =
[
α + β2

´
sinhr t
cosh2 t

dt
]

cosh t ;
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3. A = et , B =


et
[
α + β2

r−2

]
e(r−2)t , r 6= 2 ,

et
(
α + β2t

)
, r = 2 ,

where α and β are arbitrary constants and r = 2k
1−k .

All the other constants are given by (5.105) and (5.106).
The density is

ρ =
16λ2

3
. (5.108)

Third class: k = 1
2. The functions A and B are defined as in the

second class. The constants are

a0 = a1 , b0 = b1 , ai = 3qi , bi = pi , (5.109)

and
c2,3 =

1√
1− k2

(√
1− k2 ±

√
3k
)
. (5.110)

Then the density becomes

ρ =
4λ2β2

A3B
. (5.111)

Fourth class: k = −1
2. In this case the solution is obtained from the

case k = 1
2 by replacing k with −k.

Now we list all the dynamical quantities for the different classes. The
procedure that we have used is the same as in subsections 5.3.1-5.3.4.
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Expansion rate

For the first two classes the expression of the expansion rate Θ is the
same. The procedure is the same used in subsection 5.3.3 and it gives

Θ = λ

(
Ȧ

A
+
Ḃ

B

)
, (5.112)

where now the four-velocity is

uµ = λδ0
µ . (5.113)

For the last two classes the four-velocity is given by

uµ =
1

A3q1Bp1
δ0

µ , (5.114)

and the expansion rate Θ becomes

Θ =
1

A3q1Bp1

(
3
Ȧ

A
+
Ḃ

B

)
. (5.115)

Shear

To compute the shear tensor σµν we use always the same method as in
subsection 5.3.3.

Then, for the first two classes, with k = 1
4 and k = 5

8 , we get

σµν =

[
λ

(
Ȧ

A
− Ḃ

B

)]
diag

[
0, p1 −

1

3
, p2 −

1

3
, p3 −

1

3

]
, (5.116)

and the backreaction variable (5.41) is

Q = −2

3
λ2

(
Ȧ

A
− Ḃ

B

)2

. (5.117)
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In the same way, for the classes with k = ±1
2 , the shear tensor σµν

assumes the following form

σµν =

[
1

A3q1Bp1

(
Ḃ

B
− 3

Ȧ

A

)]
diag

[
0, p1 −

1

3
, p2 −

1

3
, p3 −

1

3

]
,

(5.118)
and the backreaction (5.41) is

Q = − 2

3A6q1B2p1

(
Ḃ

B
− 3

Ȧ

A

)2

. (5.119)
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Conclusions

In this work dust solutions of the Einstein field equation have been stud-
ied.
We first have introduced the covariant formalism, which is the scaffold
on which this work has been built. Then we have described in detail the
averaging procedure in the framework of Buchert’s approach (consider-
ing only the dust case). We have obtained the Buchert equations, from
which we have defined the backreaction variable.
Backreaction is a valid alternative to modified gravity or dark energy
to give an explanation to the late time expansion of the universe. This
idea emerges from the fact that the late time universe is far from exact
homogeneity and isotropy due to the formation of non-linear structures,
i.e. galaxies, clusters of galaxies, voids, etc. and this can have effect on
the expansion of the universe, or rather it could explain the current ex-
pansion of the universe without introducing exotic matter with negative
pressure, i.e. dark energy.
Finally we have studied all the properties of Szekeres and Bianchi met-
rics, which describe, respectively, inhomogeneous and anisotropic uni-
verses and spatially homogeneous but anisotropic universes.
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Appendix A

Symmetries

Cosmological models can be classified by their symmetries.
Symmetries of a space are transformations of the space into itself

that leave the metric tensor and all physical and geometrical properties
invariant.

We first give some mathematical preliminaries and then a classifica-
tion of cosmological models.

A.1 Mathematical introduction
Following [25, appendix A], let us start with the definition of diffeomor-
phism:

Definition 1 (Diffeomorphism) A C∞ map ϕ is called diffeomor-
phism if it is one-to-one and onto and its inverse ϕ−1 is C∞.

Let (M, g) be a (pseudo-)Riemannian manifold with the metric ten-
sor gµν. A diffeomorphism ϕ : M →M is an isometry if it preserves the
metric, i.e. if

ϕ∗gϕ(p) = gp , (A.1)
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where p ∈M and ϕ∗ is the pull-back1 of ϕ.
The isometries of a space of dimension n form a group2, in fact the

identity map, the composition of two isometries and the inverse of an
isometry are all isometries too.

