

Cosmology I and II

Syksy Räsänen University of Helsinki Department of Physics and Helsinki Institute of Physics

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI CA

Practicalities

- Lecturer Syksy Räsänen (A315), teaching assistants Jenni Häkkinen (D315) and Lasse Sihvonen. Reachable by email + at our offices.
- Cosmology I is Bachelor level, Cosmology II Master level.
- Up-to-date information is on the course webpage
 <u>https://www.mv.helsinki.fi/home/syrasane/cosmo/</u>

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Changes are announced via email to registered students.

Cosmology I teaching

Lectures:

- Monday 14.15-16.00 at Exactum CK112
- Tuesday 14.15-16.00 at Exactum D122

• Exercises:

- Friday 12.15-14.00, 14.15-16.00 at Physicum A315.
 (Friday 14.15 session will change next week to Thu 12-14.)
- Assistant help session Tuesday 12.15-13.00, starting on week 37. (Alternating between Jenni's office and the sandbox.)

Exercises, exam and grading

- Exercise problems appear on the course webpage on Tuesday (at the latest). They are returned via Moodle by Monday at 14.00.
- Grade is based 1/3 on the exercises and 2/3 on the exam.

Content

Cosmology I

- 1. Introduction
- 2. Basics of general relativity
- 3. Friedmann-Lemaître-Robertson-Walker (FLRW) models
- 4. Thermodynamics in the expanding universe
- 5. Big Bang nucleosynthesis
- 6. Dark matter
- Cosmology II
 - 7. Inflation: background
 - 8. Inflation: perturbations
 - 9. Perturbations after inflation, large-scale structure
 - 10. Cosmic microwave background

General Relativity I & II (PAP348) & (PAP 349)

- Not needed for Cosmology I and II but essential if you want to study cosmology further. Also fun.
- If you have taken GRI already, the GR on Cosmology I & II will be easy.
- If you take GRII after Cosmology I, the cosmology in it will be easy.
- Lectured every spring term by me.

• https://www.mv.helsinki.fi/home/syrasane/gr/

Galaxy Survey Cosmology (PAP352) & Gravitational Lensing (PAP353)

HELSINKI INSTITUTE OF PHYSICS

HELSINGIN YLIOPISTO

UNIVERSITY OF HELSINKI

- Motivated by Finnish participation in ESA's Euclid project.
- Study the distribution of galaxies (correlation function and power spectrum) and weak gravitational lensing.
- For Galaxy Survey Cosmology you need Cosmology I & II.
- For Gravitational Lensing you also need General Relativity I and II.
- Lectured every odd spring term, next in 2025 by Elina Keihänen.
- https://www.mv.helsinki.fi/home/hkurkisu/gsc/

Galaxy Formation and Evolution (PAP318)

PAP318, Galaxy formation and evolution, 5 op, Autumn,2024 Time and place: Tuesdays at 16.15-18.00, BK114 Exactum. beginning 03.09.2024 Lecturer: Peter Johansson

Course assistants: Bastián Reinoso & Max Mattero


Homepage:

https://wiki.helsinki.fi/xwiki/bin/view/Astrophysics/Galaxy%20formation%20and%20

evolution/ a thorough

The course will provide a thorough overview of galaxy formation theory and the essential observations required for understanding the galaxy population.

Course material: Provided lecture notes and the textbooks "Galaxy formation" (Longair) and "Galaxy formation and evolution" (Mo, van den Bosch, White). Lecture course. Problem sets and Final exam.

- Lectured every even fall term, beginning right after this lecture, by Peter Johansson.
- <u>https://wiki.helsinki.fi/xwiki/bin/view/Astrophysics/Galaxy%</u> <u>20formation%20and%20evolution/</u>

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Galactic Dynamics (PAP317)

- Detailed course on galactic dynamics.
- Lectured every odd fall term, next in 2025 by Peter Johansson.
- <u>https://wiki.helsinki.fi/xwiki/bin/view/Astrophy</u> <u>sics/Galactic%20Dynamics/</u>

Observations: fundamentals

- Electromagnetic radiation
 - Radio Microwaves IR Visible UV X-Rays – Gamma rays
- Massive particles
 - Cosmic rays (protons, antiprotons, heavy ions, electrons, antielectrons)
 - Neutrinos
- Gravitational waves (since 2015)
- Composition of the solar system

