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8 Inflation: perturbations

8.1 The evolution of perturbations

8.1.1 The equations of motion

In the previous chapter, we discussed background evolution during inflation. Let
us now see how perturbations are generated during inflation and how they evolve.
In order to do a consistent calculation, we would have to consider perturbations
both in the inflaton field and the spacetime metric. Instead of delving deep into
cosmological perturbation theory, we will go for a simplified treatment where we
neglect perturbations in the metric. (This calculation, properly interpreted, will
give the right result to leading order in the slow-roll parameters.)

We split the inflaton field into a background part that depends only on time and
a perturbation that depends also on space:

φ(t,x) = φ̄(t) + δφ(t,x) . (8.1)

This split is not unique, as we could add a time-dependent part to the perturbation
and subtract it from the background. This can be fixed by for example demanding
that the spatial average of δφ(t,x) vanishes. This still leaves open the question of
how the hypersurface of constant t on which this averags is taken is chosen (the
spacetime is no longer exactly homogeneous and isotropic, so there is no preferred
time slicing). This is related to the gauge freedom of cosmological perturbation
theory, which we will not discuss further.

In chapter 7, we wrote down the equation of motion of the scalar field,

¨̄φ+ 3H ˙̄φ = −V ′(φ̄) , (8.2)

The equation of motion for the full field (neglecting perturbations in the metric) is
similar,

φ̈− 1

a2
∇2φ+ 3Hφ̇ = −V ′(φ) , (8.3)

where the new addition is the spatial Laplacian ∇2 ≡ ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
. Note the a−2

factor, which corresponds to the fact that the measure of proper length is a(t)dxi,
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8 INFLATION: PERTURBATIONS 134

not dxi. Using the decomposition (8.1) and expanding V ′(φ) = V ′(φ̄) + V ′′(φ̄)δφ+
O(δφ2), we get to first order in δφ,

δφ̈+ 3Hδφ̇+

(
− 1

a2
∇2 + V ′′(φ̄)

)
δφ = 0 . (8.4)

Although we have neglected metric perturbations, this expression is (in the coordi-
nate system called the spatially flat gauge) correct during slow-roll to leading order
in the slow-roll parameters.

As the equation of motion is linear, it is easily solved with a Fourier transforma-
tion. Let us assume that the universe is spatially flat (K = 0) – recall that inflation
quickly drives the spatial curvature to small values. We can then write

δφ(t,x) =
1

(2π)3/2

∫
d3kδφk(t)e

ik·x , (8.5)

Because the universe expands, the variable k, called the comoving momentum or
comoving wavenumber, is not the physical momentum, which is given by k/a. With
the scale factor normalised to unity today, the comoving momentum of a Fourier
mode is the physical momentum it has today.

Spatial flatness is crucial here. If space were curved, plane waves would not
form a complete set of basis functions, and we would have to use more complicated
functions. (There would also be an additional scale present, given by the spatial
curvature term K/a2.)

Different Fourier modes decouple, so (8.4) reduces to

δφ̈k + 3Hδφ̇k +

[(
k

a

)2

+m2(φ̄)

]
δφk = 0 , (8.6)

where we have denoted m2(φ̄) ≡ V ′′(φ̄); note that it is possible to have m2(φ̄) < 0.

8.1.2 Fourier decomposition

As a short interjection, let us give a few results regarding Fourier transform and
Fourier series. We will consider infinite Euclidean spatial sections, but often it is
useful to consider a finite box, so we will want to interconvert between the two.
Following Liddle & Lyth [1] we have, for any function g(t,x)

g(t,x) =
1

(2π)3/2

∫
g(t,k)eik·xd3k

g(t,k) =
1

(2π)3/2

∫
g(t,x)e−ik·xd3x .

(8.7)

To take the limit of infinite box size, L3 → ∞, we replace(
2π

L

)3∑
k

→
∫

d3k

(
L

2π

)3

gk(t) → 1

(2π)3/2
g(t,k)(

L

2π

)3

δkk′ → δ3(k − k′) .

(8.8)
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It is usually easiest to work with the series and convert to the integral at the end,
to avoid dealing with products of delta functions. Formally, this corresponds to
considering some cubic region (“box”) of the universe, in comoving coordinates,
with some comoving volume L3, and assuming periodic boundary conditions. The
box is just a physically irrelevant convenient mathematical device. In the end we
can take the limit L3 → ∞ and replace the Fourier series with a Fourier integral.

