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3 The Friedmann-Robertson-Walker model

3.1 Kinematics

3.1.1 The Robertson–Walker metric

In cosmology the basic approximation is that spacetime can be sliced into spatial
hypersurfaces that are exactly homogeneous and isotropic. The coordinate t that is
constant on these hypersurfaces, and labels them, is called the cosmic time.

There is evidence that the universe is indeed statistically homogeneous (all places
look the same) and isotropic (all directions look the same) on scales larger than
about 100 Mpc. In particular, the CMB looks highly isotropic to us. If we accept
the Copernican principle according to which we are not in a special location, typical
observers should all see an almost isotropic CMB. Somewhat surprisingly, this does
not prove that the universe would be almost homogeneous, though it does lend it
support [1, 2]. Observations of the distribution of galaxies give strong support for
statistical homogeneity [3].

These observations of statistical homogeneity and isotropy do not prove that
the universe would be well described by a model that is exactly homogeneous and
isotropic, but it does motivate using it as a first approximation. (We will see that
the approximation is quite good, and at early times it is excellent, as the universe
was then more homogeneous and isotropic than today.) Statistical homogeneity and
isotropy is called the Cosmological Principle. Sometimes this term is used to describe
exact homogeneity and isotropy. In any case, nowadays statistical homogeneity
and isotropy is not an independent principle. Theoretically it follows from cosmic
inflation and it can be observationally tested. In this course we consider only exactly
homogeneous and isotropic spacetimes.

Since the spacetime is spatially homogeneous and isotropic, the spacetime cur-
vature is the same at all points in space, but can vary in time. It can be shown that
the metric can be written (by a suitable choice of coordinates) in the form

ds2 = −dt2 + a(t)2
[

dr2

1−Kr2
+ r2dθ2 + r2 sin2 θ dφ2

]
. (3.1)

An alternative form, in Cartesian as opposed to spherical coordinates, is

ds2 = −dt2 + a(t)2
1(

1 + K
4 r

2
)2 δijdxidxj . (3.2)

In either form, this is called the Robertson–Walker (RW) metric, sometimes the
Friedmann–Robertson–Walker (FRW) metric or the Friedmann–Lemâıtre–Robertson–
Walker (FLRW) metric1. Note that neither form of the metric has the same amount
of symmetry as the spacetime itself: the metrics are isotropic, but not homogeneous.
The full symmetry of the spacetime is usually not apparent in the metric itself, even
though all physical quantities calculated from the metric display the symmetry. The
time coordinate t is the cosmic time. Here K is a constant, related to curvature of
space (not spacetime) and a(t) is a function of time, called the scale factor, that

1The most commonly used term is the FRW metric. However, some authors prefer to make
the distinction between the geometry (with the names Robertson and Walker attached) and the
equations of motion (endowed with the name Friedmann and sometimes also Lemâıtre).
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tells how the universe expands (or contracts). We will need the Einstein equation
to solve a(t). From the geometrical point of view, it is just an arbitrary function of
the time coordinate t. We call

Rcurv ≡ a(t)/
√
|K| (3.3)

the curvature radius of space (at time t). The metric (3.1) is given in spherical
coordinates. The 2-dimensional surfaces t = r = const have the metric of a sphere
with radius ar.

We have the freedom to rescale the radial coordinate r. For example, nothing
changes if we multiply all values of r by a factor of 2 and also divide a by a factor
of 2 and K by a factor of 4. The spacetime geometry stays the same, the meaning
of the coordinate r has just changed: the point that had a given value of r has now
twice that value in the rescaled coordinate system. There are two common ways to
use the rescaling to make notation simpler. If K ̸= 0, we can rescale r to make K
equal to ±1. In this case K is usually denoted k. In this case r is dimensionless,
and a(t) has the dimension of distance. The other way is to set the scale factor
today to unity2, a(t0) ≡ a0 = 1. We will use this latter convention in the course,
unless otherwise noted. In this case a(t) is dimensionless, and r and K−1/2 have the
dimension of distance.

If K = 0, the spatial part (t = const.) of the Robertson–Walker metric is flat,
i.e. that of ordinary Euclidean space, with the radial distance given by ar. The
spacetime, however, is curved, since a(t) depends on time, describing the expansion
or contraction of space. It is often said that the “universe is flat” in this case,
though if the universe is understood as the four-dimensional spacetime (as opposed
to a spatial slice), “spatially flat” would be more correct.

If K > 0, the coordinate system is singular at r = rK ≡ 1/
√
K. (Remem-

ber the discussion of the 2-sphere in the previous chapter.) With the coordinate
transformation r = rK sinχ the metric becomes

ds2 = −dt2 + a2(t)K−1
[
dχ2 + sin2 χ(dθ2 + sin2 θ dφ2)

]
. (3.4)

The spatial part has the metric of a 3D hypersphere, a sphere with one extra di-
mension. There is a new angular coordinate χ, whose values range from 0 to π, just
like θ. The singularity at r = 1/

√
K disappears in this coordinate transformation,

showing that it was just a coordinate artifact, not a physical singularity. The orig-
inal coordinates covered only half of the hypersphere, as the coordinate singularity
r = 1/

√
K divides the hypersphere into two halves. The case K > 0 corresponds

to a closed universe, with positive spatial curvature.3 This is a finite universe, with
circumference 2πarK = 2πRcurv and volume 2π2a3r3K = 2π2R3

curv, and Rcurv is the
radius of the hypersphere.

If K < 0, there is no coordinate singularity, and r ranges from 0 to ∞. The
substitution r = |K|−1/2 sinhχ is, however, often useful in calculations. The case
K < 0 corresponds to an open universe, with negative spatial curvature. The metric
is

ds2 = −dt2 + a2(t)|K|−1
[
dχ2 + sinh2 χ

(
dθ2 + sin2 θ dφ2

)]
. (3.5)

2In some discussions of the early universe, it is more convenient to rescale a to unity at some
early time instead.

3Positive (negative) curvature means that the sum of angles of any triangle is greater than (less
than) 180◦ and that the area of a sphere with radius r is less than (greater than) 4πr2.
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Figure 1: The hypersphere. This figure is for K = k = 1. Consider the semicircle in the
figure. It corresponds to χ ranging from 0 to π. You get the (2-dimensional) sphere by
rotating this semicircle off the paper around the vertical axis by an angle ∆φ = 2π. You get
the (3-dimensional) hypersphere by rotating it twice, in two extra dimensions, by ∆θ = π
and by ∆φ = 2π, so that each point makes a sphere. Thus each point in the semicircle
corresponds to a full sphere with coordinates θ and φ, and radius (a/

√
K) sinχ.

This universe is infinite, just like in the case K = 04.
The Robertson–Walker metric has two associated length scales, both of which

in general evolve in time. The first is the curvature radius Rcurv = a|K|−1/2. The
second is the time scale of the expansion, the Hubble time, tH ≡ H−1, whereH ≡ ȧ/a
is the Hubble parameter. The Hubble time multiplied by the speed of light, c = 1,
gives the Hubble length, ℓH ≡ ctH = H−1. In the case K = 0 the universe is flat,
and the Hubble length is the only length scale.

The coordinates (t, r, θ, φ) of the Robertson–Walker metric are called comoving
coordinates. This means that the coordinate system follows the expansion of space,
so the spatial coordinates of objects that do not move with respect to the back-
ground remain the same. The homogeneity of the universe fixes a special frame of
reference, the cosmic rest frame given by the above coordinate system, so (unlike in
the empty Minkowski space) the concept “does not move” can be defined in a phys-
ically meaningful way. The coordinate distance between two such objects stays the
same, but their physical, or proper, distance grows with time as space expands. The
time coordinate t, the cosmic time, gives the time measured by such an observer, at
(r, θ, φ) = const.

It can be shown that expansion causes the motion of an object in free fall to slow
down with respect to the comoving coordinate system. For nonrelativistic physical

4The terminology of open vs. closed refers to the simplest possible choice of topology for the
space. The K > 0 models are always finite, but it is also possible for the K = 0 and K < 0 models
to be finite in a compact space with non-trivial topology. We will not discuss this possibility. (The
mathematically oriented reader will note that the terms “open” and “closed” do not have the same
meaning in cosmology as they do in topology!)
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velocities we have

v(t2) =
a(t1)

a(t2)
v(t1) . (3.6)

The velocity of a galaxy with respect to the background is called peculiar velocity.