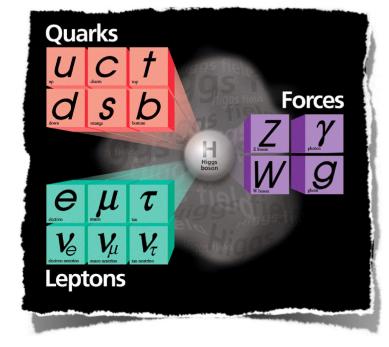
Observations in practice

- HELSINKI INSTITUTE OF PHYSICS
- Motion of galaxies
- Distribution of galaxies (large scale structure)
- Abundance of light elements
- Cosmic microwave background
- Luminosities of distant supernovae
- Number counts of galaxy clusters
- Deformation of galaxy images (lensing)
- Gravitational wave signals
- Pulsar timing

Laws of physics

- General relativity
- Quantum field theory
 - Atomic physics, nuclear physics, Standard Model of particle physics, and beyond
- Statistical physics and thermodynamics

The Standard Model



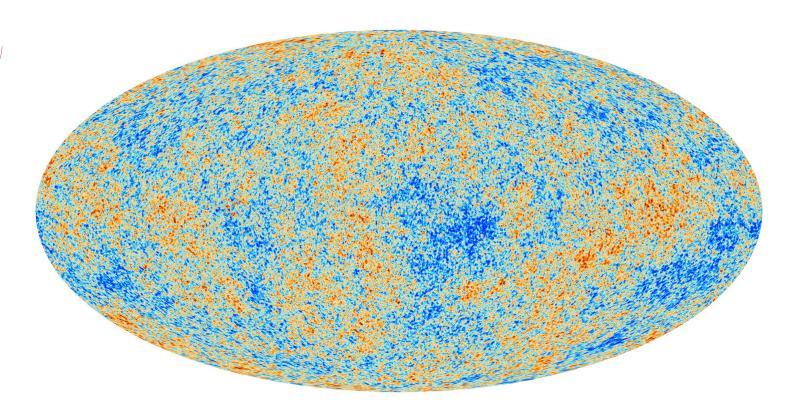
Matter particles

Quarks and leptons (3 families)

Gauge bosons

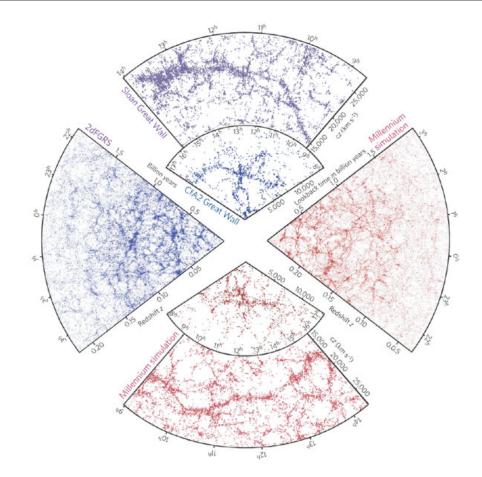
Photon: EM interaction Gluons (8): strong interaction *W*⁺, *W*⁻, *Z*: weak interaction

<u>Higgs boson</u>


HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Gives masses to *W*, *Z*, and fermions

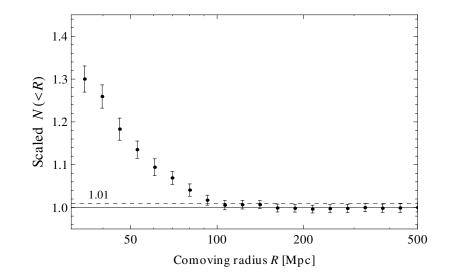
Homogeneity and isotropy: observations

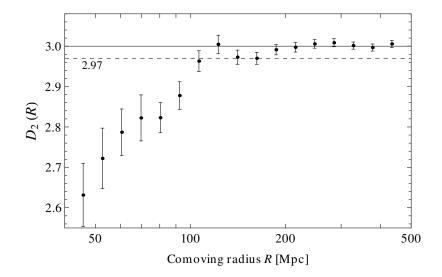

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Cosmology I and II, 3.9.2024

