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2 Basics of general relativity

2.1 Principles behind general relativity

The theory of general relativity completed by Albert Einstein in 1915 (and nearly
simultaneously by David Hilbert) is the current theory of gravity. General relativity
replaced the previous theory of gravity, Newtonian gravity, which can be understood
as a limit of general relativity in the case of isolated systems, slow motions and weak
fields. General relativity has been extensively tested during the past century, and no
deviations have been found, with the possible exception of the accelerated expansion
of the universe, which is however usually explained by introducing new matter rather
than changing the laws of gravity [1]. We will not go through the details of general
relativity, but we try to give some rough idea of what the theory is like, and introduce
a few concepts and definitions that we are going to need.

The principle behind special relativity is that space and time together form
four-dimensional spacetime. The essence of general relativity is that gravity is a
manifestation of the curvature of spacetime. While in Newton’s theory gravity acts
directly as a force between two bodies1, in Einstein’s theory the gravitational interac-
tion is mediated by spacetime. In other words, gravity is an aspect of the geometry
of spacetime. Matter curves spacetime, and this curvature affects the motion of
other matter (as well as the motion of the matter generating the curvature). This
can be summarised as the dictum “matter tells spacetime how to curve, spacetime
tells matter how to move” [2]. From the viewpoint of general relativity, gravity is
not a force. If there are no forces (due to particle physics interactions) acting on a
body, the body is in free fall, also known as inertial motion. A freely falling body
moves along a straight line in the curved spacetime, called a geodesic. Forces cause
the body to deviate from geodesic motion. It is important to remember that the
viewpoint is that of spacetime, not just space. For example, the orbit of the earth
around the sun is curved in space, but straight in spacetime.

If a spacetime is not curved, it is said to be flat, which just means that it has the
geometry of Minkowski space. In the case of space (as opposed to spacetime), “flat”
means that the geometry is Euclidean. (Note the possibly confusing terminology:
Minkowski spacetime is called simply Minkowski space!)

To define a physical theory, we should give 1) the kinematics of the theory
(closely related to the symmetry properties), 2) the degrees of freedom and 3) the
laws that determine the time evolution of the degrees of freedom, consistent with
the kinematics (in other words the dynamics). In Newtonian gravity, the kinematics
is that of Euclidean space with the Galilean symmetry group, which is to say that
the laws of physics are invariant under the transformation

xi → x′i =
∑
j

Ri
jx

j +Ai + vit

t → t′ = Bt+ C , (2.1)

where xi are spatial coordinates, t is time, Ri
j is a constant rotation matrix, Ai

and vi are constant vectors and B and C are constants. The degrees of freedom are

1The way Newtonian gravity is usually formulated. It is also possible to formulate Newtonian
gravity in geometric terms, so that gravity is an expression of spacetime curvature, although this
is less natural than in general relativity.
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point particles, and the dynamics is given by Newton’s second law with the law of
gravity, which states that the acceleration of particle 1 due to particle 2 is

¨̄x1 = −GNm2
x̄1 − x̄2
|x̄1 − x̄2|3

, (2.2)

where GN is Newton’s constant and m2 is the mass of particle 2. This law is
consistent with the symmetry (2.1), but it is not uniquely specified by it.

In general relativity, Euclidean space is replaced by curved spacetime. Unlike
Euclidean space or Minkowski space, a general curved spacetime has no symmetries.
However, in general relativity a central role is played by diffeomorphism invariance,
which is to say invariance under general coordinate transformations, xα → x′α(xβ).
We use Greek indices to denote directions in spacetime, they can take any of the
values 0, 1, 2, 3. Latin indices are used to denote spatial directions, i can have
any of the values 1, 2, 3. In addition to the matter degrees of freedom (which
are more complicated than point particles, and have to be specified by a matter
model – general relativity is not a theory about the structure of matter!), there are
gravitational degrees of freedom. In Newtonian theory, gravity is just an interaction
between particles, but in general relativity, it has dynamics of its own and its degrees
of freedom are described by the metric. The equation of motion is the Einstein
equation. We will below first go through some kinematics of curved spacetime, and
then briefly discuss the Einstein equation and its relation to Newtonian gravity.