3.1.2 Conformal time

If we want the metric to remain isotropic, we cannot make coordinate transforma-
tions that mix the time coordinate with the spatial coordinates. However, just as
we redefined the radial coordinate above, we can make redefinitions which involve
only the time coordinate. In the comoving coordinates used above, the space part
of the coordinate system is expanding with the expansion of the universe. It is often
practical to change the time coordinate so that the “unit of time” (i.e. separation
of time coordinate surfaces) also increases in time. The conformal time η is defined
by

dη ≡ 1

a(t)
dt, or η =

∫ t

0

dt′

a(t′)
. (3.7)

The metric can be written in a nice form as follows,

ds2 = a(η)2
(
−dη2 + dχ2 +

1

−K
sinh2

[√
−Kχ

]
dΩ2

)
(3.8)

= a(η)2(−dη2 + dχ2 +


sin2 χ

χ2

sinh2 χ

dΩ2) , (3.9)

where in the second equality we have chosen the normalisation of a(t) so that
K = ±1, 0. The cases in the curly brackets correspond, from top to bottom, to
K = k = +1, 0,−1, and we have denoted r ≡ χ in the case K = 0. This form is
particularly suited to considering light propagation. We can choose the light prop-
agation direction as radial, so dθ = dϕ = 0, and the remaining part of the metric
is conformal to the 1+1-dimensional Minkowski metric, in terms of η and χ. The
condition ds2 = 0 then leads simply to dη = ±dχ, and light rays travel in 45◦ angles
in the coordinates (η, χ).

3.1.3 Redshift

As mentioned in chapter 1, redshift is one of the most important cosmological ob-
servables. Let us find how it is related to the spacetime geometry in the case of
the FRW metric. Consider galaxy A. Light leaves the galaxy at time t1 with wave-
length λ1 and arrives at galaxy O at time t2 with wavelength λ2. It takes a time
δt1 = λ1/c = 1/f1 to send one wavelength and a time δt2 = λ2/c = 1/f2 to receive
one wavelength. Follow now the two light rays sent at times t1 and t1+δt1 (see figure
2). Since all directions are equivalent, we can choose the direction of propagation
to be radial, so that dθ = dφ = 0. Light follows lightlike geodesics for which

ds2 = 0 . (3.10)
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Figure 2: The two light rays to establish the redshift.

We thus have

ds2 = −dt2 + a2(t)
dr2

1−Kr2
= 0 (3.11)

⇒ dt

a(t)
=

−dr√
1−Kr2

. (3.12)

Integrating this, we get for the first light ray∫ t2

t1

dt

a(t)
=

∫ rA

0

dr√
1−Kr2

, (3.13)

and for the second, ∫ t2+δt2

t1+δt1

dt

a(t)
=

∫ rA

0

dr√
1−Kr2

. (3.14)

The right hand sides of the two equations are the same, since the sender and the
receiver have not moved (they stay at r = rA and r = 0). Thus

0 =

∫ t2+δt2

t1+δt1

dt

a(t)
−
∫ t2

t1

dt

a(t)
=

∫ t2+δt2

t2

dt

a(t)
−
∫ t1+δt1

t1

dt

a(t)
=

δt2
a(t2)

− δt1
a(t1)

, (3.15)

and the time to receive one wavelength is

δt2 =
a(t2)

a(t1)
δt1. (3.16)

This derivation is even simpler when using the coordinates discussed in (3.1.2): it is
then obvious that δη2 = δη1, from which the result (3.16) follows immediately.

As is clear from the derivation, this cosmological time dilation effect applies to
observing any event taking place in galaxy A. As we observe galaxy A, we see ev-
erything happening in slow motion’, slowed down by the factor a(t2)/a(t1), which
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is the factor by which the universe has expanded since the light (or any electromag-
netic signal) left the galaxy. This effect can be observed e.g. in the light curves
(luminosity as a function of time) of supernovae.

For the redshift we have the result

1 + z ≡ λ2
λ1

=
δt2
δt1

=
a(t2)

a(t1)
. (3.17)

The result is simple: the wavelength expands with the universe. So the redshift tells
us how much smaller the universe was when the light left the galaxy.

3.1.4 Age-redshift relation

If we see a source at redshift z, how old was the universe when the light left the
source? In the FRW universe we have

dt =
da

ȧ
=

da

a

1

H
= − dz

1 + z

1

H
, (3.18)

where we have assumed that ȧ ̸= 0, i.e. that a(t) is monotonic. The age of the
universe at redshift z is then

t(z) =

∫ t

0
dt′ =

∫ ∞

z

dz′

1 + z′
1

H(z′)
, (3.19)

where we have already used the knowledge that for realistic cosmological models,
the universe has a finite age and that at the beginning a = 0 (i.e. z = ∞), and
chosen the beginning of time as t = 0. Putting z = 0 gives the present age of the
universe,

t0 =

∫ ∞

0

dz′

1 + z′
1

H(z′)
. (3.20)

Subtracting the two tells us for how long the photons have travelled to arrive at our
detectors:

∆t ≡ t0 − t(z) =

∫ z

0

dz′

1 + z′
1

H(z′)
. (3.21)

Note that whereas time t is a coordinate whose origin is in the past (in usual
cosmological models it is chosen to be at the beginning of the universe), the origin
of the redshift is set to be today. Conceptually, t is just like Newtonian time, so
it’s simple to use. For example, if we discuss two different cosmological models, it
is straightforward to compare them when the universe has the same age (assuming
both have a beginning of time). In contrast, comparing them at the same redshift
doesn’t make sense unless we specify by which criteria you select ”today” in the two
models. Observationally, however, it is difficult to determine the age of the universe,
while it is easy to measure the redshift. The redshift is useful when it is expressed in
relation to some quantities which are easier to measure than time, such as distances,
to which we now turn.
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3.1.5 Angular diameter distance

Almost all cosmological observations are made along the past lightcone, and impor-
tant observable quantities include, in addition to the redshift, angular diameter and
luminosity. We want to use the FRW model to relate these observable quantities
to parameters of the model, so that we can constrain the geometry of the universe
with observations. (As we will soon discuss, we can then also constrain the matter
content of the universe.)

Suppose we have a set of standard rulers, objects that we know are all the same
small size ds, observed at different redshifts. Their observed angular sizes dθ(z) then
give us the angular diameter distance as dA(z) = ds/dθ(z), as discussed in chapter
2. This can then be compared to the theoretical dA(z) for the FRW universe to find
parameter values which give the best fit between observation and theory.

From the FRW metric, the proper distance corresponding to angle θ is, from
ds2 = a2(t)r2dθ2 ⇒ ds = a(t)rdθ. We thus have

dA = a(t)r =
1

1 + z
r . (3.22)

Now we have to relate the radial coordinate r to the observed redshift. As light
travels on null geodesics, we have

ds2 = −dt2 + a(t)2
dr2

1−Kr2
= 0

⇒ dt = −a(t) dr√
1−Kr2

. (3.23)

Since we place the observer at the center, the radial coordinate for incoming light
rays decreases as time increases, hence the minus sign. Integrating, we obtain∫ t0

t1

dt

a(t)
=

∫ r

0

dr√
1−Kr2

= (−K)−1/2 arsinh[(−K)1/2r]

=


K−1/2 arcsin(K1/2r) K > 0

r K = 0

|K|−1/2 arsinh(|K|1/2r) K < 0 .

(3.24)

To facilitate handling all three cases simultaneously, we define the function

SK(x) ≡ 1√
−K

sinh(
√
−Kx) =


K−1/2 sin(K1/2x) K > 0

x K = 0

|K|−1/2 sinh(|K|1/2x) K < 0 .