HELSINK INSTITUTE OF PHYSICS

Homogeneity and isotropy: observations


HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI


Cosmology I and II, 3.9.2024

Homogeneity and isotropy: observations

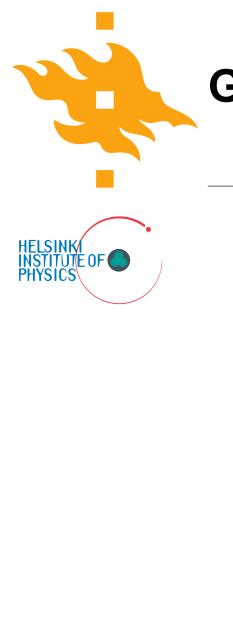
Homogeneity and isotropy: theory

- Observed **statistical** homogeneity and isotropy motivates theory with **exact** H&I: Friedmann-Lemaître-Robertson-Walker (FLRW) models.
- The expansion of the universe is described by the scale factor *a(t)*.
- Extrapolating the known laws of physics,
 14 billion years ago a → 0, ρ → ∞, T → ∞.

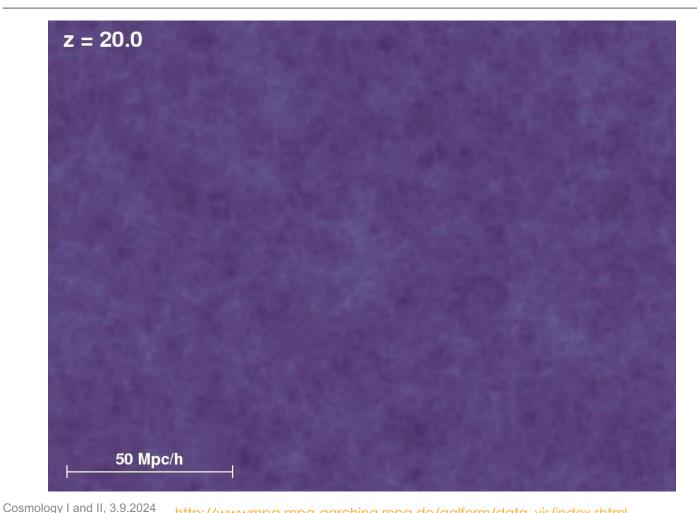
The meaning of Big Bang

- The early universe was:
 - Hot
 - Dense
 - Rapidly expanding
- Homogeneity and isotropy + thermal equilibrium ⇒ easy to calculate
 - High $T \Rightarrow$ high energy \Rightarrow quantum field theory

HELSINKI INSTITUTE OF PHYSICS


Timeline of the universe

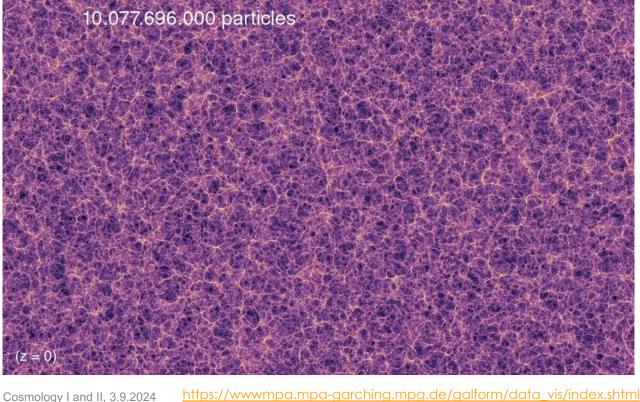
	t (∝E ⁻²)	E	Event	
`.	14 Gyr	10 ⁻³ eV	present day	
)	8 Gyr	10 ⁻³ eV	expansion accelerates	
	100 Myr	10 ⁻² eV	reionisation	
	40 Myr	10 ⁻² eV	first structures form	
	380 000 yr	0.1 eV	atoms and the CMB form	
	50 000 yr	1 eV	matter overtakes radiation	
	3-30 min	0.1 MeV	Big Bang Nucleosynthesis	
	1 s	1 MeV	neutrino decoupling	
	10 ⁻⁵ s	100 MeV	QCD transition (?)	
	10 ⁻¹¹ s	100 GeV	electroweak transition (?)	
	10 ⁻¹¹ …10 ⁻³⁶ s	10 ³ 10 ¹⁶ GeV	baryogenesis?	
PISTO	10 ⁻¹³ …10 ⁻³⁶ s	10 ³ 10 ¹⁶ GeV	inflation?	
RSITET NKI	10-13 10-42 5.2024	10 ³ 10 ¹⁸ GeV	quantum gravity?	19