8.1.3 Gaussian perturbations

Simplest models of inflation predict, and observations show, that cosmological per-
turbations are (in the linear regime) close to Gaussian. Possible deviations from
Gaussianity are a topical subject in cosmology at the moment. No deviations in the
primordial perturbations have been found, and the non-Gaussian contribution rela-
tive to the Gaussian contribution has to be less than 10−4, according to observations
by the Planck satellite. (Non-linear structure formation does destroy the Gaussian-
ity of the initial perturbations on small scales.) Let us discuss a generic Gaussian
perturbation g(x), where the set of Fourier coefficients {gk} given in (8.7) is the
result of a Gaussian random process. In cosmology, we can only predict the proba-
bility distribution from which the perturbations are drawn (since they originate in
a quantum process), not the particular realisation that corresponds to our universe.
This causes some limitations on the comparison between theory and observation, as
will see when we discuss the CMB in chapter 10.

Cosmological perturbations are real, so we have g−k = g∗k. We can write gk in
terms of its real and imaginary part,

gk = αk + iβk . (8.9)

To know a random process means to know the probability distribution Prob(gk).
The expectation value of a quantity which depends on gk as f(gk) is given by

⟨f(gk)⟩ ≡
∫

f(gk)Prob(gk)dαkdβk , (8.10)

where the integral is over the complex plane, i.e.∫ ∞

−∞
dαk

∫ ∞

−∞
dβk .

We now define what we mean by Gaussian perturbations (or by a Gaussian
random process, a process that produces such perturbations). We restrict to pertur-
bations with zero mean, which is the relevant situation in cosmology. Such pertur-
bations g(x) satisfy two properties:

1. The probability distribution of an individual Fourier component is Gaussian1:

Prob(gk) =
1

2πs2k
exp

(
−1

2

|gk|2

s2k

)
=

1√
2πsk

exp

(
−1

2

α2
k

s2k

)
× 1√

2πsk
exp

(
−1

2

β2
k

s2k

)
.

(8.11)

1We consider only Gaussian distributions with zero mean.
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From this distribution we get (Exercise: Show this.) the variance:

⟨|gk|2⟩ = 2s2k . (8.12)

The distribution has one free parameter for each value of k, the real positive
number sk that gives the width (determines the variance) of the distribution.

2. The probabilities of different Fourier modes are independent (i.e. they are not
correlated),

⟨gkg∗k′⟩ = 0 for k ̸= k′ . (8.13)

In addition, the distribution is taken to be statistically isotropic in space. This means
that the probability distribution is independent of the direction of the Fourier mode
k:

sk = s(k) . (8.14)

Like Gaussianity, this is a prediction of typical models of inflation (it follows from
the symmetry of the background spacetime), and seems to be agreement with the
data. There appear to be some anomalies in the CMB which may point to a small
violation of this symmetry, but the issue remains unsettled.

We can combine (8.12) and (8.13) into a single equation,

⟨gkg∗k′⟩ = 2δkk′s2k = δkk′⟨|gk|2⟩ (8.15)

Going from Fourier space back to coordinate space, we find

⟨g(x)⟩ =

〈∑
k

gke
ik·x

〉
=

∑
k

⟨gk⟩eik·x = 0 (8.16)

The expectation value of the perturbation is zero, since it represents a deviation
from the background value. The square of the perturbation can be written as

g(x)2 =
∑
k

g∗ke
−ik·x

∑
k′

gk′eik
′·x (8.17)

since g(x) is real. The typical amplitude of the perturbation is described by the
variance, the expectation value of this square,

⟨g(x)2⟩ =
∑
kk′

⟨g∗kgk′⟩ei(k′−k)·x =
∑
k

⟨|gk|2⟩ = 2
∑
k

s2k . (8.18)

Going from the Fourier series to the Fourier integral, we can write the variance
as2

⟨g(x)2⟩ =
∑
k

⟨|gk|2⟩ ≡
(
2π

L

)3∑
k

1

4πk3
Pg(k)

→ 1

4π

∫
d3k

k3
Pg(k) =

∫ ∞

0

dk

k
Pg(k) =

∫ ∞

−∞
Pg(k)d ln k ,

(8.19)

2Note that the result has no x-dependence. Even though the function g(x)2 varies from place
to place, its expectation value is the same everywhere.
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where we have defined the power spectrum Pg(k) as

Pg(k) ≡
(

L

2π

)3

4πk3⟨|gk|2⟩ =
L3

2π2
k3⟨|gk|2⟩ . (8.20)

The power spectrum of g gives the contribution of a logarithmic scale interval to
the variance of g(x). For Gaussian perturbations, the power spectrum gives the
complete statistical description, and all statistical quantities can be calculated from
it.

