
6 Big Bang Nucleosynthesis

One quarter (by mass) of baryonic matter in the universe is helium, heavier elements
make up a few percent, and the rest is hydrogen.

The building blocks of atomic nuclei, nucleons (meaning protons and neutrons)
are formed in the QCD phase transition at T ∼ 100 MeV and t ∼ 30 µs. Elements
heavier than lithium, up to iron, cobalt, and nickel have been made from lighter
elements by fusion reactions in stars. These reactions provide the energy source for
the stars. Elements heavier than these have been formed in supernova explosions.
However, the amount of helium and some other light isotopes in the universe cannot
be understood by these mechanisms. It turns out that 2H, 3He, 4He, and 7Li were
mainly produced already during the first hour of the universe, in a process called
Big Bang Nucleosynthesis (BBN).

Nucleons and antinucleons annihilated each other soon after the QCD phase
transition, and the small excess of nucleons left over from annihilation did not have
a significant effect on the expansion and thermodynamics of the universe until much
later, when the universe became matter-dominated (at teq ≈ 1000ω−2

m years ≈ 50 000
years). The ordinary matter in the present universe comes from this small excess of
nucleons. Let us now consider what happened to it in the early universe. We will
focus on the period when the temperature fell from T ∼ 10 MeV to T ∼ 10 keV
(from t ∼ 0.01 s to a few hours).

6.1 Equilibrium

The total number of nucleons minus antinucleons stays constant due to baryon
number conservation. In the temperature range under consideration, the number
density of antinucleons is negligible. The baryon number can be in the form of
protons and neutrons or atomic nuclei. Weak nuclear reactions convert neutrons
and protons into each other and strong nuclear reactions build nuclei from them.

During the period of interest the nucleons and nuclei are nonrelativistic (T ≪
mp). Assuming thermal equilibrium we have

ni = gi

(
miT

2π

)3/2

e
µi−mi

T (6.1)

for the number density of nucleus type i. If the nuclear reactions needed to build
nucleus i (with mass number Ai and charge Zi) from the nucleons,

(Ai − Zi)n + Zip ↔ i

occur at sufficiently high rate to maintain chemical equilibrium, we have

µi = (Ai − Zi)µn + Ziµp (6.2)

for the chemical potentials. Since for free nucleons we have

np = 2

(
mpT

2π

)3/2

e
µp−mp

T

nn = 2

(
mnT

2π

)3/2

e
µn−mn

T , (6.3)
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A
Zi Bi gi
2H 2.22 MeV 3
3H 8.48 MeV 2
3He 7.72 MeV 2
4He 28.3 MeV 1
12C 92.2 MeV 1

Table 1. Some of the lightest nuclei and their binding energies.

we can express ni in terms of the neutron and proton densities,

ni = giA
3
2
i 2

−Ai

(
2π

mNT

) 3
2
(Ai−1)

nZi
p nAi−Zi

n eBi/T , (6.4)

where
Bi ≡ Zimp + (Ai − Zi)mn −mi (6.5)

is the binding energy of the nucleus. Here we have approximated mp ≈ mn ≈ mi/A
outside the exponent, and denoted it by mN (“nucleon mass”).

The different number densities add up to the total baryon number density∑
Aini = nB . (6.6)

The baryon number density nB we get from the photon density

nγ =
2

π2
ζ(3)T 3 (6.7)

and the baryon/photon -ratio

nB

nγ
=

g∗s(T )

g∗s(T0)
η (6.8)

as

nB =
g∗s(T )

g∗s(T0)
η
2

π2
ζ(3)T 3. (6.9)

After electron-positron annihilation g∗s(T ) = g∗s(T0) and nB = ηnγ . Here η is the
present baryon/photon ratio. It can be estimated from various observations, and it
is about 6× 10−10.

For temperatures mN ≫ T ≳ Bi we have

(mNT )3/2 ≫ T 3 ≫ nB > np, nn

and thus (6.4) implies that
ni ≪ np, nn

for Ai > 1. Thus initially there are only free neutrons and protons in large numbers.
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6.2 Neutron-proton ratio

What can we say about np and nn? Protons and neutrons are converted into each
other by the weak interaction in the reactions

n + νe ↔ p + e−

n + e+ ↔ p + ν̄e (6.10)

n ↔ p + e− + ν̄e .