(3.25)

In other words, the function 1√
−K sinh(

√
−Kx) is understood as the analytical con-

tinuation when K is positive, and as the limit of small K when K = 0. The inverse
of this function is denoted by S−1

K (x). Putting together (3.24) and (3.25), we have

r =
1√
−K

sinh

(√
−K

∫ t0

t1

dt

a(t)

)
=

1√
−K

sinh

(√
−K

∫ z

0

dz′

H(z′)

)
, (3.26)
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where we have on the second line used the relation (3.18).
Inserting (3.26) into (3.22), we finally obtain the angular diameter distance as a

function of redshift:

dA(z) = (1 + z)−1SK

(∫ z

0

dz′

H(z′)

)
= (1 + z)−1 1√

−K
sinh

(√
−K

∫ z

0

dz′

H(z′)

)
. (3.27)

In the spatially flat case this reduces to

dA(z) = (1 + z)−1

∫ z

0

dz′

H(z′)
. (3.28)

This relation tells us how distance scales in the FRW universe change because
of the expansion of the universe. For a general FRW metric, the angular diameter
distance depends only on the redshift, the coordinate curvature radius 1/

√
−K and

the integral over the inverse Hubble parameter. Note that if the universe expands
rapidly in the past (as is the case in the real universe), the contribution to the
distance from early times becomes rapidly small, because the length scales at early
times were much smaller than today.

Because of the factor (1 + z)−1, the angular diameter distance is not necessarily
monotonic in redshift, i.e. it may be that the distance to objects decreases above
some redshift. This curious feature is present in realistic cosmological models, and
can occur even if the spatial geometry is Euclidean (i.e. K = 0). It is related to
the fact that the angular diameter distance is defined along a lightlike direction in
the non-Euclidean spacetime, not along a spatial slice (which may or may not be
non-Euclidean).

3.1.6 Luminosity distance

Recall that if the absolute luminosity of an object is L and the measured flux is F ,
its luminosity distance is

dL =

√
L

4πF
. (3.29)

Consider the situation in the FRW universe. The absolute luminosity can be
expressed as:

L =
number of photons emitted

time
× their average energy =

NγEem

tem
. (3.30)

If the observer is at a coordinate distance r from the source, the photons have
at that distance spread over the area (recall that a(t0) = 1)

A = 4πr2 . (3.31)

The flux can be expressed as:

F =
number of photons observed

area · time
× their average energy =

NγEobs

tobsA
. (3.32)
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The number of photons Nγ is conserved, but their energy is redshifted, Eobs =
Eem/(1 + z). Also, if the source is at redshift z, it takes a factor 1 + z longer to
receive the photons ⇒ tobs = (1 + z)tem. Thus,

F =
NγEobs

tobsA
=

NγEem

tem

1

(1 + z)2
1

4πr2
. (3.33)

We thus have

dL =

√
L

4πF
= (1 + z)r

= (1 + z)2dA(z)

= (1 + z)
1√
−K

sinh

(√
−K

∫ z

0

dz′

H(z′)

)
, (3.34)

where we have used (3.22) and (3.27). Compared to the angular diameter distance
dA(z), there are two extra factors of 1 + z. One-half comes from the redshift of
photon energy, one-half from cosmological time dilation in receiving the emitted
photons, and one from the change in the area element. (As we mentioned in chapter
2, this relation holds for a general spacetime, not just for the FRW universe; however,
proving the general case is more complicated.)

3.1.7 Proper distance

As discussed in chapter 2, the only cosmological distances we can measure are those
defined along lightlike curves. However, spacelike distances are still theoretically
interesting. In particular, the proper distance of an object is a useful quantity:
this is the size of an object (more generally, distance between two points) in the
rest frame of that object (more generally, at a surface of constant cosmic time). In
practice, objects do not move perfectly uniformly. However, deviations from the
mean flow are small, v < 10−3 (recall that c = 1, so 10−3 = 3000 km/s), so effects
like Lorentz contraction and time dilation are small.

Proper distance is defined as the physical distance measured on a slice of constant
time. If we consider the proper distance between galaxy O and galaxy A, we can
without loss of generality choose the direction between them to be radial and set
O to be at the origin r = 0 and A to be at the radial coordinate rA. The distance
interval is given by

ds2 = a(t)2
dr2

1−Kr2
, (3.35)

so the proper distance is

dP =

∫ A

0
ds

= a(t)

∫ rA

0

dr√
1−Kr2

= a(t)S−1
K (r) . (3.36)

The distance between two points which are fixed in the comoving coordinates
grows proportionally to the scale factor as the universe expands, like we would
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expect. Note that in terms of the χ-coordinates (3.8), the proper distance is simply
dP = a(t)χ. (In that case the non-Euclidean aspects of the spatial geometry are
shuffled to the angular part, whereas in the r-coordinates they are put into the
radial part of the metric.)

In cosmology, it is common to use the comoving distance, which just means
the physical distance to redshift z scaled by the difference between the scale factor
at then and now. So if we have some distance measure d(z), the corresponding
comoving distance, denoted dc(z), is dc(z) = (1+z)d(z). The idea is that it is easier
to compare objects from different eras if we discuss them in terms of the distance
they would now span. For example, the sound horizon of the photon-baryon plasma
at the time of last scattering when the universe was about 380 000 years old is
rs ≈ 0.13 Mpc, whereas the comoving sound horizon is (1 + z∗)rs ≈ 140 Mpc,
where 1 + z∗ ≈ 1090 is the redshift of the last scattering surface. This is especially
convenient for the comoving proper distance, which remains constant in time,

dcP = (1 + z)dP = S−1
K (r) . (3.37)

The relation (3.36) shows how the coordinate r is related to the physical distance
dP ,

r = SK(dP /a) = SK(dcP ) . (3.38)

The radial coordinate r does not give the physical distance, but nevertheless has
a clear physical interpretation. The physical distance to an object at coordinate r
is dP , the length of the circle with physical radius dP (t, r) is 2πa(t)r and its surface
area is 4πa(t)2r2, as can be immediately verified from the FRW metric (3.1).

The functions SK and S−1
K convert between two natural length measures of a

FRW universe: the proper distance measured along the radial line (i.e. the proper
radius) and the area distance measured along the surface of a sphere. The fact
that these quantities do not agree is a reflection of the fact that the space is non-
Euclidean. In the flat case with K = 0, we have simply SK(x) = x, as the space is
Euclidean. In this case the only relativistic effect is the stretching of space.

In addition to the straightforward issue of proper distance as a function of time
as measured on the spacelike slice, we can ask the following slightly more involved
question: if we see (along a null geodesic) a galaxy at redshift z, what is the proper
distance (along the spacelike slice) to the galaxy today? Here we assume that the
galaxy is at rest in the comoving frame (i.e. we neglect peculiar velocities) and still
exists today. (In fact, we cannot know what has happened to the galaxy since the
light left it.)

From (3.22), (3.27) and (3.36) we have for the proper distance to object that
emitted light at time t1, as measured at time t:

dP (t1, t) = a(t)S−1
K (dA/a)

= a(t)

∫ t

t1

dt′

a(t′)

= (1 + z)−1

∫ z1

z

dz′

H(z′)
, (3.39)
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Figure 3: Calculation of the proper distance.

Note that this result is independent of spatial curvature. So the proper distance to
redshift z today is

dP (z) =

∫ z

0

dz′

H(z′)
. (3.40)

As the distance in (3.40) is defined today, it makes no difference whether it is
comoving or not. The longest distance (as measured along the spatial slice) from
which it has been possible to receive signals at time t is called the horizon distance
dhor at time t, or simply the horizon. (Sometimes the name horizon is also used for
the spherical shell with proper radius dhor centred on the observer.) We get it by
putting t1 = 0, or equivalently z = ∞ (as a(0) = 0) in (3.39),

dhor(t) = a(t)

∫ t

0

dt′

a(t′)
= (1 + z)−1

∫ ∞

z

dz′

H(z′)

⇒ dchor(t) =

∫ t

0

dt′

a(t′)
=

∫ ∞

z

dz′

H(z′)
. (3.41)

We get the horizon distance today by putting t = t0 or z = 0 in the above.
There are actually a few different concepts in cosmology called the horizon. The

one given above is the particle horizon, and it indicates the maximum distance from
which we can in principle have received any information up to now. Another horizon
concept is the event horizon, which is related to how far the light can travel in the
future. (More precisely, the event horizon is the boundary of the region, if any, from
which the observer can never receive any signals, even infinitely far into the future.)
The Hubble distance H−1 is also often referred to as the horizon (especially when
one talks about subhorizon and superhorizon distance scales, as we will do when
we come to inflation). This terminology is somewhat confusing, although widely
used. For realistic cosmological models without inflation, the particle horizon and
the Hubble distance are (in the late universe) of the same order of magnitude, they
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differ only by a factor of order unity. Inflation changes this dramatically, as we will
see later.