2.2 Curved 2D and 3D space

(If you are familiar with the concept of curved space and how its geometry is given
by the metric, you can skip the following and go straight to section 2.4.)

To help to visualise a four-dimensional curved spacetime, it may be useful to
consider curved two-dimensional spaces embedded in flat three-dimensional space.2

So let us consider a 2D space. Imagine there are 2D beings living in this 2D space.
They have no access to a third dimension. How can they determine whether the
space they live in is curved? By examining whether the laws of Euclidean geometry
hold. If the space is flat, then the sum of the angles of any triangle is 180◦, and
the circumference of any circle with radius χ is 2πχ. If by measurement they find
that this does not hold for some triangles or circles, then they can conclude that the
space is curved.

A simple example of a curved 2D space is the sphere. The sum of angles of any
triangle on a sphere is greater than 180◦, and the circumference of any circle drawn
on the surface of a sphere is less than 2πχ. (Straight lines on the sphere are sections
of great circles, which divide the sphere into two equal hemispheres.)

In contrast, the surface of a cylinder has Euclidean geometry, i.e. there is no
way that 2D beings living on it could conclude that it differs from a flat surface, and
thus by our definition it is a flat 2D space. (By travelling around the cylinder they
could conclude that their space has a non-trivial topology, but the geometry is flat.)

2This embedding is only a visualisation aid. A curved 2D space is defined completely in terms
of its two independent coordinates, without any reference to a higher dimension. The geometry is
given by the metric (part of the definition of the 2D space), which is a function of these coordinates.
Some such curved 2D spaces have the same geometry as a 2D surface in flat 3D space. We then say
that the 2D space can be embedded in flat 3D space. But there are curved 2D spaces which have
no such corresponding surface, i.e. not all curved 2D spaces can be embedded in flat 3D space.
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Figure 1: Cylinder and sphere.

In a similar manner we could try to determine whether the 3D space around us
is curved, by measuring whether the sum of angles of a triangle is 180◦ or whether
a sphere with radius r has surface area 4πr2. The space around Earth is indeed
curved by the gravity of the Earth and Sun, but the curvature is so small that very
precise measurements are needed to detect it.

2.3 The metric of 2D and 3D space

The geometry of space is described with the metric. The metric is given in terms of
a set of coordinates. The coordinate system can be an arbitrary. The coordinates
are a set of numbers that identify locations in spacetime: they have no other identity
a priori. For example, they do not necessarily by directly correspond to physical
distances or time intervals: that information is carried by the metric.

To introduce the metric, let us consider Euclidean two-dimensional space with
Cartesian coordinates x, y. Take a parametrised curve x(η), y(η) that begins at η1
and ends at η2. The length of the curve is

s =

∫
ds =

∫ √
dx2 + dy2 =

∫ η2

η1

√
x′2 + y′2dη , (2.3)

where x′ ≡ dx/dη, y′ ≡ dy/dη. Here ds =
√

dx2 + dy2 is the line element. The
square of the line element, the metric, is

ds2 = dx2 + dy2 . (2.4)

The line element has the dimension of distance. As a working definition for the
metric, we can say that the metric is an expression which gives the square of the
line element in terms of the coordinate differentials.

We could use another coordinate system on the same 2-dimensional Euclidean
space, e.g. polar coordinates. Then the metric is

ds2 = dr2 + r2dφ2 , (2.5)

giving the length of a curve as

s =

∫
ds =

∫ √
dr2 + r2dφ2 =

∫ η2

η1

√
r′2 + r2φ′2dη . (2.6)
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Figure 2: A parametrised curve in Euclidean 2D space with Cartesian coordinates.

In a similar manner, in 3-dimensional Euclidean space, the metric is

ds2 = dx2 + dy2 + dz2 (2.7)

in Cartesian coordinates, and

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (2.8)

in spherical coordinates (where the r coordinate has the dimension of distance, but
the angular coordinates θ and φ are dimensionless).