If these reactions are in equilibrium, we have µn + µνe = µp + µe, and the neu-
tron/proton ratio is

nn

np
≡ n

p
= e−Q/T+(µe−µνe )/T , (6.11)

where Q ≡ mn −mp = 1.293 MeV.
We need now some estimate of the chemical potentials of electrons and electron

neutrinos. The universe is electrically neutral, so the number of electrons (or ne− −
ne+) equals the number of protons, and µe can be calculated exactly in terms of
η and T . We leave the exact calculation as an exercise, but give below a rough
estimate for the ultrarelativistic limit (T ≫ me):

ne− − ne+ =
2T 3

6π2

[
π2µe

T
+
(µe

T

)3
]
= n∗

p < nB ≈ ηnγ = η
2

π2
ζ(3)T 3. (6.12)

Here n∗
p includes the protons inside nuclei. Since η is small, µ ≪ T , and we can drop

the (µ/T )3 term to get
µe

T
≲ 6

π2
ζ(3)η. (6.13)

Thus µe/T ∼ η ∼ 10−9. The nonrelativistic limit can be dealt with in a similar
manner. It turns out that µe rises as T falls, and somewhere between T = 30 keV
and T = 10 keV µe becomes larger than T , and, in fact, comparable to me.

For T ≳ 30 keV, µe ≪ T , and we can drop µe in (6.11).
Since we have not measured the cosmic neutrino background (and probably will

not do so in the foreseeable future, as neutrinos interact so weakly), we don’t know
the neutrino chemical potentials. Usually it is assumed that the neutrino asymmetry
is small, like the baryon asymmetry, so that |µνe | ≪ T . The observational upper
limit from BBN is |µνe |/T ≲ 0.056; if neutrinos are their own antiparticles, their
chemical potentials are exactly zero. Thus, we ignore both µe and µνe and get the
equilibrium neutron/proton ratio

n

p
= e−Q/T . (6.14)

(This is not valid for T ≲ 30 keV, since then µe is no longer small, but we will use
this formula only at higher temperatures.)

We can thus express the number densities of all nuclei in terms of the free proton
number density np, as long as chemical equilibrium holds.
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6.3 Bottlenecks

We define the mass fraction of nucleus i as

Xi ≡
Aini

nB
. (6.15)

Since
nB =

∑
i

Aini, (6.16)

(where the sum includes protons and neutrons), we have
∑

Xi = 1.
Using also the normalisation condition1 (6.16)), or

∑
iXi = 1, we get all equilib-

rium abundances as a function of T (they also depend on the value of the parameter
η). There are two items to note:

1. The normalisation condition (6.16) includes all nuclei up to uranium and be-
yond. Thus we would get a huge polynomial equation from which to solve
Xp.

2. In practice we don’t have to care about the first item, since as the tempera-
ture falls the nuclei no longer follow their equilibrium abundances. The reac-
tions are in equilibrium only at high temperatures, when the other equilibrium
abundances except Xp and Xn are small, and we can use the approximation
Xn +Xp = 1.

In the early universe the baryon density is too low and the time available is
too short for reactions involving three or more incoming nuclei to occur at any
appreciable rate. The heavier nuclei have to be built sequentially from lighter nuclei
in two-particle reactions, so deuterium is formed first in the reaction

n + p → d + γ.

Only when deuterium nuclei are available can helium nuclei be formed, and so on.
This process has “bottlenecks”: the lack of sufficient densities of lighter nuclei hin-
ders the production of heavier nuclei, and prevents them from following their equi-
librium abundances.