3.1.8 The Hubble law

In chapter 2 we discussed the Hubble law, which is a redshift-distance relationship
is linear for small redshifts, z = H0d. Given the different measures of distance (and
we can define new distance measures simply by multiplying dA with any power of
(1 + z)), the question arises what is the distance that we have in this relation?

The answer is that for small redshifts, all of the above distance measures agree.
From (3.27), (3.34) and (3.39) we get

dA ≃ dL ≃ dP ≃ H−1
0 z (3.42)

for z ≪ 1. For redshifts that are not small, the relation between the distance and the
redshift is more complicated, as shown by (3.27), (3.34) and (3.39). We need to know
not just the present value H0, but the function H(z) all the way to the redshift of
the source (in the case of the angular diameter distance and the luminosity distance,
we also need the spatial curvature). The function H(z) is determined by the matter
content according to the dynamics of general relativity, to which we now turn.

3.2 Dynamics

3.2.1 The Friedmann equations

The considerations thus far have been purely geometrical and kinematical. In order
to find how the scale factor a(t) evolves, we need to consider the equations of motion,
given by the Einstein equation. The Robertson–Walker metric of (3.1) has the
components

gµν =


−1 0 0 0

0 a2

1−Kr2 0 0

0 0 a2r2 0
0 0 0 a2r2 sin2 θ

 . (3.43)

Calculating the Einstein tensor from this metric gives

G0
0 = −3

ȧ2

a2
− 3

K

a2
(3.44)

Gij = −
(
2
ä

a
+
ȧ2

a2
+
K

a2

)
δij (3.45)

G0i = 0 . (3.46)

From the symmetry of the spacetime it follows that the energy-momentum tensor
has the perfect fluid form,

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 , (3.47)

where ρ is the energy density and p is the pressure. Homogeneity implies that they
only depend on time, ρ = ρ(t), p = p(t).
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In general, the Einstein equation Gαβ +Λgαβ = 8πGNTαβ is a non-linear system
of ten partial differential equations. In the case of the FRW universe, it reduces to
two ordinary non-linear differential equations:

3
ȧ2

a2
+ 3

K

a2
= 8πGNρ+ Λ (3.48)

−2
ä

a
− ȧ2

a2
− K

a2
= 8πGNp− Λ . (3.49)

This pair of equations can be rearranged as

3
ȧ2

a2
+ 3

K

a2
= 8πGNρ+ Λ (3.50)

3
ä

a
= −4πGN(ρ+ 3p) + Λ . (3.51)

These are called the Friedmann equations. The expression “Friedmann equation” in
the singular refers to (3.50).

The general relativity version of energy and momentum conservation, energy-
momentum continuity, follows from the Einstein equation. In the present case this
becomes the energy continuity equation (sometimes this is considered to be one of
the Friedmann equations)

ρ̇ = −3(ρ+ p)
ȧ

a
. (3.52)

Since the symmetry of the situation forbids fluid flow in the spatial directions, the
equation corresponding to momentum conservation is satisfied identically. (Exer-
cise: Derive (3.52) from the Friedmann equations.)

In fact, (3.52) is not a conservation equation for the energy. Rather, it shows
how the energy density evolves as the universe expands. We can rewrite (3.52) as

p = − 1

3H

1

a3
d(a3ρ)

dt

= −d(a3ρ)

d(a3)
. (3.53)

If the pressure is zero, the energy contained in a volume remains constant as the
universe expands or contracts. If the pressure is positive, the total amount of energy
decreases with the expansion of the universe (and increases if the universe contracts).
If the pressure is negative, the opposite happens: the energy of an expanding universe
increases. We can compare (3.53) with the first law of thermodynamics,

TdS = dU + pdV −
∑
i

µidNi , (3.54)

where T is the temperature, S is the entropy, U is the internal energy, V is volume
and µi and Ni are chemical potential and particle number for particle species i. We
see that the energy density in a FRW universe changes like the energy density of
a gas which expands or contracts adiabatically and has constant particle number.
However, while pressure has a kinematical interpretation in the statistical physics of
a gas of particles, the quantity p appearing in (3.53) is more general. The pressure
of matter which consists of a gas of (almost) free particles is always positive, but
other forms of matter (such as coherent scalar fields or topological defects) can have
negative pressure. (We will come back to this soon.)
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3.2.2 Critical density

The Hubble parameter H(t) gives the expansion rate of the universe. Its present
value H0 is the Hubble constant. The dimension of H is 1/time, or equivalently
1/distance. In the time interval dt a distance gets stretched by a factor of 1 +Hdt
(a distance L grows with velocity HL). The Friedmann equation (3.50) connects
the three quantities, the density ρ (here we include the cosmological constant in the
energy density; see section 3.2.4), the spatial curvature K/a2, and the expansion
rate H of the universe,

3H2 = 8πGNρ− 3
K

a2
. (3.55)

Dividing by 3H2, we have

1 =
8πGNρ

3H2
− K

(aH)2

≡ Ω+ ΩK , (3.56)

where we have defined the density parameters

Ω(t) ≡ 8πGNρ

3H2

ΩK(t) ≡ − K

(aH)2
. (3.57)

Another often used quantity is the critical density defined as

ρc(t) ≡
3H(t)2

8πGN
. (3.58)

The critical density is the energy density that a spatially flat universe that expands
with the rateH(t) would have. So the critical density changes as the universe evolves
and the Hubble parameter changes. Often in cosmology the word critical density is
used to refer just to the present value. We always use the subscript 0 when referring
to the present value:

ρc0 ≡ ρc(t0) =
3H2

0

8πGN
, (3.59)

so we have

Ω(t) ≡ ρ(t)

ρc(t)
. (3.60)

Positive curvature contributes to the Hubble rate with a negative sign and neg-
ative curvature with a positive sign, as (3.50) shows. In other words, if we measure
that the density of the universe is ρ and the critical density is ρc (i.e. the Hubble
parameter is H), we can make the following conclusion about the spatial curvature:

ρ < ρc ⇔ Ω < 1 ⇔ K < 0 (3.61)

ρ = ρc ⇔ Ω = 1 ⇔ K = 0 (3.62)

ρ > ρc ⇔ Ω > 1 ⇔ K > 0 . (3.63)
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Thus Ω = 1 implies that the universe is spatially flat, Ω < 1 implies that spatial
curvature is negative and Ω > 1 that spatial curvature is positive. The Friedmann
equation can be written as

Ω(t) = 1 +
K

a(t)2H(t)2
= 1 +

(
ℓH
Rcurv

)2

, (3.64)

where ℓH is the Hubble length and Rcurv is the curvature radius. If Ω < 1 (or > 1)
at some instant of time, it will stay that way (since K is constant). And if Ω = 1, it
will stay constant, Ω = Ω0 = 1. Observations show that the density of the universe
today is close to critical, Ω0 ≈ 1.

3.2.3 Matter components

In the two Friedmann equations (3.50) and (3.51), there are three unknowns, a(t),
ρ(t) and p(t). We can also consider a system of three equations, with (3.52) added
to the mix, but in that case only two are independent. The system is underdeter-
mined, reflecting the fact that different matter components affect the expansion rate
differently, and we need to specify which kind of matter there is in the universe. In
order to close the system, it is enough to give the relation between pressure and the
energy density: we can then solve for the energy density from (3.52) or (3.53) and
insert the solution to (3.50) and integrate.