Now we can go to our first example of a curved space, the sphere. Let the radius
of the sphere be a. As the two coordinates on this 2D space we can take the angles
θ and φ. We get the metric from the Euclidean 3D metric in spherical coordinates
by setting r = a,

ds2 = a2
(
dθ2 + sin2 θdφ2

)
. (2.9)

The length of a curve θ(η), φ(η) on this sphere is given by

s =

∫
ds =

∫ η2

η1

a

√
θ′2 + sin2 θφ′2dη . (2.10)

For later application in cosmology, it is instructive to consider the coordinate
transformation ρ = sin θ. Since now dρ = cos θdθ =

√
1− ρ2dθ, the metric becomes

ds2 =
dρ2

1− ρ2
+ ρ2dφ2 . (2.11)

For ρ ≪ 1 (in the vicinity of the North Pole), this metric is approximately the
same as in (2.5), so on the “Arctic plane” the metric looks flat and the coordinates
look like polar coordinates. As r grows, the deviation from flat geometry becomes
more apparent. Note that we run into a problem when ρ = 1. This corresponds to
θ = 90◦, i.e. the “equator”. After this ρ = sin θ begins to decrease again, repeating
the same values. Also, at ρ = 1, the 1/(1−ρ2) factor in the metric becomes infinite.
We say there is a coordinate singularity at the equator. There is nothing wrong with
the space itself, but our chosen coordinate system covers only half of the space, the
region “north” of the equator.
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Figure 3: A parametrised curve on a 2D sphere with spherical coordinates.

Figure 4: The part of the sphere covered by the coordinates in (2.11).

2.4 4D flat spacetime

The coordinates of the four-dimensional spacetime are (x0, x1, x2, x3), where x0 = t
is a time coordinate. Some examples are Cartesian (t, x, y, z) and spherical (t, r, θ, φ)
coordinates.

The metric of the Minkowski space of special relativity is

ds2 = −dt2 + dx2 + dy2 + dz2 , (2.12)

in Cartesian coordinates. In spherical coordinates it is

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θ dφ2 . (2.13)

The fact that time appears in the metric with a different sign reflects the special
geometric features of Minkowski space. (We assume that the reader is familiar with
special relativity, and won’t go into details.) There are three kinds of distance
intervals,

• timelike, ds2 < 0

• lightlike, ds2 = 0

• spacelike, ds2 > 0 .

The lightlike directions form the observer’s future and past light cones. Light
moves along the light cone, so everything we see with light lies on our past light cone,
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Figure 5: The light cone.

and we can receive signals slower than light from everywhere inside it. To see us as
we are now (using light), the observer has to lie on our future light cone, and we can
send timelike signals to everywhere inside it. As we move in time along our world
line, we drag our light cones with us so that they sweep over the spacetime. The
motion of a massive body is always timelike, and the motion of massless particles is
always lightlike.

2.5 Curved spacetime

These features of the Minkowski space are inherited by the spacetime of general
relativity. However, spacetime is now curved, whereas Minkowski spacetime is flat.
(Recall that when we say space is flat, we mean it has Euclidean geometry; when we
say spacetime is flat, we mean it has Minkowski geometry.) The (proper) length of
a spacelike curve is ∆s ≡

∫
ds. Light moves along lightlike world lines with ds2 = 0,

massive objects along timelike world lines with ds2 < 0. The time measured by a
clock carried by the object, the proper time, is ∆τ =

∫
dτ , where dτ ≡

√
−ds2, so

dτ2 = −ds2 > 0. The proper time τ is a natural parameter for the world line, xµ(τ).
The four-velocity of an object is defined as

uµ =
dxµ

dτ
. (2.14)

The zeroth component of the 4-velocity, u0 = dx0/dτ = dt/dτ relates the proper time
τ to the coordinate time t, and the other components of the 4-velocity, ui = dxi/dτ ,
to the coordinate velocity vi ≡ dxi/dt = ui/u0. To convert this coordinate velocity
into a “physical” velocity (with respect to the coordinate system), we need to use
the metric, see (2.20).