8.1.4 Solutions

Let us now solve the equation of motion (8.6) for the field perturbations. During
inflation, H and m2 change slowly. Thus, to first order in the slow-roll parameters,
they are constant. The general solution of (8.6) is then

δφk(t) = a−3/2

[
AkJ−ν

(
k

aH

)
+BkJν

(
k

aH

)]
, (8.21)

where Ak and Bk are constants, and Jν is the Bessel function of order ν, with

ν ≡
√

9

4
− m2

H2
. (8.22)

To leading order, H is constant, and the scale factor is

a(t) ∝ eHt . (8.23)

In the slow-roll approximation, the inflaton mass is negligible, |m2| ≪ H2, since

|m2|
H2

= 3M2
Pl

|V ′′|
V

= 3|η| ≪ 1 . (8.24)

We can thus drop m2/H2 in (8.22), so

ν =
3

2
. (8.25)

Bessel functions of half-integer order are the spherical Bessel functions, which can
be expressed in terms of trigonometric functions. The solution (8.21) reduces to

δφk(t) = Akwk(t) +Bkw
∗
k(t) , (8.26)

where the constants Ak and Bk have been redefined to absorb some numerical con-
stants, and

wk(t) ≡
(
i+

k

aH

)
exp

(
ik

aH

)
. (8.27)

Well before Hubble exit, k ≫ aH, the exponent is large, and the solution os-
cillates rapidly. After Hubble exit, k ≪ aH, the solution stops oscillating and ap-
proaches the constant value i(Ak −Bk). As the equation for the field perturbation
is linear, we need extra information to fix the constants of integration in (8.26), i.e.
the initial conditions. They are given by quantum mechanical vacuum fluctuations.
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8.2 The generation of perturbations

It may sound odd to discuss the generation of perturbations. This implies that we
consider the state of a system that is homogeneous and isotropic at some initial
time, but where the behaviour is nevertheless different at different positions at a
later time. This may seem impossible, because then we would have to a have a rule
that would say where the perturbations are going to be, which would distinguish
one position from another. Therefore it would seem that perturbations have to be
given as an initial condition, and cannot be calculated from first principles. In a
deterministic theory, this is true. However, quantum theory offers a way out of this
impasse. It is is indeterministic, and there is no rule that will tell what the outcome
of a quantum process will be, only the probability of various outcomes (i.e. statistical
distributions) are calculable. To discuss quantum behaviour of the inflaton field, we
need to use quantum field theory in an inflating FLRW universe. To warm up, let
us first consider quantum field theory of a scalar field in Minkowski space.

8.2.1 Vacuum fluctuations in Minkowski space

The field equation for a massive free (i.e. V (φ) = 1
2m

2φ2) real scalar field in
Minkowski space is

φ̈−∇2φ+m2φ = 0 , (8.28)

or equivalently
φ̈k + E2

kφk = 0 , (8.29)

where E2
k = k2 + m2. We recognise (8.29) as the equation for a harmonic oscilla-

tor. Thus each Fourier component of the field behaves as an independent harmonic
oscillator.

In the quantum mechanical treatment of the harmonic oscillator the creation and
annihilation operators are introduced, which raise and lower the occupation number
of the system. It is also useful to do that here.

We have a different pair of creation and annihilation operators â†k, âk for every
Fourier mode k. We denote the ground state of the system by |0⟩, and call it the
vacuum. Particles are quanta of the oscillations of the field. The vacuum |0⟩ is
the state with no particles, more precisely the state annihilated by the annihilation
operator:

âk|0⟩ = 0 . (8.30)

The vacuum is has unit norm, ⟨0|0⟩ = 1. Operating on the vacuum with the creation

operator â†k adds one quantum with momentum k and energy Ek to the system, i.e.
creates one particle. We denote this state with one particle with momentum k by
|1k⟩. Thus

â†k|0⟩ = |1k⟩ , (8.31)

and the state is normalised as ⟨1k|1k′⟩ = δkk′ . This particle has a well-defined mo-
mentum k, and therefore it is completely unlocalised, as dictated by the Heisenberg
uncertainty principle.