The relation between the pressure and the energy density is called the equation
of state. In cosmology, this term refers specifically to the combination p/ρ. The
simplest equations of state are barotropic, which means that the pressure is a function
of the energy density, p(ρ). (Scalar fields, for which the equation of state is not
barotropic, will be important when we discuss inflation.) The simplest possibilities
are the following:

• Matter. The term “matter” refers to a form of matter for which the pressure
is zero p = 0, or at least negligible, |p| ≪ ρ. Such a form of matter is also
called “dust”. (The name “dust” is more common in a pure general relativity
context than in cosmology.) This is the case for a gas of free non-relativistic
particles, where the energy density is dominated by the mass. The relation
(3.53), shows that d(ρa3)/dt = 0, or ρ ∝ a−3.

• Radiation. The term “radiation” refers to matter for which the pressure
is (exactly or very closely) 1/3 of the energy density, p = 1

3ρ. This is the
case for a gas of free ultrarelativistic particles, for which the energy density is
dominated by the kinetic energy (i.e. the momentum is much bigger than the
mass). In particular, this always holds for massless particles such as photons.
From (3.53), we get d(ρa4)/dt = 0, in other words ρ ∝ a−4.

• Vacuum energy. For vacuum energy the energy density does not change in
time, ρ = constant. From (3.52) it follows that the pressure is very negative,
p = −ρ. (This type of matter is, a bit misleadingly, also called the cosmological
constant; see section 3.2.4 below.) Thus, positive vacuum energy corresponds
to negative vacuum pressure. The total amount of energy increases propor-
tional to the volume of space (because there is more space, and a constant
amount of energy per volume everywhere).
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The universe contains non-relativistic matter in the form or ordinary, baryonic
matter (i.e. atoms, ions and electrons) as well as (most probably) dark matter,
which is (practically) pressureless, weakly interacting and extremely cold. Dark
matter is usually thought to consist of a gas of a new heavy particles. We will
discuss dark matter in more detail in chapter 7. There is also radiation, most
importantly in the form of the cosmic microwave background, which is a remnant
of the radiation that used to dominate the expansion of the universe. In addition,
there are neutrinos, which behaved like radiation in the early universe but now
behave like matter. This happens for all particles which are not strictly massless:
the kinetic energy falls with the expansion of the universe, so that at some point
the mass starts dominating the particle energy. In chapters 4 and 5 we discuss in
detail how different particle species behave as radiation in the early universe when
it is very hot, but as the universe cools, the massive particles change from being
ultrarelativistic (radiation) to being nonrelativistic (matter). During the transition
period the pressure due to that particle species falls from p = ρ/3 to p ≈ 0. In this
chapter, we focus on the late universe, when it is sufficient to divide matter into dust
(p ≈ 0) and radiation (p ≈ ρ/3), without worrying about the transitions. (Neutrinos
may undergo the transition quite late –the neutrino masses are not precisely known–
but their contribution to the total energy budget is negligible at late times, so we
can skip this detail.)

We have mentioned that the present observational data cannot be explained in
terms of known particles (or hypothetical particles with similar properties), general
relativity and the FRW metric. One of the three assumptions –known forms of
matter, general relativity and the approximation of homogeneity and isotropy– is
then wrong. Sticking to the FRW metric and general relativity, the observations
indicate that the expansion of the universe has accelerated during the past few billion
years. From (3.51) we see that this requires (in the context of general relativity and
the FRW metric) an energy component with negative pressure, dark energy. It
is called dark since it has not been observed to emit or absorb light, and energy,
since the name “dark matter” was already taken (though “dark pressure” might be
more appropriate!). The simplest possibility for dark energy is just the cosmological
constant (vacuum energy), which generates repulsive gravity, leading to accelerated
expansion which fits the data in detail. Therefore we shall carry on our discussion
assuming three energy components: matter, radiation, and vacuum energy. We will
later comment on how much observations constrain the equation of state of dark
energy, if it is not vacuum energy.

If the universe contains these three energy components, we can arrange (3.50)
into the form

3
ȧ2

a2
= 8πGNρr0a

−4 + 8πGNρm0a
−3 − 3Ka−2 + Λ, (3.65)

where ρr0, ρm0, a0, K, and Λ are constants.5 The four terms on the right hand side
are due to radiation, matter, spatial curvature, and vacuum energy, respectively. As
the universe expands (a grows), different components on the right hand side become
important at different times. The universe was first radiation-dominated up to about

5We ignore transfer of energy between the components. Such transfer is important only in the
early universe, before the decoupling of the different particle species, or when particle species go
from being relativistic to non-relativistic. In chapters 4 and 5 we return to this issue in some detail.
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50 000 years, then the expansion was dominated by matter until a few billion years
ago, when vacuum energy started to dominate. (The universe has apparently never
been in state where the spatial curvature would have been the largest term.)

The radiation component is insignificant at present, and we can forget it in
(3.65), if we exclude the first few million years of the universe from discussion. In
the “inflationary scenario”, there was something resembling a large vacuum energy
density in the very early universe (during the first small fraction of the first second).
So there may have been a very early almost vacuum-dominated era called inflation,
but the vacuum energy density inflation is not constant.

We thus divide the density into matter, radiation, and vacuum components ρ =
ρm + ρr + ρvac, and likewise for the density parameter, Ω = Ωm + Ωr + ΩΛ, where
Ωm ≡ ρm/ρc, Ωr ≡ ρr/ρc, and ΩΛ ≡ ρvac/ρc ≡ Λ/3H2. The density parameters Ωm,
Ωr, and ΩΛ are functions of time (although ρvac is constant, ρc(t) is not). We have

Ω = Ωm +Ωr +ΩΛ . (3.66)

Even more so than in the case of the critical density, the symbols Ωm, Ωr, ΩΛ and
ΩK are often used to denote the present values of these quantities. In this course, to
avoid confusion, we always use the subscript 0 when referring to the present values,
Ωm0 ≡ Ωm(t0), Ωr0 ≡ Ωr(t0), ΩΛ0 ≡ ΩΛ(t0), ΩK0 ≡ ΩK(t0). The present radiation
density is relatively small, Ωr0 ∼ 10−4 (we will calculate the precise number in
chapter 5). So we usually write just

Ω0 = Ωm0 +ΩΛ0 . (3.67)

In addition to being small today, the radiation density is also known very accurately
from the temperature of the cosmic microwave background, and therefore Ωr0 is
not usually considered as a cosmological parameter (in the sense of an inaccurately
known number that we are trying to determine from observations). This simple FRW
cosmological model is thus defined by giving the present values of three cosmological
parameters, which we can take to be H0 = h100km/s/Mpc, Ωm0, and ΩΛ0.

It is often useful to define the “physical” or “reduced” density parameters where
we multiply away the dependence of the critical density (and thus the Ω parameters)
on the value of h: ωm ≡ Ωm0h

2, ωr ≡ Ωr0h
2, which are directly proportional to the

actual densities in kg/m3. (The corresponding quantities ωΛ and ωK are not useful.)
Note that the ω parameters are not defined as a function of time, they are constants
defined with respect to present-day density only!

Two cosmological models have been particularly important. The first is the
Einstein–de Sitter model, which contains only matter and is spatially flat, Ωm = 1,
Ωr = ΩK = ΩΛ = 0. This model (with radiation added at early times, and coupled
to a specific spectrum of perturbations around homogeneity and isotropy) was known
as the Standard CDM (SCDM) model from the 1980s onwards. The abbreviation
CDM stands for cold dark matter.

At the end of the 1990s SCDM was supplanted by the ΛCDM model, which
is identical except that it also contains vacuum energy (like SCDM, it is spatially
flat). This model is also known as the ’concordance model’ due to the fact that
it is able to fit a number of independent observations. Comparing to observations,
the parameters of the model turn out to be h ≈ 0.7, Ωm0 ≈ 0.3 and ΩΛ0 ≈ 0.7.
The precise values depend on the datasets one fits to and the assumptions made in
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the analysis. (The first two parameters H0 and Ωm0 can also be determined model-
independently, and the values agree with the parameter fits done in the context of
the ΛCDM model. Determining the vacuum energy density is more complicated; we
discuss this at the end of this chapter.)

3.2.4 Vacuum energy

Before proceeding into more details of the expansion history and the distance-
redshift relationship for different matter contents, let us say a few words about the
cosmological constant. It was originally introduced by Einstein because he thought
the universe should be static. A look at (3.51) shows that this requires matter with
negative pressure or a positive cosmological constant. Introducing a cosmological
constant makes it possible to balance the gravitational attraction of the energy den-
sity of matter against the repulsion due to a positive cosmological constant. This
model is called the Einstein static universe. (It is, in fact, unstable to small pertur-
bations and is thus not a viable model.)