As the temperature falls, the equilibrium abundances rise fast. They become
large later for nuclei with small binding energies. Since deuterium is formed directly
from neutrons and protons it can follow its equilibrium abundance as long as there
are large numbers of free neutrons available. Since the deuterium binding energy is
rather small, the deuterium abundance becomes large rather late (at T < 100 keV).
Therefore heavier nuclei with larger binding energies, whose equilibrium abundances
would become large earlier, cannot be formed. This is the deuterium bottleneck.
Only when there is enough deuterium (Xd ∼ 10−3) can helium be produced in large
numbers.

The nuclei are positively charged so they repel each other electromagnetically.
The nuclei need large kinetic energies to overcome this Coulomb barrier and get
within the range of the strong interaction. Thus the cross sections for these fusion

1For np and nn we know just their ratio, since we do not know µp and µn, only that µp = µn.
Therefore this extra equation is needed to solve all ni.
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reactions fall rapidly with energy and the nuclear reactions freeze out when the
temperature falls below T ∼ 30 keV. Thus there is less than one hour available for
nucleosynthesis. Because of the short time available and additional bottlenecks (e.g.
there are no stable nuclei with A = 8), only very small amounts of elements heavier
than helium are formed.

6.4 Calculation of the helium abundance

Let us now calculate the numbers. For T > 0.1 MeV, we still have Xn +Xp ≈ 1, so
the equilibrium abundances are

Xn =
e−Q/T

1 + e−Q/T
and Xp =

1

1 + e−Q/T
. (6.17)

Nucleons follow these equilibrium abundances until neutrinos decouple at TD ∼
0.8 MeV, shutting off the weak n ↔ p reactions. After this, free neutrons decay, so

Xn(t) = Xn(tdec)e
−(t−tdec)/τn , (6.18)

where τn = 880.2 ± 1.0 s is the mean lifetime of a free neutron2. (The half-life is
τ1/2 = (ln 2)τn.) In reality, the decoupling and thus the shift from behaviour (6.17)
to behaviour (6.18) is not instantaneous, but an approximation where one takes it
to be instantaneous at time tdec when Tdec = 0.8 MeV, so Xn(tdec) = 0.1657, gives
a fairly accurate final result.

The equilibrium mass fractions are, from (6.4),

Xi =
1

2
XZi

p XAi−Zi
n giA

5
2
i ϵ

Ai−1eBi/T (6.19)

where

ϵ ≡ 1

2

(
2π
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)3/2
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1

π2
ζ(3)

(
2πT

mN

)3/2 g∗s(T )

g∗s(T0)
η ∼

(
T

mN

)3/2

η.

The factors which change rapidly with T are ϵAi−1eBi/T . For temperatures mN ≫
T ≫ Bi we have eBi/T ∼ 1 and ϵ ≪ 1. Thus Xi ≪ 1 for others (Ai > 1) than
protons and neutrons. As temperature falls, ϵ becomes even smaller and at T ∼ Bi

we have Xi ≪ 1 still. The temperature has to fall below Bi by a large factor before
the factor eBi/T wins and the equilibrium abundance becomes large.

Deuterium has Bd = 2.22 MeV, so we get ϵeBd/T = 1 at Td = 0.06 MeV–0.07
MeV (assuming η = 10−10 − 10−9), so the deuterium abundance becomes large
close to this temperature. Since 4He has a much higher binding energy, B4 = 28.3
MeV, the corresponding situation ϵ3eB4/T = 1 occurs at a higher temperature T4 ∼
0.3 MeV. But we noted earlier that only deuterium stays close to its equilibrium
abundance once it gets large. Helium begins to form only when there is sufficient
deuterium available, in practice slightly above Td. Helium then forms rapidly. The
available number of neutrons sets an upper limit to 4He production. Since helium

2The error bar may not be an accurate reflection of the uncertainty in the neutron lifetime, as
there are large differences between measurements, and the preferred value has changed annually at
the percent level, e.g. the shift from 2010 to 2012 was 5.6 seconds. This is the current best estimate,
from 2017 [1].
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has the highest binding energy per nucleon (of all isotopes below A = 12), almost
all neutrons end up in 4He, and only small amounts of the other light isotopes, 2H,
3H, 3He, 7Li, and 7Be, are produced.