Now, if φt is a one-parameter group of isometries3 (i.e. φ∗tgµν = gµν),
the vector field ξµ which generates φt is called a Killing vector field. The
necessary and sufficient condition for φt to be a group of isometries is

Lξgµν = 0 , (A.2)

where we have introduced the Lie derivative along the vector field ξµ:
Lξ4.

The necessary and sufficient condition for ξµ to be a Killing field is
to satisfy the Killing equation5:

∇µξν +∇νξµ = 0 . (A.3)

The maximum number of symmetries is related to the dimension of
the manifoldM and, if dimM = m, is 1

2m (m+ 1). Spaces which admit
1
2m (m+ 1) Killing vector fields are called maximally symmetric spaces.

Let ξµ and ξν be two Killing vector fields, then:
1Let M and N be manifolds (not necessarily of the same dimension) and let φ : M → N be a

C∞ map. Consider a function f ∈ C∞(N), then we define the pull-back of φ as:

φ∗f
.
= f ◦ φ ∈ C∞(M) .

For more details see [2, appendix C.1].
2A group (G, ·) is a set of elements G with an operation · : G×G→ G that combines any two

elements g, g′ ∈ G to form a third element g · g′ ∈ G. The operation · satisfies four conditions:
closure, associativity, identity and invertibility.

3A one-parameter group of diffeomorphisms φt is a C∞ map from R ×M to M such that, for
fixed t ∈ R, φt : M →M is a diffeomorphism and for all t, s ∈ R, we have φt ◦ φs = φt+s. See also
[2, subsection 2.2].

4See [2, appendix C.2].
5For more details see [2, appendices C.2 and C.3], whereas for a complete discussion on Killing

equation see [10, subsection 8.2].
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• a linear combination αξµ+βξν is a Killing vector field (α, β ∈ R);

• the commutator [ξµ, ξν] is a Killing vector field6.

Thus all Killing vector fields form a Lie algebra7 of the symmetric oper-
ations on the manifold M , with structure constants Cλ

µν:

[ξµ, ξν] = Cλ
µνξλ , (A.4)

where λ, µ, ν = 1, 2, . . . , r and r ≤ 1
2m (m+ 1).

Structure constants satisfy the following two properties:

• skew-symmetry:
Cλ

µν = −Cλ
νµ ; (A.5)

• Jacobi identity:
Cλ

ρ[µC
ρ
νσ] = 0 . (A.6)

The transformations generated by the Lie algebra form a Lie group8 of
the same dimension.

Now we study the action of a Lie group G on a manifold M .

Definition 2 (Action) Let G be a Lie group and M a manifold. The
action of G on M is a C∞ map σ : G ×M → M which satisfies the
following conditions:

• σ (e, p) = p ∀ p ∈M ;
6If ξ and η are two Killing vector fields, then L[ξ, η]gµν = LξLηgµν − LηLξgµν = 0, where we

have used the property of the Lie derivative L[ξ, η] = LξLη − LηLξ.
7A Lie algebra g over R is a real vector space g together with a bilinear operator [ , ] : g×g→ g

(called the bracket) such that, for all x, y, z ∈ g, [x, y] = − [y, x] and [[x, y] , z] + [[y, z] , x] +
[[z, x] , y] = 0 (Jacobi identity).

8A Lie group G is a differentiable manifold which is endowed with a group structure such that
the map G×G→ G defined by (σ, τ) 7→ στ−1 is C∞.
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• σ (g1, σ (g2, p)) = σ (g1g2, p) ∀ g1, g2 ∈ G and p ∈M .

The action σ is said to be transitive if, for any p1, p2 ∈ M , there
exists an element g ∈ G such that σ (g, p1) = p2. Then the map σ can
move any point of M into any point of M .

Given a point p ∈M , the action of G on p takes p to various points
in M . The orbit Op of p is the set of all points into which p can be
moved by the action of the isometries of a space, i.e.

Op = {σ (g, p) | g ∈ G} . (A.7)

Any orbit Op is clearly a subset of M and obviously the action of G
on any orbit Op is transitive. If the action of G on M is transitive, the
orbit of any point p ∈ M is M itself. So, the maximum dimension of
orbits is dimM , i.e s ≤ m, where s = dimOp and m = dimM .