While the cosmological constant is a geometrical term (a contribution to the
left-hand side of the Einstein equation), we can add an identical term to the matter
(the right-hand side of the Einstein equation), and this is called vacuum energy.

In quantum field theory, the fundamental physical objects are fields, particles
are just quanta of the field oscillations. Vacuum refers to the ground state of the
system, where fields have values which correspond to minimum energy. In quantum
field theory, there is no reason why this minimum energy should be zero. This energy
density is analogous to the zero-point energy of a harmonic oscillator in quantum
mechanics. The energy tensor of the vacuum has the form Tµν = −ρvacgµν . Thus
vacuum energy has exactly the same effect as a cosmological constant with the value

Λ = 8πGNρvac . (3.68)

Vacuum energy is observationally indistinguishable from a cosmological constant,
though conceptually they are different, because the former is a new matter compo-
nent, and the latter is a modification of the law of gravity.

A problem with vacuum energy is that the expected scale of vacuum fluctuations
is huge, of the order of particle physics scales (perhaps the Planck scale of 1018

GeV, and at least 100 GeV), but observations restrict it to a much smaller value –
if vacuum energy is responsible for acceleration at late times, the energy density is
of the scale (meV)4. Equivalently, the value of the cosmological constant is of the
order (10−33 eV)2. However, our present understanding of quantum theory does not
allow us to calculate what the value of the vacuum energy is, so there is no conflict
between theory and observation, just unmet expectations. Possibly there is some
unknown principle which sets the vacuum energy to be zero, or at least prevents it
from interacting gravitationally – or almost so. The cosmological constant problem
was considered to be one of the most important issues in cosmology and particle
physics already before the observation of late time acceleration.

3.2.5 The expansion law and the big bang

Let us now solve the Friedmann equation for the case where it is dominated by a
term with a constant equation of state, ω ≡ p/ρ =constant. From (3.52) we get

ρ ∝ a−3(1+ω) . (3.69)
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As far as the expansion history is concerned, spatial curvature is equivalent to
a fluid with the equation of state ω = −1/3 and a positive (negative) energy den-
sity corresponding to negative (positive) spatial curvature, respectively. (However,
the spatial curvature also changes the relation between the expansion rate and the
redshift, as we have discussed above; a fluid with the same equation of state has no
such effect.) Inserting (3.69) into the Friedmann equation (3.50) and putting K = 0,
we get

ȧ2

a2
∝ a−3(1+ω) . (3.70)

Integrating, we get (we assume that ω > −1; the vacuum energy case ω = −1 and
the case ω < −1 need to be treated separately)

a = (t− ti)
2

3(1+ω) . (3.71)

At a finite time into the past, the scale factor becomes zero; without loss of gener-
ality, we choose the origin of the time coordinate to be there, ti = 0. At this time
the energy density is correspondingly infinite, and the spacetime is also infinitely
curved. This singularity is called the big bang, and it is a general feature not only
of FRW models but of realistic cosmological models which include inhomogeneities.
Space and time do not continue beyond this event. However, at the big bang (or
more properly, as we come near its vicinity) general relativity does not apply any-
more, so we cannot make any definite statements about what happens very near
the beginning. Also, we cannot really expect matter to behave in this simple way
in the early universe; when we discuss inflation we will see one possibility of how
the early universe can behave differently. (But inflation does not save us from the
cosmological singularity.)

In particular, we have the three cases
ω = 1/3 radiation-dominated a ∝ t1/2

ω = 0 matter-dominated a ∝ t2/3

ω = −1/3 curvature-dominated (K < 0) a ∝ t
In the case of vacuum energy domination, ω = −1, the Hubble parameter H is

constant, so the universe expands exponentially, a ∝ e

√
Λ
3
t
.

3.2.6 Age of universe

Now that we have a parametrised form of the expansion function H(z), we can
return to the age of the universe discussed in section 3.1.4. The Friedmann equation
(3.50) reads

3H2 = 8πGNρr0a
−4 + 8πGNρm0a

−3 − 3Ka−2 + Λ . (3.72)

Dividing by 3H2
0 , we get

H

H0
=

√
Ωr0a−4 +Ωm0a−3 +ΩK0a−2 +ΩΛ0

=
√

Ωr0(1 + z)4 +Ωm0(1 + z)3 +ΩK0(1 + z)2 +ΩΛ0 . (3.73)

We will have much use for this convenient form of the Friedmann equation. Inserting
(3.73) into the relation (3.19) for the age, we find the time it takes for the universe
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to expand from scale factor a1 to a2, or from redshift z1 to z2,

t2 − t1 =

∫ z1

z2

dz′

1 + z′
1

H(z′)

= H−1
0

∫ z1

z2

dz′

(1 + z′)
√

Ωr0(1 + z′)4 +Ωm0(1 + z′)3 +ΩK0(1 + z′)2 +ΩΛ0

= H−1
0

∫ 1
1+z2

1
1+z1

da√
Ωr0a−2 +Ωm0a−1 +ΩK0 +ΩΛ0a2

, (3.74)

where the second form is more convenient due to the cancellation of some factors of
1 + z. Recall that ΩK0 = 1 − Ωr0 − Ωm0 − ΩΛ0 ≡ 1 − Ω0. The expression (3.19) is
integrable to an elementary function if two of the four terms under the root sign are
absent. From this we get the age of the universe t at redshift z as

t(z) = H−1
0

∫ 1
1+z

0

da√
Ωr0a−2 +Ωm0a−1 +ΩK0 +ΩΛ0a2

. (3.75)

This gives the function t(z), that is, t(a). Inverting this function gives us a(t), the
scale factor as a function of time. Note that a(t) is not necessarily an elementary
function, even if t(a) is. However, even in that case we can sometimes have a
parametric representation a(ψ), t(ψ) in terms of elementary functions.

For the present age of the universe we get

t0 = H−1
0

∫ 1

0

da√
Ωr0a−2 +Ωm0a−1 +ΩK0 +ΩΛ0a2

. (3.76)

If the Ωs are of order unity (and ΩΛ0 is not the only non-zero one), the value of the
integral is of order unity. So the age of the universe is of the order of the Hubble time.
In the real universe, Ωr0 ≈ 10−4, so dropping the radiation term causes negligible
error (physically, this means that the radiation-dominated era is relatively short).

Example: Age of the open universe. Let us consider an open universe (K < 0 or
Ω0 < 1) without vacuum energy (ΩΛ = 0), and approximating Ωr ≈ 0. Integrating
(3.76) (e.g. with the substitution a = Ωm0

1−Ωm0
sinh2 ψ2 ) gives the age of the open

universe as

t0 = H−1
0

∫ 1

0

da√
1− Ωm0 +Ωm0a−1

= H−1
0

[
1

1− Ωm0
− Ωm0

2(1− Ωm0)3/2
arcosh

(
2

Ωm0
− 1

)]
. (3.77)

A special case of the open universe is the completely empty universe, which is dom-
inated by the spatial curvature, with Ωm = ΩΛ = 0 and ΩK = 1. In this case we
obtain from (3.73) the result a = H0t, and we have t0 = H−1

0 . We thus get the
following table for the age of the universe:

Ωm0 ΩΛ0 t0H0

0 0 1
0.1 0 0.90
0.3 0 0.81
0.5 0 0.75
1 0 2/3
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The cases (Ωm > 1, ΩΛ = 0) and (Ω0 = Ωm + ΩΛ = 1, ΩΛ > 0) are left as
exercises. The more general case (ΩK ̸= 1, ΩΛ ̸= 0) leads to elliptic functions. The
results for H0t0 are plotted in figure 4.