We denote the hermitian conjugate of the vacuum state by ⟨0|. Thus

⟨0|âk = ⟨1k| and ⟨0|â†k = 0 . (8.32)
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The commutation relations of the creation and annihilation operators are

[â†k, â
†
k′ ] = [âk, âk′ ] = 0 , [âk, â

†
k′ ] = δkk′ . (8.33)

In quantum physics, observables are described by operators, not functions. We
can then calculate expectation values for these observables using the operators. So
instead of the classical field

φ(t,x) =
∑

φk(t)e
ik·x (8.34)

we have the field operator

φ̂(t,x) =
∑

φ̂k(t)e
ik·x . (8.35)

The field operator can be written in terms of the creation and annihilation operators
as3

φ̂k(t) = wk(t)âk + w∗
k(t)â

†
−k (8.36)

and

wk(t) = L−3/2 1√
2Ek

e−iEkt (8.37)

is the mode function, a solution of the field equation (8.29). (The normalisation has
been fixed to get the right commutation relations, (8.39).) We are using the Heisen-
berg picture, i.e. we have time-dependent operators and the quantum states are
time-independent. Note that since the operator φ̂(t,x) is Hermitian (corresponding
to a real field), φ̂(t,x)† = φ̂(t,x), the corresponding Fourier components satisfy
φ̂k(t)

† = φ̂−k(t). So the Fourier component operators are not Hermitian.
In quantum mechanics of point particles, we have two conjugate variables, po-

sition x̂ and momentum p̂. In quantum field theory, the canonical momentum cor-
responding to the field is just given by the time derivative of the field. Combining
(8.36) and (8.37), we have

˙̂φk(t) = −iEk

(
wk(t)âk − w∗

k(t)â
†
−k

)
. (8.38)

We can now calculate the commutator between the field operator and the corre-
sponding conjugate momentum. A straightforward calculation with the rules (8.33)
gives

[φ̂k(t), ˙̂φk′(t)] = iL−3δk,−k′ . (8.39)

This is analogous to the canonical commutation relation [x̂, p̂] = i of quantum me-
chanics of point particles (Exercise: Show that demanding the canonical commu-
tation relation (8.39) fixes the normalisation to be the one given in (8.37).)

The Hamiltonian density of the scalar field in Minkowski space is

Ĥ =
1

2
˙̂φ2 − 1

2

∑
i

∂iφ̂∂iφ̂+ V (φ̂) , (8.40)

3We skip the detailed derivation of the field operator, which belongs to a course of quantum field
theory. See e.g. Peskin & Schroeder, section 2.3 (note the different normalisations of operators and
states, related to doing Fourier integrals rather than sums, and considerations of Lorentz invariance).
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The Hamiltonian is the spatial integral of the Hamiltonian density,

Ĥ =

∫
d3xĤ . (8.41)

Since the Hamiltonian depends on the field velocity operator, it does not commute
with the field operator,

[Ĥ, φ̂] ̸= 0 . (8.42)

As a result, the Hamiltonian and the field operator do not share a complete set of
eigenstates. So, in general an eigenstate of the Hamiltonian is not an eigenstate of the
field operator. Eigenstates of the Hamiltonian operator are the energy eigenstates,
and the vacuum has the lowest energy. Since the vacuum is not an eigenstate of
the field operator, the eigenvalues of the field operator are not well defined, instead
we have only a distribution of values. In other words, the scalar field has vacuum
fluctuations.

The vacuum fluctuations of the field are Gaussian (we skip the proof), and are
thus completely completely characterised by their variance, which we can express
with the power spectrum as (note that ⟨φ̂⟩ = 0)

⟨φ̂(x)2⟩ =
∫ ∞

0

dk

k
Pφ(k) . (8.43)

For the vacuum state |0⟩, the expectation value of |φk|2 is

⟨0|φ̂kφ̂
†
k|0⟩ =

|wk|2⟨0|âkâ†k|0⟩+ w2
k⟨0|âkâ−k|0⟩+ (w∗

k)
2⟨0|â†−kâ

†
k|0⟩+ |wk|2⟨0|â†−kâ−k|0⟩

= |wk|2⟨1k|1k⟩ = |wk|2 (8.44)

since all but the first term give 0, and the states are normalised so that ⟨1k|1k′⟩ =
δkk′ . Therefore the power spectrum is, using the definition (8.20),

Pφ(k) = L3 k3

2π2
|wk|2 . (8.45)

From (8.37) we have |wk|2 = 1/(2L3Ek), so we get the final result

Pφ(k) =
k3

4π2Ek
. (8.46)

We will next see that in the case of inflation, the mode functions are different
because space is expanding, but the reasoning remains the same.