A subgroup9 H of a Lie group G that acts on a manifold M is called
isotropy group if it leaves the point p ∈M fixed:

H = {g ∈ G |σ (g, p) = p} . (A.8)

We have

dimH = q , where q ≤ 1

2
m (m− 1) . (A.9)

Interestingly, the cosets of the isotropy group correspond to the ele-
ments in the orbit:

Op ∼ G/H . (A.10)

It holds the following theorem:
9(H, ϕ) is a Lie subgroup of the Lie group G if:

• H is a Lie group;

• (H, ϕ) is a submanifold of G;

• ϕ ∈ Hom (H, G).
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Theorem 1 For any subgroup H of a Lie group G, the coset space G/H
admits a differentiable structure and becomes a manifold called homoge-
neous space. The dimension of this coset space is given by:

dim (G/H) = dimG− dimH . (A.11)

The dimension r of the group of symmetries of the space (group of
isometries) is then:

r = s+ q , (A.12)

and 0 ≤ r ≤ m+ 1
2m (m− 1) = 1

2m (m+ 1) .
The relation (A.12) can be viewed as

dim (group of isometries) = dim (group of translational symmetries)

+ dim (group of rotational symmetries) .

If q = 0 then r = s, which means that the dimension of the group of
isometries is just enough to move each point in an orbit into any other
point. This is called simply transitive group. There is no continuous
isotropy group in this case.

A.2 Classification of cosmological models
Cosmological models can be classified by their symmetries.

We saw in the previous section that the dimension of the group of
symmetries of the space is given by the sum of the dimensions of groups
of translational and rotational symmetries, i.e. (A.12). Then the value
of q determines the isotropy properties of the model, whereas the value
of s determines the homogeneity properties.

In a four-dimensional cosmological model, r can have different values,
obtained by a variety of q and s. The possibilities for the dimension of
orbits are s = 0, 1, 2, 3, 4. Whereas for the isotropy of the spatial
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dimensions, q can be 0, 1 or 3, but not 2. In fact we consider non-
empty perfect fluid models in which (p+ ρ) > 0 and hence there will
be uniquely defined notions of the average velocity of the matter and
corresponding preferred world lines. The four-velocity uµ is given by
(2.9) and, since it is unique, it is invariant. So, allowed rotations are
those which act orthogonally to uµ and the isotropy group has to be a
subgroup of these allowed rotations. Since there is no two-dimensional
subgroup of O (3), the case q = 2 is then excluded (see [3, section 5.2]
and [25, section 2]).

All over the space r must stay the same. Then, for isotropy the
possibilities are:

1. q = 3: isotropic. The Weyl tensor and all kinematical quantities,
except the expansion rate Θ, vanish. All observations (at every
point) are isotropic, this is the FLRW family of spacetime geome-
tries;

2. q = 1: local rotational symmetry (LRS). The Weyl tensor is of
algebraic Petrov type D or O10 and kinematical quantities are ro-
tationally symmetric about a preferred spatial direction. All ob-
servations at every general point are rotationally symmetric about
this direction.;

3. q = 0: anisotropic. There are no rotational symmetries. Observa-
tions in each direction are different from each other.

For homogeneity we have:

1. s = 4: spacetime homogeneous models. These models are un-
changing in space and time, so the density ρ is constant and from
(2.103) we see that Θ = 0, i.e. they cannot expand. Their only
relevance in cosmology is as a non-expanding asymptotic state of
an expanding model;

10For Petrov types see [15, chapter 4].
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2. s = 3: spatially homogeneous universes. In this case we have the
major models of theoretical cosmology because they express the
idea of the cosmological principle: all the points of space at the
same time are equivalent to each other;

3. s ≤ 2: spatially inhomogeneous universes.

Using the above classes, we can make every cosmological model with a
given symmetry (see table A.1 [25])11.

For example, the family of FLRW spaces, that model the standard
cosmology, are isotropic and spatially homogeneous universes (q = 3,
s = 3 ⇒ r = 6).

The LTB family of models correspond to spatially inhomogeneous
universes with LRS (q = 1, s = 2 ⇒ r = 3).

Another interesting case is the spatially homogeneous but anisotropic
family (q = 0, s = 3⇒ r = 3), which is the family of Bianchi universes.
In this case we have a simply transitive group of isometries G3 and hence
no continuous isotropy group.