Model-independent estimates of the age of the universe based on ages of globular
clusters, which are compact groups of stars in our galaxy give a 95% probability
lower limit on the age of the universe of 11 Gyr, and a best-fit age of about 13.4
Gyr [4]. The Hubble time is H−1

0 ≈ h−19.8 Gyr, so we get H0t0 ≳ 1.14h as the
lower limit, and H0t0 ≈ 1.37h as the preferred value. So the age of the universe
implies that models with only matter and curvature need a small Hubble parameter.
For a spatially flat matter model, we would need h = 0.48, and an open model
with Ωm0 ≈ 0.3 (as indicated by observations) would need h ≈ 0.6. Recall that
measurements of H0 indicate h = 0.732 ± 0.01: the mean value gives H0t0 ≈ 1.00.
So just from measurements of H0 and t0 we can conclude that models with spatial
curvature and matter have trouble fitting the observations. However, the strongest
evidence against a model with no vacuum energy (or other form of negative pressure
matter) comes from distance measurements.

3.2.7 Distances in the universe

Earlier, we derived the angular diameter distance, luminosity distance and proper
distance for a general FRW spacetime. We can now plug the parametrised expan-
sion rate H(z) into these expressions, like we did for the age of the universe. The
comoving proper distance to a comoving object seen at redshift z is, from (3.39) and
(3.73),

dcP (z) =

∫ z

0

dz′

H(z′)

= H−1
0

∫ z

0

dz′√
Ωr0(1 + z′)4 +Ωm0(1 + z′)3 +ΩK0(1 + z′)2 +ΩΛ0

= H−1
0

∫ 1

1
1+z

da√
Ωr0 +Ωm0a+ΩK0a2 +ΩΛ0a4

≈ H−1
0

∫ 1

1
1+z

da√
Ω0(a− a2)− ΩΛ0(a− a4) + a2

, (3.78)

where on the last line we have dropped the Ωr0 term which has negligible effect,
and used Ωm0 = Ω0 − ΩΛ0. The proper distance depends on three independent
cosmological parameters, for which we have taken H0, Ω0 and ΩΛ0, and the distance
at a given redshift is proportional to the Hubble distance, H−1

0 . If we give the
distance in units of H−1

0 , then the distance depends only on the two remaining
parameters, Ω0 and ΩΛ0.

If we increase Ω0 while keeping ΩΛ0 constant (meaning that we increase Ωm0),
the distance corresponding to a given redshift decreases. This is because the universe
has expanded faster in the past, so that there is less time between a given value of
the scale factor a = 1/(1 + z) and the present. The distance to the galaxy with
redshift z is shorter because photons have had less time to travel. Whereas if we
increase ΩΛ0 with a fixed Ω0 (meaning that we decrease Ωm0), we have the opposite
situation and the distance increases. In figure 5 we show the proper distance for
some parameter values.
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Figure 4: The age of the universe as a function of Ωm0 and ΩΛ0.
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Figure 5: The proper distance, (3.78), for a) the matter-only universe ΩΛ = 0, Ωm0 = 0,
0.2,. . . ,1.8 (from top to bottom) b) the spatially flat universe Ω = 1 (ΩΛ = 1−Ωm), Ωm0 = 0,
0.05, 0.2, 0.4, 0.6, 0.8, 1.0, 1.05 (from top to bottom). The thick line in both cases is the
Einstein–de Sitter model with Ωm = 1, ΩΛ = 0.

In the case ΩΛ0 = 0, we have

dcP (z) = H−1
0

2

Ω2
m0(1 + z)

(
Ωm0z − (2− Ωm0)(

√
1 + Ωm0z − 1)

)
. (3.79)

A subcase of this is the Einstein–de Sitter universe, which has Ω = Ωm = 1, ΩK =
ΩΛ = 0,

dcP (z) = 2H−1
0

(
1− 1√

1 + z

)
. (3.80)

The comoving horizon distance today is

dchor = H−1
0

∫ 1

0

da√
ΩΛ0a4 + (1− Ω0)a2 +Ωm0a+Ωr0

. (3.81)

In figure 6 the comoving horizon distance is plotted for various choices of parameters.
The angular diameter distance is, from (3.27) and (3.78),

dA(z) = (1 + z)−1 1√
−K

sinh

(√
−K

∫ z

0

dz′

H(z′)

)
= H−1

0 (1 + z)−1 1√
ΩK0

sinh

(√
ΩK0

∫ 1

1
1+z

da√
Ωr0 +Ωm0a+ΩK0a2 +ΩΛ0a4

)

≈ H−1
0 (1 + z)−1 1√

1− Ω0
sinh

(∫ 1

1
1+z

da

√
1− Ω0√

Ω0(a− a2)− ΩΛ0(a− a4) + a2

)
,

(3.82)

where we have used the definition ΩK0 = −K/H2
0 = 1−Ω0 and have on the last line

again dropped Ωr0. The angular diameter distance is plotted in figure 7 for some
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Figure 6: The comoving horizon as a function of Ωm and ΩΛ.
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Figure 7: The angular diameter distance, for a) the matter-only universe ΩΛ = 0, Ωm0 = 0,
0.2,. . . ,1.8 (from top to bottom) b) the spatially flat universe Ω = 1 (ΩΛ = 1−Ωm), Ωm0 = 0,
0.05, 0.2, 0.4, 0.6, 0.8, 1.0, 1.05 (from top to bottom). The thick line in both cases is the
Einstein–de Sitter model with Ωm = 1, ΩΛ = 0. Note how the angular diameter distance
decreases for large redshifts, meaning that the object that is farther away may appear larger
on the sky. In the flat case, this is an expansion effect. In the matter-only case, the effect
is enhanced by space curvature effects for the closed (Ωm > 1) models.
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Figure 8: Same as figure 7, bur for the comoving angular diameter distance. For the closed
models (for Ωm > 1 in the case of ΩΛ = 0) even the comoving angular diameter distance
may begin to decrease if we look at large enough redshifts. This happens when we are
looking beyond χ = π/2, where the universe “begins to close up” as we pass the equator of
the hypersphere. The figure does not go to high enough z to show this for the parameters
used. Note how for the flat universe the comoving angular diameter distance is equal to the
comoving distance (see figure 5).
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values of the parameters; figure 8 shows the same plot for the comoving angular
diameter distance. As always, the luminosity distance is dL = (1 + z)2dA.

In a spatially flat universe the angular diameter distance is equal to the proper
distance,

dcA(z) = dcP (z)

=

∫ z

0

dz′

H(z′)

= H−1
0

∫ 1

1
1+z

da√
Ωr0 +Ωm0a+ΩK0a2 +ΩΛ0a4

. (3.83)

From anisotropies of the CMB we can infer that dA(1090) ≈ 13 Mpc. The
parameters of any model have to be such that this distance is reproduced.

Exercise. Show that in order to fit this distance in the Einstein–de Sitter
model, the Hubble parameter has to be smaller than the observed value 72.5±2.5
km/s/Mpc.

3.2.8 Illustrating the distances

Just like any planar map of the surface of the Earth must be distorted, so is that
of the curved spacetime. Even in the simplest spatially flat case, the expansion
rate affects the mapping. Thus any spacetime diagram is a distortion of the true
situation. In figures 9 and 10 there are three different ways of drawing the same
spacetime diagram for the simplest cosmological model, the Einstein–de Sitter model
which has Ωm = 1. In the first one the vertical distance is proportional to the cosmic
time t, the horizontal distance to the actual distance at that time, d1. The second one
is in the comoving coordinates (t, r), so that the horizontal distance is proportional
to the comoving proper distance dcP . (Recall that for in the case K = 0 we have
dcP = r, see (3.37)) The third one uses the conformal coordinates (η, r). The last
one has the advantage that light cones are always at a 45◦ angle. This is thus a
spacetime analogue of the Mercator projection.

3.2.9 Luminosity distance and observations

Using the luminosity distance to constrain the cosmological model, we would ideally
have a set of standard candles, objects which are known to have the same absolute
luminosity L. From there observed redshifts z and fluxes F (z) we then get an
observed luminosity-distance-redshift relationship dL(z) =

√
L/4πF , which can be

compared to the theoretical one to find the values of the cosmological parameters
which give the best fit between theory and observations.

As we discussed in chapter 2, in astronomy luminosities are given as magnitudes.
From the definitions of the absolute and apparent magnitude,

M ≡ −2.5 log10
L

L0
, m ≡ −2.5 log10

F

F0
, (3.84)

and (3.29) we get the distance modulus m−M in terms of the luminosity distance
as

m−M = −2.5 log10
F

L

L0

F0
= 5 log10 dL + 2.5 log10 4π

F0

L0
= −5 + 5 log10 dL(pc) .