8.2.2 Vacuum fluctuations during inflation

In inflation, the background field is treated classically, and only the perturbations
around the mean value of the field are quantised. In fact, if we were to take into ac-
count perturbations of the metric in a coordinate-independent manner, we would see
that the variables that are quantised are a linear combination of the scalar field per-
turbations and metric perturbations. Thus in inflation, part of the spacetime metric
is quantised. Inflation may thus be called the first quantum gravity scenario whose
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non-trivial predictions4 have been successfully confronted with observations. How-
ever, just like the background scalar field, the background metric is not quantised.
How to quantise the metric in general, and not just small perturbations, remains
one of the most studied and most difficult questions in physics. In this course, we
just treat the field perturbation during inflation the same way that we treated the
field in Minkowski space. That is, the Fourier modes of the field perturbation are
written as

δφ̂k(t) = wk(t)âk + w∗
k(t)â

†
−k , (8.47)

where the mode function wk(t) satisfies the classical equation of motion (8.6), with
the normalisation fixed by the canonical commutation relation,

[δφ̂k(t), δ
˙̂φk′(t)] = i(aL)−3δk,−k′ , (8.48)

where the only difference from the Minkowski space commutator (8.39) is the change
L → aL on the right-hand side.

Taking the solution of (8.4) given in section 8.1.4, under the approximations
H = constant and m2/H2 = 3η = 0 and fixing the normalisation with (8.48), we
get the solution

wk(t) = L−3/2 H√
2k3

(
i+

k

aH

)
exp

(
ik

aH

)
, (8.49)

where the time-dependence is given by a(t) ∝ eHt, where the prefactor in (8.49)
has been chosen so that the normalisation agrees with the Minkowski space mode
function (8.37) for k ≫ aH (up to a slowly varying phase), with the lengths scaled
by a. (Exercise: Show this.) This choice is called the Bunch–Davies vacuum. The
motivation is that when we consider distance and time scales much smaller than
the Hubble scale, spacetime curvature does not matter and things should behave as
in Minkowski space. However, other choices of initial state are possible, and would
lead to different predictions for the power spectrum.

The calculation of the power spectrum of inflaton fluctuations is the same as in
Minkowski space, with the same result,

Pδφ(k) = L3 k3

2π2
|wk|2 . (8.50)

Well before Hubble exit, k ≫ aH, and on timescales ≪ H−1, the field operator
δφ̂k(t) agrees with the Minkowski space field operator and we have the same kind of
initial δφ vacuum fluctuations as in Minkowski space. However, the time evolution
of the perturbations is different. Well after Hubble exit, k ≪ aH, the mode function
approaches a constant

wk(t) → L−3/2 iH√
2k3

, (8.51)

so the vacuum fluctuations freeze and the power spectrum becomes constant,

Pδφ(k) = L3 k3

2π2
|wk|2 =

(
H

2π

)2

. (8.52)

4Trivial predictions are those of the type “if we look here, we will see nothing new”.
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We have calculated the power spectrum of the inflaton field perturbations by
using the quantum mechanical expectation value of the square of the field perturba-
tion. We now identify this with the expectation value of a probability distribution of
a classical variable, i.e. we assume that the quantum mechanical fluctuations become
classical. Some part of this process is understood (it can be shown that the quantum
mechanical expectation values become equal to those of a classical stochastic distri-
bution, or “squeezed”), but the emergence of (at least the appearance of) classical
reality from a quantum system remains an unsolved problem. In particle physics
appeal is often made to the Copenhagen interpretation according to which states
become classical when they are measured, but for cosmology this is inadequate. We
simply assume that we can replace an expectation value of a quantum state with
the ensemble average of a classical distribution.