11For more details on the classification of q and s given above see [3, section 5.2].
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q = 0 q = 1 q = 3

Szekeres-Szafron

s = 0 Stephani-Barnes

Oleson type N

s = 1 general metric form independent

of one coordinate

s = 2 generic metric form known, LTB family none

spatially self-similar, (cannot happen)

abelian G2 on 2D spacelike surfaces,

non-abelian G2

Bianchi: Kantowski-Sachs FLRW family

s = 3 orthogonal, LRS Bianchi

tilted

s = 4 Oszvath/Kerr Gödel Einstein

static

Table A.1: Classification of cosmological models by isotropy and homogeneity.
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Appendix B

The original classification
by Bianchi of the various
type of G3
In his paper [27], L. Bianchi begins with a finite-dimensional continuous
Lie group Gr generated by r infinitesimal transformations ξ1, ξ2, . . . , ξr
of a m-dimensional Riemannian manifold M . Then, the problem of
determining which spaces possess a continuous group of motions reduces
to the classification of all possible forms of metrics which possess a Lie
group Gr = {ξ1, . . . , ξm} which transforms the metric into itself.

Since in chapter 5 we study Bianchi models, for which the dimension
of the group of motions is r = 3 (see table A.1), here we give the origi-
nal classification of the different types of transitive G3. For a complete
discussion of this topic see [27].

• Type I: the metric has the form

ds2 = dx2
1 + αdx2

2 + 2βdx2dx3 + γdx2
3 . (B.1)

Here α, β and γ are constants and the space is of zero curvature.
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The composition rule is:

[ξ1, ξ2] f = [ξ1, ξ3] f = [ξ2, ξ3] f = 0 , (B.2)

where f is a test-function.

• Type II: the metric form is

ds2 = dx2
1 + dx2

2 + 2x1dx2dx3 +
(
x2

1 + 1
)
dx2

3 , (B.3)

and it holds the following rule:

[ξ1, ξ2] f = [ξ1, ξ3] f = 0 and [ξ2, ξ3] f = ξ1f . (B.4)

• Type III: the line element is

ds2 = dx2
1 + e2x1dx2

2 + 2ne2x1dx2dx3 + dx2
3 , (B.5)

where n is a constant.
We have:

[ξ1, ξ2] f = 0 , [ξ1, ξ3] f = ξ1f , [ξ2, ξ3] f = 0 . (B.6)

• Type IV : the metric has the form

ds2 = dx2
1 + e2x1

[
dx2

2 + 2x1dx2dx3 +
(
x2

1 + n2
)
dx2

3

]
, (B.7)

with n = const. and

[ξ1, ξ2] f = 0 , [ξ1, ξ3] f = ξ1f , [ξ2, ξ3] f = ξ1f + ξ2f . (B.8)

• Type V : the line element is

ds2 = dx2
1 + e2hx1

(
dx2

2 + dx2
3

)
, (B.9)

where h = const. and the composition is

[ξ1, ξ2] f = 0 , [ξ1, ξ3] f = ξ1f , [ξ2, ξ3] f = ξ2f . (B.10)
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• Type V I: for this group the metric is

ds2 = dx2
1 + e2x1dx2

2 + 2ne2(h+1)x1dx2dx3 + e2hx1dx2
3 . (B.11)

We have

[ξ1, ξ2] f = 0 , [ξ1, ξ3] f = ξ1f , [ξ2, ξ3] f = hξ2f , (B.12)

with h 6= 0, 1.

• Type V II1: here the line element has the form

ds2 = dx2
1 + (n+ cosx1) dx

2
2 + 2 sinx1dx2dx3 + (n− cosx1) dx

2
3 ,

(B.13)
where n > 1.
The composition rule is

[ξ1, ξ2] f = 0 , [ξ1, ξ3] f = ξ2f , [ξ2, ξ3] f = −ξ1f . (B.14)

• Type V II2: the metric form is

ds2 = dx2
1 + e−hx1

[(
n+ cos vx1

)
dx2

2

+

(
h cos vx1 + v sin vx1 + nh

)
dx2dx3

+

(
2− v2

2
cos vx1 +

hv

2
sin vx1 + n

)
dx2

3

]
, (B.15)

with the following composition:

[ξ1, ξ2] f = 0 , [ξ1, ξ3] f = ξ2f , [ξ2, ξ3] f = −ξ1f + hξ2f, (B.16)

where 0 < h < 2.
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• Type V III: the line element is

ds2 = dx2
1 + αdx2

2 + 2 (β − αx2) dx2dx3 +
(
αx2

2 − 2βx2 + γ
)
dx2

3 ,
(B.17)

with α, β and γ functions of x1.
The composition is

[ξ1, ξ2] f = ξ1f , [ξ1, ξ3] f = 2ξ2f , [ξ2, ξ3] f = ξ3f . (B.18)
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