The Coulomb barrier shuts off the nuclear reactions before there is time for heav-
ier nuclei (A > 8) to form. We get a fairly good approximation for 4He production
by assuming instantaneous nucleosynthesis at T = Tns ∼ 1.1Td ∼ 70 keV, with all
neutrons ending up in 4He, so that

X4 ≈ 2Xn(Tns) . (6.20)

After electron-positron annihilation (T ≪ me = 0.511 MeV) the time-temperature
relation is

t ≈ 2.42
√
g∗

(
T

MeV

)−2

s , (6.21)

where g∗ = 3.363. Since most of the time in T = 0.8 MeV–0.07 MeV is spent at the
lower part of this temperature range, this formula gives a good approximation for
the time,

tns − tdec = 267 s (in reality 264.3 s).

Thus we get for the final 4He abundance

X4 = 2Xn(tdec)e
−(tns−tdec)/τn = 24.5 %. (6.22)

Accurate numerical calculations, using the reaction rates of the relevant weak and
strong reaction rates give X4 = 21–26 % (for η = 10−10 − 10−9).

This calculation of the helium abundance X4 involves a bit of cheating in the
sense that we have used results of accurate numerical calculations to infer that we
need to use T = 0.8 MeV as the neutrino decoupling temperature, and Tns = 1.1Td

as the “instantaneous nucleosynthesis” temperature, to best approximate the correct
behaviour. However, it gives us a quantitative description of what is going on, and
an understanding of how the helium yield depends on various things.

Exercise: Using the preceding calculation, find the dependence of X4 on η, i.e.,
calculate dX4/dη.

6.5 Why so late?

Let us return to the question of why the temperature has to fall so much below the
binding energy before the equilibrium abundances become large. From the energetics
we might conclude that when typical kinetic energies, ⟨Ek⟩ ≈ 3

2T , are smaller than
the binding energy, it would be easy to form nuclei but difficult to break them.
Above we saw that the smallness of the factor ϵ ∼ (T/mN)

3/2η is the reason why
this is not so. Here η ∼ 10−9 and (T/mN)

3/2 ∼ 10−6 (for T ∼ 0.1 MeV). The main
culprit is thus the small baryon/photon ratio. Since there are 109 photons for each
baryon, there is a sufficient amount of photons who can disintegrate a nucleus in
the high-energy tail of the photon distribution, even at rather low temperatures.
We can also express this result in terms of entropy. A high photon/baryon ratio
corresponds to a high entropy per baryon. High entropy favours free nucleons.
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6.6 The most important reactions

In reality, neither neutrino decoupling nor nucleosynthesis are instantaneous pro-
cesses. Accurate results require a rather large numerical computation where one
uses the cross sections of all the relevant weak and strong interactions. These cross
sections are energy-dependent. Integrating them over the energy and velocity dis-
tributions and multiplying with the relevant number densities leads to temperature-
dependent reaction rates. The most important reactions are the weak n ↔ p reac-
tions (6.10) and the following strong reactions3(see also Fig. 1):

p + n → 2H + γ
2H + p → 3He + γ
2H + 2H → 3H + p
2H + 2H → 3He + n

n + 3He → 3H + p

p + 3H → 4He + γ
2H + 3H → 4He + n
2H + 3He → 4He + p
4He + 3He → 7Be + γ
4He + 3H → 7Li + γ
7Be + n → 7Li + p
7Li + p → 4He + 4He

3The reaction chain that produces helium from hydrogen in BBN is not the same that occurs
in stars. The conditions in stars are different: on the one hand, there are no free neutrons and
the temperatures are lower, but on the other hand the densities are higher and there is more time
available. In addition, second generation stars contain heavier nuclei (C,N,O) that act as catalysts
in helium production. Some of the most important reaction chains in stars are [Karttunen et al:
Fundamental Astronomy, p. 251] :

1. The proton-proton chain

p + p → 2H+ e+ + νe
2H+ p → 3He + γ

3He + 3He → 4He + p + p,

2. and the CNO-chain

12C+ p → 13N+ γ
13N → 13C+ e+ + νe

13C+ p → 14N+ γ
14N+ p → 15O+ γ

15O → 15N+ e+ + νe
15N+ p → 12C+ 4He.