For our purposes, quantum mechanics generates the initial perturbations and
solves the problem of how perturbations can emerge from a state which is homoge-
neous and isotropic. As a remnant of the indeterministic origin of the perturbations,
we cannot predict the specific member of the ensemble which is realised in the uni-
verse, we can only calculate the statistical distribution of perturbations. As noted,
this distribution is Gaussian, so all Fourier modes δφk are independent random
variables (except for the reality condition δφ−k = δφ∗

k) with a Gaussian probability
distribution.

8.2.3 The comoving curvature perturbation

Relating the inflationary prediction for the power spectrum of the field perturbation
to the power spectrum of the density perturbation in the late universe requires a
number of extra steps. We will discuss this further in the next chapter, let us now
just outline some main points. Generally, the field perturbation δφk is related to the
comoving curvature perturbationRk, which is a measure of how much the field curves
spacetime. The advantage of using Rk is that it is constant on super-Hubble scales,
and is more general than the inflaton field perturbation. The perturbation Rk is
conserved (on super-Hubble scales) not only during inflation, but during reheating,
when the inflaton decays into particles, and afterwards, so it can be used even when
the field perturbations are gone (i.e. the field is in its vacuum state after having
transferred its energy to the particle bath). In the late universe, we can thus relate
Rk to the density perturbation of the gas formed by those particles, which eventually
form galaxies and other structures.

The result (8.52) was obtained treating H as a constant. However, H does
change, albeit slowly, during inflation. To take into account evolution we use for
each scale k the value ofH which is representative for the evolution of that particular
scale through the Hubble radius. That is, we choose the value of H at Hubble exit5,

5A more precise calculation, where the evolution of H(t) is taken into account gives a correction
to the amplitude of PR(k) that is first order in slow-roll parameters and a correction to the spectral
index ns that is second order in the slow-roll parameters. Note that H is assumed to be constant
only for each k mode during the time it crosses the Hubble radius. The equations of motion of the
different modes are independent, so in principle H could be very different for modes that exit at
very different times without violating our assumptions.
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so that aH = k. Thus the power spectrum is

Pδφ(k) = L3 k3

2π2
|wk|2 =

(
H

2π

)2

aH=k

, (8.53)

where the subscript notation signifies that the value of H for each k is to be taken
at Hubble exit of that particular scale.

Since we have only one quantity that has fluctuations, the inflaton field, and the
perturbations are treated in linear theory, the perturbations of any other quantity
are related to the inflaton field fluctuation by linear equations. So the distribution
of the perturbations inherits the property of homogeneity and isotropy from the
symmetry of the background on which they are created and evolve. Perturbations
generated by inflation are statistically homogeneous and isotropic, i.e. the power
spectrum depends only on the magnitude k of k, not on the direction.

In particular, for the comoving curvature perturbation we have (we skip the
precise definition and the calculation and just give the result)

PR(k) =

(
H
˙̄φ

)2

Pδφ(k) =

(
H
˙̄φ

H

2π

)2

aH=k

. (8.54)

This the main result for quantum fluctuations during inflation. The problem has
been completely reduced to the evolution of the background scalar field and the
background Hubble parameter. We just need to specify the inflation potential and
calculate how the background evolves, and plug it in (8.54) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (’Feature’ may be
more a approriate term than ’prediction’, because it is possible to construct models
where, for example, space expands anisotropically during inflation. However, that
requires untypical assumptions, such as having only a short period of inflation, so
that the anisotropy is not washed away, or inflation driven by a vector field instead
of a scalar field.)

8.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =

(
H

φ̇

H

2π

)2

aH=k

, (8.55)

(In this section, we drop the overbar from the background values.) Let’s now get
back to the inflaton potential and the presentation of the dynamics of slow-roll
inflation in terms of the two slow-roll variables. With the slow-roll equations

H2 =
V

3M2
Pl

and 3Hφ̇ = −V ′ ,
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equation (8.55) becomes

PR(k) =
1

12π2

1

M6
Pl

V 3

V ′2 =
1

24π2

1

M4
Pl

V

ε
, (8.56)

where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is [2]