Structure formation

- CMB shows the initial conditions
 - The early universe is exactly homogeneous except for small perturbations of 10⁻⁵.
 - Seeds of structure.
- Gravity is attractive
 - ⇒ fluctuations grow into galaxies, clusters of galaxies, filaments, walls and voids, which form the large-scale structure of the universe

Growth of the cosmic web

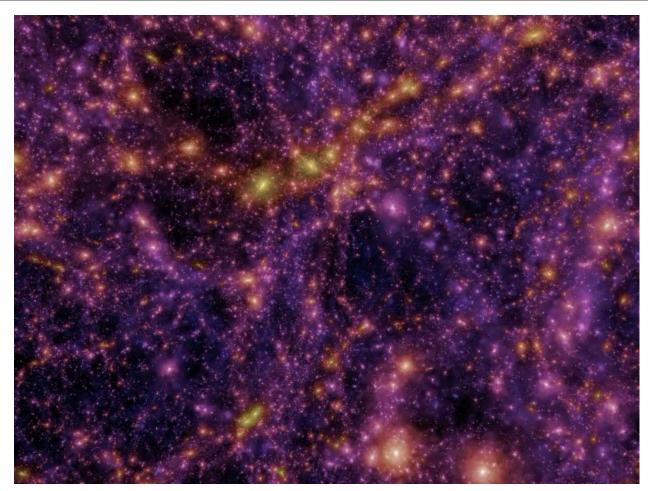
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI



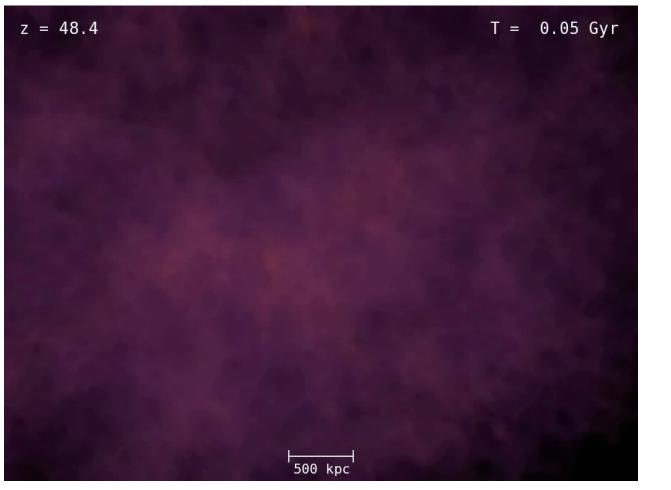
From clusters to large-scale structure

Millennium Simulation

1 Gpc/h


HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

A rich cluster


HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Cosmology I and II, 3.9.2024

Birth of the Milky Way

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Cosmology I and II, 3.9.2024

http://wwwmpa.mpa-garching.mpg.de/aquarius/

Large-scale structure and the birth of galaxies

http://www.magneticum.org/media.html#MOVIES

Magneticum/Box2/hr redshift=9.428 g=1.600 c=1.500 b=-0.000

Da

Dark matter

- Large-scale structure, CMB anisotropies, motions of stars in galaxies & galaxies and gas in clusters, gravitational lensing, BBN, ...
 - \Rightarrow most matter does not consist of Standard Model particles
- Either:
 - new massive particle(s) that have no electric charge, live long and move slowly, or
 - primordial black holes.
- Many candidates: neutralinos, technicolor dark matter, axions, right-handed neutrinos, ...

Accelerated expansion

- Exactly homogeneous and isotropic models with baryonic and dark matter don't agree with observations.
- Distances and the expansion rate are larger than expected by a factor of about 2.
 - Expansion has accelerated in the past 5 billion years.
- Most successful explanation is dark energy.

UNIVERSITY OF HELSINKI

Other possibilities are modified gravity or effect of structures. Cosmology I and II, 3.9.2024

Da

Dark energy

- Has large negative pressure.
- Is smoothly distributed.
- Has an energy density about three times that of baryonic plus dark matter today.
- The simplest candidate is vacuum energy.
 - Has explained and predicted observations successfully for 26 years.
 - Challenged by discrepancies in measurement of H₀ (Hubble tension).