The cross section of the direct reaction d+d → 4He + γ is small (i.e. the 3H + p and 3He + n
channels dominate d+d →), and it is not important in either context.

The triple-α reaction 4He+ 4He+ 4He → 12C, responsible for carbon production in stars, is also
not important during big bang, since the density is not sufficiently high for three-particle reactions
to occur (the three 4He nuclei would need to come within the range of the strong interaction within
the lifetime 2.6×10−16 s of the intermediate state 8Be). Exercise: calculate the number and mass
density of nucleons at T = 1 MeV.
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In principle, all of these nuclear cross sections are determined by just a few
parameters in QCD. However, calculating these cross sections from first principles
is too difficult in practice. Instead cross sections measured in the laboratory are
used. Cross sections of the weak reactions (6.10) are known theoretically (there is
one parameter describing the strength of the weak interaction, which is determined
experimentally). The relevant reaction rates are now known sufficiently accurately,
so that the nuclear abundances produced in BBN (for a given value of η) can be
calculated with better accuracy than the present abundances can be measured from
astronomical observations.

The reaction chain proceeds along stable and long-lived (compared to the nu-
cleosynthesis timescale—minutes) isotopes towards larger mass numbers. At least
one of the two incoming nuclei must be an isotope which is abundant during nu-
cleosynthesis, i.e. n, p, 2H or 4He. The mass numbers A = 5 and A = 8 form
bottlenecks, since they have no stable or long-lived isotopes. The A = 5 bottleneck
is crossed with the reactions 4He+3He and 4He+3H, which form a small number of
7Be and 7Li. Their abundances remain so small that we can ignore the reactions
(e.g. 7Be+ 4He → 11C+γ and 7Li+ 4He → 11B) which cross the A = 8 bottleneck.
Numerical calculations also show that the production of the other stable lithium
isotope, 6Li is several orders of magnitude smaller than that of 7Li.

Thus BBN produces the isotopes 2H, 3H, 3He,4He, 7Li and 7Be. Of these, 3H
(half life 12.3 a) and 7Be (53 d) are unstable and decay after nucleosynthesis into 3He
and 7Li. (Actually, 7Be becomes 7Li through electron capture 7Be+e− → 7Li+νe.)

In the end BBN has produced cosmologically significant (compared to present
abundances) amounts of the four isotopes, 2H, 3He, 4He and 7Li (the fifth isotope
1H=p we had already before BBN). Their production in the BBN can be calculated,
and there is only one free parameter, the baryon/photon ratio

η ≡ nB0

nγ0
=

Ωb0ρc0
mNnγ0

=
Ωb0

mnnγ0

3H2
0

8πG

= 274× 10−10ωb = 1.46× 1018
(

ρb0

kgm−3

)
. (6.23)

Here ρb0 is the average density of baryonic matter today; recall that ωb ≡ Ωb0h
2.

6.7 BBN as a function of time

Let us follow nucleosynthesis as a function of time (or temperature). See Fig. 4.3 in
Kolb&Turner or Fig. 2 here.

The nuclei 2H and 3H are intermediate states through which reactions proceed
towards 4He. Therefore their abundance first rises, is highest at the time when 4He
production is fastest, and then falls as baryonic matter ends up in 4He. 3He is also
an intermediate state, but the main channel from 3He to 4He is via 3He+n→3H+p
, which is extinguished early as the free neutrons are used up. Therefore the abun-
dance of 3He does not fall the same way as 2H and 3H. The abundance of 7Li also
rises at first and then falls via 7Li+p→4He+4He. Since 4He has a higher binding
energy per nucleon, B/A, than 7Li and 7Be have, these also want to return into 4He.
This does not happen to 7Be, however, since, just like for 3He, the free neutrons
needed for the reaction 7Be+n→4He+4He have almost disappeared.
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Figure 1: The 12 most important nuclear reactions in big bang nucleosynthesis.