In an orthogonal coordinate system the coordinate lines are everywhere orthog-
onal to each other. The metric is then diagonal, meaning that it contains no cross-
terms like dxdy. We will only use orthogonal coordinate systems in this course.
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Figure 6: Two coordinate systems with different time slicings.

The three-dimensional subspace, or hypersurface t = const. of spacetime is called
the space (or the universe) at time t, or a time slice of the spacetime. It is possible
to slice the same spacetime in many different ways i.e. make different choices of the
time coordinate t.

2.6 Vectors, tensors, and the volume element

The spacetime metric gµν is related to the distance interval as

ds2 = gµνdx
µdxν ≡

3∑
µ=0

3∑
ν=0

gµνdx
µdxν . (2.15)

We introduce the Einstein summation rule: we always sum over repeated indices,
even if we don’t bother to write down the summation sign

∑
. This also applies

to Latin indices, gijdx
idxj ≡

∑3
i=1

∑3
j=1 gijdx

idxj . The objects gµν are the com-
ponents of the metric tensor. They are usually taken to be dimensionless, but
sometimes (particularly in the case of angular coordinates) it is more useful to keep
the coordinates dimensionless and put the dimension in the metric. The components
of the metric tensor form a symmetric 4× 4 matrix.

In the case of Minkowski space, the metric tensor in Cartesian coordinates is
called ηµν ≡ diag(−1, 1, 1, 1). In matrix notation we have for Minkowski space

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.16)

in Cartesian coordinates, and

gµν =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (2.17)

in spherical coordinates.
As another example, the metric tensor for a sphere (discussed above as an ex-

ample of a curved 2D space) has the components

[gij ] =

[
a2 0
0 a2 sin2 θ

]
. (2.18)
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The vectors that occur naturally in relativity are four-vectors, with four compo-
nents, as with the four-velocity discussed above. We will use the short term “vector”
to refer both to three-vectors and four-vectors, as it should be obvious from the
context which is meant. As in three-dimensional flat geometry, the values of the
components depend on the basis. For example, if we move along the coordinate x1

so that it changes by dx1, the distance travelled is ds =
√

g11dx1dx1 =
√
g11dx

1.
Similarly, the components of a vector do not give the physical magnitude of the
quantity. In the case when the metric is diagonal, we just multiply by the relevant
metric component to get the physical magnitude,

wα̂ ≡
√

|gαα|wα , (2.19)

where wα is the component of a vector in the basis where the metric is gαβ, and wα̂

is the correctly normalised physical magnitude of the vector. (In the above, there is
no summation over α.)

For example, the physical velocity of an object is

vî =
√
giidx

i/
√
|g00|dx0 , (2.20)

and the spatial components are always smaller than one. When g00 = −1, this
simplifies to

√
giidx

i/dt.
The volume of a region of space (given by some range in the spatial coordinates

x1, x2, x3) is given by

V =

∫
V
dV =

∫
V

√
det[gij ]dx

1dx2dx3 (2.21)

where dV ≡
√
det[gij ]dx

1dx2dx3 is the volume element. Here det[gij ] is the deter-
minant of the 3×3 submatrix of the metric tensor components corresponding to the
spatial coordinates. For an orthogonal coordinate system, the volume element is

dV =
√
g11dx

1√g22dx
2√g33dx

3. (2.22)

Similarly, the surface area of a two-dimensional spatial region is S

S =

∫
S
dS =

∫
S

√
det[gij ]dx

1dx2 (2.23)

where dS ≡
√
det[gij ]dx

1dx2 is the area element. Here det[gij ] is the determinant of
the 2×2 submatrix of the metric tensor components corresponding to the subvolume
with constant x0 and x3. For an orthogonal coordinate system, we again have

dS =
√
g11dx

1√g22dx
2 . (2.24)

The metric tensor is used for taking scalar products of four-vectors,

w · u ≡ gαβu
αwβ . (2.25)