(3.85)
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Figure 9: Spacetime diagrams for a flat universe giving a) the actual distance b) the
comoving distance from origin as a function of cosmic time.

Figure 10: Spacetime diagram for a flat universe in conformal coordinates.
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Figure 11: Same as figure 7, bur for the luminosity distance. Note how the vertical scale
now extends to 10 Hubble distances instead of just 2, to have room for the much more
rapidly increasing luminosity distance.
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Figure 12: Same as figure 7, bur for the magnitude-redshift relationship. The constant
M − 5 − 5 lgH0 in (3.86), which is different for different classes of standard candles, has
been arbitrarily set to 0.

(As explained in chapter 2, the constants L0 and F0 are chosen to give the value −5
for the constant term when dL is given in parsecs.) For a set of standard candles,
all having the same absolute magnitude M , their apparent magnitudes m should be
related to their redshift z as

m(z) = M − 5 + 5 log10 dL(pc)

= M − 5− 5 log10H0 + 5 log10

[
(1 + z)

1√
1− Ω0

×

× sinh

(∫ 1

1
1+z

da

√
1− Ω0√

Ω0(a− a2)− ΩΛ0(a− a4) + a2

)]
(3.86)

The Hubble constant H0 contributes only a constant of proportionality in this
magnitude-redshift relationship. If we just know that all the objects have the same
M , but do not know the value of M , we cannot use the observed m(z) to determine
H0, since both M and H0 contribute to this constant term. On the other hand, the
shape of the m(z) curve depends only on the parameters Ω0 and ΩΛ0.
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Figure 13: The difference between the magnitude-redshift relationship of the different
models in figure 12 from the reference model Ωm = 1, ΩΛ = 0 (which appears as the
horizontal thick line). The red (solid) lines are for the matter-only (ΩΛ = 0) models and
the blue (dashed) lines are for the flat (Ω0 = 1) models.

Unfortunately, there are no known good standard candles. However, the absolute
peak luminosity of type Ia supernovae (SNe Ia) is correlated with the shape of
the observed luminosity as a function of time. Therefore, calibrating off nearby
supernovae whose distance can be determined independently, it is possible to find
the absolute luminosity of individual SNe Ia6.

Observations of SNe Ia published in 1998 provided the strong evidence that the
expansion of the universe had accelerated. (There were a number of hints already
earlier –such as the age of the universe coupled with the value of H0– that some-
thing was wrong with the SCDM model.) Two groups, the Supernova Cosmology
Project7 and the High-Z Supernova Search Team8 made independent observations
and analyses of SNe Ia up to redshifts z ∼ 1 to determine the values of the cosmo-
logical parameters Ω0 and ΩΛ0 [5, 6]. Their observations were inconsistent with a
matter-dominated universe, i.e. with ΩΛ = 0. Instead, the expansion of the universe
was found to be accelerating.

Later, more accurate observations by these and other groups have confirmed this
result. The SNIa data is one of the main arguments for the existence of dark energy
in the universe.9

See figure 14 for SNIa data from 2004, and figure 15 for a determination of Ωm0

and ΩΛ0 from more recent data.

6The variation in luminosity is about a factor of ten, so type Ia supernovae are far from standard
candles, though they are often incorrectly referred to as such. Another, less incorrect, expression is
“standardizable candle”.

7http://supernova.lbl.gov/
8http://cfa-www.harvard.edu/cfa/oir/Research/supernova/HighZ.html
9The other main argument comes from combining CMB anisotropy and large-scale-structure

data, which we will not discuss in this course.
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Figure 14: Type Ia supernova luminosity-redshift data. The top panel shows all supernovae
of the data set. The bottom panel show the averages from different redshift bins. The curves
corresponds to three different FRW cosmologies, and some alternative explanations: “dust”
refers to the possibility that the universe is not transparent, but some photons get absorbed
on the way; “evolution” to the possibility that the SNIa are not standard candles, but were
different in the younger universe, so that M = M(z). This data is a bit old by now, the
figure is from from [7] in 2004.

We have in the preceding assumed that the mysterious dark energy component of
the universe is vacuum energy, for which pde = −ρde. Instead allowing the equation
of state parameter wde ≡ pde/ρde for dark energy to be an arbitrary constant10, we
see that wde is restricted to be close to −1; see figure 16.

It is worth emphasising that what the supernova observations (and observations
of the angular diameter distance to the CMB) show is that the distances are longer
than in the Einstein–de Sitter model. If the distance observations are interpreted
assuming that the FRW approximation is valid (i.e. that the FRW relation (3.27)
between the distance and the expansion rate holds), it follows that the expansion rate
has accelerated. Assuming that the Friedmann equations hold (i.e. general relativity
is valid), (3.51) shows that the total pressure then has to negative. Observations of
t0 and H0 (and other observables, such as the growth rate of cosmic structures) are
consistent with this interpretation. There are now also direct observations of H(z)
independent of the distances, which support accelerated expansion [9]. Note that
the only cosmological effect of vacuum energy is to increase the expansion rate and
correspondingly increase the distances. Its success in fitting various cosmological
observations is thus strong evidence for faster expansion, but it may be that the
explanation for the faster expansion is not vacuum energy but something else, be

10There is no theoretical justification for the assumption that wde is constant, if it is different
from −1. It is just taken for simplicity.
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Figure 15: The densities Ωm0 and ΩΛ0 determined from Supernova Ia data. This figure is
from [10].

it a more complicated form of dark energy, modified gravity or a breakdown of the
FRW approximation due to cosmological structure formation. In this course, we will
not discuss these possibilities, and will stick with vacuum energy.
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Figure 16: The matter density Ωm0 and the dark energy equation of state w determined
from Supernova Ia, CMB and BAO data, assuming spatial flatness. This figure is from [10].

References

[1] S. Räsänen, On the relation between the isotropy of the CMB and the geometry
of the universe, Phys. Rev. D 79 (2009) 123522 [arXiv:0903.3013 [astro-ph.CO]].

[2] R. Maartens, Is the Universe homogeneous?, Phil. Trans. Roy. Soc. Lond. A
369 (2011) 5115 [arXiv:1104.1300 [astro-ph.CO]].

[3] S. Nadathur, Seeing patterns in noise: Gigaparsec-scale ‘structures’ that
do not violate homogeneity, Mon. Not. Roy. Astron. Soc. 434 (2013) 398
[arXiv:1306.1700 [astro-ph.CO]].

[4] L.M. Krauss and B. Chaboyer, Age Estimates of Globular Clusters in the Milky
Way: Constraints on Cosmology, Science 299 (2003) 65.



REFERENCES 59

[5] A.G. Riess et al., Astron. J. 116 (1998) 1009, Observational Evidence
from Supernovae for an Accelerating Universe and a Cosmological Constant
[arXiv:astro-ph/9805201].

[6] S. Perlmutter et al., Astrophys. J. 517 (1999) 565, Measurements of Omega
and Lambda from 42 High-Redshift Supernovae [arXiv:astro-ph/9812133].

[7] A.G. Riess et al., Astrophys. J. 607, 665 (2004), Type Ia Supernova Discoveries
at z>1 From the Hubble Space Telescope: Evidence for Past Deceleration and
Constraints on Dark Energy Evolution [arXiv:astro-ph/0402512].

[8] M. Hicken et al., Astrophys. J. 700 (2009) 1097, Improved Dark Energy Con-
straints from 100 New CfA Supernova Type Ia Light Curves [arXiv:0901.4804].

[9] C. Blake et al., The WiggleZ Dark Energy Survey: measuring the cosmic ex-
pansion history using the Alcock-Paczynski test and distant supernovae, Mon.
Not. Roy. Astron. Soc. 418 (2011) 1725 [arXiv:1108.2637 [astro-ph.CO]].

[10] D. M. Scolnic et al., Astrophys. J. 859 (2018) no.2, 101 doi:10.3847/1538-
4357/aab9bb [arXiv:1710.00845 [astro-ph.CO]].