Figure 2: The time evolution of the n, 2H (written as d) and 4He abundances during
BBN. Notice how the final 4He abundance is determined by the n abundance before nuclear
reactions begin. Only a small part of the neutrons decay or end up in other nuclei. Before be-
coming 4He, all neutrons pass through 2H. To improve the visibility of the deuterium curve,
we have plotted it also as multiplied by a factor of 50. The other abundances (except p) re-
main so low, that to see them the figure should be redrawn in logarithmic scale (see Fig. 4.3
of Kolb&Turner. This Figure is for η = 6 × 10−10. The time at T = (90, 80, 70, 60) keV is
(152, 199, 266, 367) s. Thus the action peaks at about t = 4 min.
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B(MeV) B/A

2H 2.2245 1.11
3H 8.4820 2.83
3He 7.7186 2.57
4He 28.2970 7.07
6Li 31.9965 5.33
7Li 39.2460 5.61
7Be 37.6026 5.37

12C 92.1631 7.68
56Fe 492.2623 8.79

6.8 Primordial abundances as a function of the baryon-to-photon
ratio

Let us consider BBN as a function of η (see figure 3). The greater is η, the higher is
the number density of nucleons. The reaction rates are faster and the nucleosynthesis
can proceed further. This mean that a smaller fraction of “intermediate nuclei”, 2H,
3H, and 7Li are left over— the burning of nuclear matter into 4He is “cleaner”.
Also the 3He production falls with increasing η. However, 7Be production increases
with η. In the figure we have plotted the final BBN yields, so that 3He is the sum
of 3He and 3H, and 7Li is the sum of 7Li and 7Be. The complicated shape of the
7Li(η) curve is due to these two contributions: 1) For small η we get lots of “direct”
7Li, whereas 2) for large η there is very little “direct” 7Li left, but a lot of 7Be is
produced. In the middle, at η ∼ 3 × 10−10, there is a minimum of 7Li production
where neither way is very effective.

The 4He production increases with η, since for higher density nucleosynthesis
begins earlier, when there are more neutrons left.

6.9 Comparison with observations

Abundances of the various isotopes calculated from BBN can be compared to the
observed abundances. This is one of the most important tests of the big bang theory.
A good agreement is obtained for η in the range η = 6–7× 10−10. This was, in fact,
the best method to estimate the amount of ordinary matter in the universe, until the
advent of precise cosmic microwave (CMB) anisotropy data in 2003, from theWMAP
satellite4. The comparison of calculated abundances with observed abundances is
complicated by chemical evolution. BBN gives the primordial abundances of the
isotopes. The first stars form with this element composition. In stars, further fusion
reactions take place and the composition of the star changes with time. Towards the
end of its life, the star ejects its outer parts into interstellar space, and the processed
material mixes with primordial material. The next generation of stars forms from
this mixed material, and so on.

The observations of present abundances are based on spectra of interstellar clouds
and stellar surfaces. To obtain the primordial abundances from the present abun-

4Many cosmological parameters can be estimated from the CMB anisotropy. The current best
CMB estimate is from the Planck satellite, 100ωb = 2.24 ± 0.01, corresponding to η = (6.14 ±
0.027)× 10−10 [2].
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Figure 3: The primordial abundances of the light elements as a function of η. For 4He we
give the mass fraction, for D = 2H, 3He, and 7Li the number ratio to H = 1H, i.e., ni/nH.
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dances the effect of chemical evolution has to be estimated. Since 2H is so fragile
(its binding energy is so low), there is hardly any 2H production in stars, rather
any pre-existing 2H is destroyed early on in stars. Therefore any interstellar 2H is
primordial. The smaller the fraction of processed material in an interstellar cloud,
the higher its 2H abundance should be. Thus all observed 2H abundances are lower
limits to the primordial 2H abundance5. Conversely, stellar production increases the
4He abundance. Thus all 4He observations are upper limits to the primordial 4He.
Moreover, stellar processing produces heavier elements, e.g. C, N, O, which are not
produced in BBN. Their abundance varies a lot from place to place, giving a mea-
sure of how much chemical evolution has happened in various parts of the universe.
Plotting 4He vs. these heavier elements, we can extrapolate the 4He abundance
to zero chemical evolution to obtain the primordial abundance. Since 3He and 7Li
are both produced and destroyed in stellar processing, it is more difficult to make
estimates of their primordial abundances based on observed present abundances.