PR(k) = 2.1× 10−9 (8.57)

i.e. PR(k)
1/2 = 4.6 × 10−5 on the scale k = 0.05 Mpc−1; the scale-dependence is

weak (we discuss it below). This gives a constraint on inflation,(
V

ε

)1/4

≈ 241/4
√
π
√

4.6× 10−5MPl ≈ 0.027MPl = 6.4× 1016 GeV , (8.58)

so we get an upper limit on the energy scale of inflation,

V 1/4 = 0.027ε1/4MPl , (8.59)

which, as ε < 1, gives V 1/4 < 0.027MPl. As we will soon discuss, we have obser-
vational limit ε < 2.3 × 10−3, so V 1/4 < 0.027MPl, so the upper bound tightens
into V 1/4 < 5.9 × 10−3MPl = 1.4 × 1016 GeV. This puts a limit on the Hubble
scale during inflation. From H2 = V/(3M2

Pl), the constraint on V translates into
H < 4.8× 1013 GeV, or in terms of length, H−1 > 4.1× 10−30 m.

Exercise: From the limit on the energy scale of inflation, find the maximum
amount by which the scale factor can have expanded from reheating until today,
assuming there are only Standard Model degrees of freedom.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the Hubble radius, we expect PR(k) to be a slowly varying function
of k. We describe this small variation with the spectral index ns of the primordial
spectrum, defined as6

ns(k)− 1 ≡ d lnPR
d ln k

. (8.60)

If the spectral index is independent of k, we say that the spectrum is scale-free. In
this case the primordial spectrum is a power-law

PR(k) = A2

(
k

k∗

)ns−1

, (8.61)

where the pivot scale k∗ is some chosen reference scale (for most of the data analysis
of of the Planck satellite team, k∗ = 0.05 Mpc−1), and and A is the amplitude at
the pivot scale.

If the power spectrum is constant, corresponding to ns = 1, we say that the spec-
trum is scale-invariant, a special case of a scale-free spectrum. The scale-invariant
spectrum is also called the Harrison–Zel’dovich spectrum.

6The −1 is in the definition for historical reasons, related to other ways of defining the power
spectrum of perturbations.
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If ns ̸= 1, the spectrum is called tilted. A tilted spectrum is called red if ns < 1
(more power on large scales) and blue if ns > 1 (more power on small scales). If
dns/dk ̸= 0, it is said that there is a running spectral index.

Using (8.56) and (8.60), we can calculate the spectral index for slow-roll inflation.
Since PR(k) is evaluated from (8.56) when k = aH, we have

d ln k

dt
=

d ln(aH)

dt
=

ȧ

a
+

Ḣ

H
= (1− ε)H ,

where we used the fact that in the slow-roll approximation Ḣ = −εH2 in the last
step. Thus

d

d ln k
=

1

1− ε

1

H

d

dt
=

1

1− ε

φ̇

H

d

dφ
= −

M2
Pl

1− ε

V ′

V

d

dφ
≈ −M2

Pl

V ′

V

d

dφ
. (8.62)

Let us first calculate the scale dependence of the slow-roll parameters:

dε

d ln k
= −M2

Pl

V ′

V

d

dφ

[
M2

Pl

2

(
V ′

V

)2
]
= M4

Pl

[(
V ′

V

)4

−
(
V ′

V

)2 V ′′

V

]
= 4ε2 − 2εη

(8.63)
and, in a similar manner we get (Exercise: show this.),

dη

d ln k
= 2εη − ξ , (8.64)

where we have defined a third slow-roll parameter

ξ ≡ M4
Pl

V ′

V 2
V ′′′ . (8.65)

The parameter ξ is typically second-order small in the sense that
√
|ξ| is of the same

order of magnitude as ε and η.
We can now calculate the spectral index:

ns − 1 =
1

PR

dPR
d ln k

=
ε

V

d

d ln k

(
V

ε

)
=

1

V

dV

d ln k
− 1

ε

dε

d ln k

= −M2
Pl

V ′

V
· 1

V

dV

dφ
− 4ε+ 2η = −6ε+ 2η .

(8.66)

Slow-roll requires ε ≪ 1 and |η| ≪ 1, so the spectrum is predicted to be close to
scale invariant. This agrees well with observations. Note how, as in the case of dark
matter, things fall into place automatically. In order to have negative pressure, a
scalar field has to roll slowly. In slow-roll the background changes slowly, so the
perturbations are close to scale-invariant, without needing to add new ingredients
or tune anything.