The (squared) norm of a four-vector w is

w ·w ≡ gαβw
αwβ. (2.26)

Exercise: Show that the norm of the four-velocity is always −1.
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2.7 The Einstein equation

Given that the degrees of freedom of the spacetime are given by the metric and we
want to have equations of motion that are second order, they can only involve the
metric and its first and second derivatives,

gµν , ∂gµν/∂x
σ, ∂2gµν/(∂x

σ∂xτ ) , (2.27)

as well as the matter degrees of freedom. The requirement of invariance under gen-
eral coordinate transformations restricts the equation of motion (in four dimensions)
to have the form

Gµν + Λgµν = 8πGNTµν , (2.28)

where Gµν is a unique tensor constructed from the metric and its first and second
derivatives, Λ is a constant called the cosmological constant (the reason for the name
will become apparent in the next chapter) and Tµν is the energy-momentum tensor,
also known as the stress-energy tensor. This equation specifies how the geometry
of spacetime and its matter content interact, in other words it is the law of gravity
in general relativity. We will not discuss the Einstein tensor or this equation in
much detail in this course, as we will only need them in the case of exact spatial
homogeneity and isotropy. However, we have explained a little bit about general
relativity to give some idea of the underlying mathematical structure.

The energy-momentum tensor describes all properties of matter which affect
spacetime, namely energy density, momentum density, pressure, and stress. For
frictionless continuous matter, a perfect fluid, it has the form3

Tµν = (ρ+ p)uµuν + pgµν , (2.29)

where ρ is the energy density and p is the pressure measured by an observer moving
with four-velocity uµ (such an observer is in the rest frame of the fluid). In cosmology
we can usually assume that the energy tensor has the perfect fluid form. If we
consider a fictitious observer who is comoving not with the fluid, but the coordinates
(i.e. her four-velocity is wα = δα0), T00 gives the energy density she measures, Ti0

gives the momentum density, which is equal to the energy flux, T0i and Tij gives the
flux of momentum i-component in j-direction.

In Newton’s theory the source of gravity is mass, in the case of continuous matter,
the mass density ρm. In Newtonian gravity, the gravitational field g⃗N is given by

∇2Φ = −∇ · g⃗N = 4πGNρm , (2.30)

where Φ is the gravitational potential. (We earlier discussed Newton’s law in the
form of the force law for point particles; this potential formulation for a continuous
medium is mathematically equivalent for finite systems.) Comparing (2.30) to (2.28),
the mass density ρm has been replaced by Tµν , and ∇2Φ has been replaced by the
Einstein tensor Gµν , which is a short way of writing a complicated expression built
from gµν and its first and second derivatives of. Thus the gravitational potential is
replaced by the ten-component tensor gµν .

3Here the indices of the four-velocity uµ are down, earlier they were up. The location of the
indices is significant in general relativity, but we won’t get into that here.
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Figure 7: Defining the angular diameter distance.

In the case of a weak gravitational field, the metric is close to the Minkowski
metric, and can be written as (neglecting gravitational waves)

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)δijdx
idxj , (2.31)

where |Φ| ≪ 1. The Einstein equation then reduces to

∇2Φ = 4πGN(ρ+ 3p)− Λ . (2.32)

Comparing this to (2.30), we see that the mass density ρm has been replaced by
ρ+3p, leaving aside the cosmological constant for a moment. For relativistic matter,
where mass is not the dominant contribution to the energy density and p can be
of the same order of magnitude as ρ, this is an important modification to the law
of gravity. For nonrelativistic matter, where the particle velocities are v ≪ 1, we
have p ≪ ρ ≃ ρm, and we get the Newtonian equation. The cosmological constant
corresponds to a Newtonian potential that is quadratic in the coordinates, and thus a
linear repulsive force (for Λ > 0). We will see the repulsive effect of the cosmological
constant even more clearly when we discuss cosmology in the next chapter.