There are two clear qualitative signatures of big bang nucleosynthesis in the
present universe:

1. All stars and gas clouds observed contain at least 23% 4He. If all 4He had been
produced in stars, we would see similar variations in the 4He abundance as we
see for the other elements, such for C, N, and O, with some regions containing
just a few % or even less 4He. This universal minimum amount of 4He signifies
primordial abundance produced when matter in the universe was uniform.

2. The existence of significant amounts of 2H in the universe is a sign of BBN,
since there are no known astrophysical sources of large amounts of 2H.

The observed abundances of the BBN isotopes, 2H, 3He and 4He indicate the
range η = 5.8—6.6× 10−10 (95% C.L.), whereas 7Li prefers smaller values at over 5
σ [1]. Measurements of each isotope are subject to different systematical errors, and
the convergence of three out of four of them to a narrow range strongly supports
it as the correct one. Furthermore, this range agrees with the baryon-to-photon
ratio η at the time of last scattering determined from the CMB. There is a problem
with the 7Li abundance – this may be a hint of new particle physics that would
deplete Lithium, or it may simply indicate poorly understood stellar astrophysics
(the abundance is determined from measurements of old stars). Fig. 4 illustrates
these issues.

The 95% C.L. range η = 5.7—6.7 × 10−10 corresponds to 0.021 ≤ ωb ≤ 0.025.
With h = 0.7, we get

Ωb0 = 0.04 . . . 0.05 . (6.24)

This is much less than cosmological estimates for Ωm0. Therefore most of the
matter in the universe is non-baryonic. In the next chapter, we will discuss this
non-baryonic dark matter.

5This does not apply to sites which have been enriched in 2H due to separation of 2H from 1H.
Deuterium binds into molecules more easily than ordinary hydrogen. Since deuterium is heavier
than ordinary hydrogen, deuterium and molecules involving deuterium have lower thermal velocities
and do not escape from gravity as easily. Thus planets tend to have high deuterium-to-hydrogen
ratios.
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Figure 4: The abundances of 4He, D, 3He and 7Li and the range of η10 ≡ 1010η determined
from BBN (yellow boxes) and the the CMB (blue strip) [1]. Both the BBN and CMB ranges
are 95% C.L..
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We can also use BBN to test for the presence of physics beyond the Standard
Model. The expansion rate of the universe depends on the energy density of radia-
tion, encoded in g∗. During BBN, we have g∗ = 5.5+1.75Nν , whereNν is the number
of neutrino species with masses so small that they are relativistic during BBN and
have weak interactions so that their distribution is coupled to the thermal bath until
about T = 0.8 MeV. The number of neutrino species can also be left as a free pa-
rameter, in which case it parametrises any additional radiation degrees of freedom
that may be present. As mentioned in the previous chapter, for the Standard Model
we have Nν = 3.046, because neutrinos are not totally decoupled from the thermal
bath when electrons and positrons annihilate, so some of the entropy (and energy
density) of electrons and positrons is transferred to the neutrinos, hence the 0.046
correction. If we leave Nν as a free parameter and fit the observations (neglecting
Lithium) we get from light element abundances the range η = 5.6—6.6× 10−10 and
2.3 < Nν < 3.4 [1]. As far as BBN is concerned, there is room for one more light
neutrino species. From CMB and large-scale structure data, we get Nν = 2.99+0.34

−0.33

[2], so there is little room for additional radiation degrees of freedom, certainly not
for another thermalised neutrino species.6
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6We know from collider and laboratory experiments that there are only three light weakly in-
teracting neutrinos. The mass limit for new weakly interacting neutrinos is m > 40 GeV if they
are of the Majorana type and m > 2400 GeV if they are of the Dirac type [3]. The distinction
corresponds to whether they are or are not (respectively) their own antiparticles.