2.8 Distance, luminosity, and magnitude

In general relativity, it is possible to define spacelike distances just as in special
relativity and Newtonian physics. One simply draws a spacelike line and integrates√
ds2 along the line. However, in a space that evolves in time, it is impossible to

measure such distances, because they are defined only at one particular moment in
time. The observer necessarily moves forward in time, and can never travel in a
spacelike direction. (In other words, the space changes as the observer goes about
measuring it.) Even if we lived in a static universe where space remains the same,
such measurements could not be done in practice for cosmology, since we cannot
move for cosmologically significant distances. In cosmology the observationally rele-
vant distances are those related to observations, which means they are defined with
respect to light. They are not distances in space but distances along lightlike direc-
tions in spacetime. The two main distances used in cosmology are angular diameter
distance and luminosity distance.

In Euclidean space, an object with proper size dS distance d away is seen at an
angle (when d ≫ dS)

dθ =
dS

d
. (2.33)

In general relativity, we therefore define the angular diameter distance of an object
with proper size R and angular size θ to be

dA ≡ dS

dθ
. (2.34)
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The reasoning of the Euclidean situation is here reversed. Objects do not look
smaller because they are further away, they are further away because they look
smaller. In the case of curved spacetime this can lead to behaviour at odds with
intuition from Euclidean geometry; we will encounter one example in the next sec-
tion. In order to determine the angular diameter distance, we need to know the
proper size of the object we are observing. In cosmology, we typically don’t have
reliable knowledge of the precise size of individual objects on the sky, so spatial
scales involved in statistical distributions are used instead. The two most notable
cases of such distributions are the anisotropy pattern of the CMB and the pattern
of galaxies on the sky, in particular baryonic acoustic oscillations, which we we will
not have time to discuss.

The luminosity distance is defined in a similar manner. In Euclidean space, if an
object radiates isotropically with absolute luminosity L (this is the radiated energy
per unit time measured next to the object), an observer at distance d sees the flux
(energy per unit time per unit area)

F =
L

4πd2
. (2.35)

In general relativity, the luminosity distance dL is defined as

dL ≡
√

L

4πF
. (2.36)

As with the angular diameter distance, objects in curved spacetime are further
away because they look fainter, not the other way around. (However, at least in
homogeneous and isotropic models, the luminosity distance grows with increasing
spatial distance, unlike dA.)

In any spacetime, the two distances are related by dL = (1 + z)2dA, so there in
practice there is only one independent observational cosmological distance4.

In astronomy, luminosity is often expressed in terms of magnitude. This system
hails back to the ancient Greeks, who classified stars visible to the naked eye into
six classes according to their brightness. Magnitude in modern astronomy is defined
so that it roughly matches this classification, but it is not restricted to positive
integers. The magnitude scale is logarithmic in such a way that a difference of 5
magnitudes corresponds to a factor of 100 in luminosity5. The absolute magnitude
M and apparent magnitude m of an object are defined as

M ≡ −2.5 log10
L

L0

m ≡ −2.5 log10
F

F0
, (2.37)

where L0 and F0 are reference luminosity and flux. There are actually different
magnitude scales corresponding to different regions of the electromagnetic spectrum,
with different reference luminosities. The bolometric magnitude and luminosity refer

4The parallax distance, related to the change of angular position of objects on the sky with the
movement of the observer, does not reduce to the angular diameter distance, but at present it has
not been measured on cosmological scales. That is expected to change with ESA’s Gaia satellite,
launched in December 2013 and currently taking data.

5So a difference of 1 magnitude corresponds to a factor of 1001/5 ≈ 2.512 in luminosity.



REFERENCES 26

to the power or flux integrated over all frequencies, whereas the visual magnitude
and luminosity refer only to the visible light. In the bolometric magnitude scale
L0 = 3.0×1028 W. The reference flux F0 for the apparent scale is chosen so in relation
to the absolute scale that a star whose distance is d = 10 pc has m = M . From
this, (2.36) and (2.37) follows that the difference between apparent and absolute
magnitudes is related to the luminosity distance as

m−M = −5 + 5 log10(DL/pc) . (2.38)
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