Assuming that at late times the universe is described by the ΛCDM model, the
current constraint on the spectral index from CMB data by the Planck satellite is,
assuming a power-law spectrum [2],

ns = 0.9649± 0.0042 . (8.67)

The precise value of the mean and the error bars depend on the data included in
the analysis. The value is also model-dependent, and with a different cosmological
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model (different dark energy model, the presence of cosmic strings, and so on), the
preferred value of the spectral index can change slightly. However, in all but the
most exotic models it remains close to scale-invariant, and in most models less than
unity.

From the results of the running of ε and η, we get the running of the spectral
index (Exercise: show this.):

αs ≡
dns

d ln k
= 16εη − 24ε2 − 2ξ . (8.68)

The running is second order in slow-roll parameters, so it’s expected to be even
smaller than the deviation from scale invariance. The observational range is

αs = −0.0045± 0.0067 . (8.69)

So there is no observational evidence for the running, nor for any other deviation
from scale invariances. (The value of the spectral index also changes slightly when
running is included; the change is within the error bars of (8.67).)

In addition to scalar perturbations in the inflaton field, inherited by other mat-
ter in reheating, inflation also produces gravitational waves. These are not waves
produced by the motion of matter, they are born from vacuum fluctuations like the
scalar perturbations. We will skip the details of the treatment. It can be shown
that the power spectrum of gravitational waves (we skip the definition) produced
by inflation is

Pt(k) =
8

M2
Pl

(
H

2π

)2

aH=k

.

The tensor power spectrum is usually given in terms of the tensor-to-scalar ratio,
which is

r ≡ Pt(k)

PR(k)
= 16ε . (8.70)

and the tensor spectral index

nt ≡
d lnPt

d ln k
= −2ε , (8.71)

where we have written them to in terms of the slow-roll parameters to first order.
(Exercise: Derive the expressions in terms of ϵ.) Note that combining (8.70) and
(8.71) leads to the consistency condition

r = −8nt . (8.72)

This condition is important, because it does not depend on the values of the slow-roll
parameters: it is a model-independent prediction shared by all models of slow-roll
single-field inflation7. Gravitational waves from inflation have not been detected.
From observations of the Planck satellite and the Keck/BICEP telescope, we have
the upper bound [3]

r < 0.036 . (8.73)

7With a minimal coupling to gravity: if the field equation of motion is more complicated than
(8.3), the predictions may change.
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Hundreds of inflationary models have been proposed, and while many have been
ruled out because their observations do not agree with the above limit, many vi-
able models remain [4]. CMB experiments have measured the CMB temperature
anisotropy over about three orders of magnitude in k, from the largest possible scale
down to Mpc scales, so the perturbations from about ln(103) = 7 e-folds of infla-
tion have been measured. Recall that for high energy-scale inflation, the number of
e-folds until the end of inflation when the largest observable modes are generated
is about 50 to 60. On scales smaller than those that have been probed, the CMB
anisotropy is expected to be negligible, so we expect there is nothing interesting to
see in the CMB temperature anisotropies. (We’ll discuss this when we get to the
CMB in chapter 10.) It is possible to probe smaller scales by observations large-scale
structure and from deviations of the CMB spectrum (not the anisotropies) from the
blackbody shape.

Example: Consider the simple inflation model

V (φ) =
1

2
m2φ2 . (8.74)

In chapter 7 we already calculated the slow-roll parameters for this model,

ε = η = 2

(
MPl

φ

)2

, (8.75)

and we immediately see that ξ = 0, because V ′′′ = 0. We thus have

PR =
1

96π2

m2

M2
Pl

(
φ

MPl

)4

(8.76)

ns = 1− 6ε+ 2η = 1− 8

(
MPl

φ

)2

(8.77)

αs = 16εη − 24ε2 − 2ξ = −32

(
MPl

φ

)4

(8.78)

r = 16ε = 32

(
MPl

φ

)2

. (8.79)

To get the numbers, we need the values of φ when the relevant cosmological
scales left the Hubble radius. We know that the number of inflation e-foldings after
that should be about N = 60, depending on the preheating history. We have

N(φ) =
1

M2
Pl

∫ φ

φend

V

V ′dφ =
1

M2
Pl

∫
φ

2
dφ =

1

4M2
Pl

(
φ2 − φend

2
)
, (8.80)

and we estimate φend from ε(φend) = 2M2
Pl/φend

2 = 1 ⇒ φend =
√
2MPl to get

φ2 = φend
2 + 4M2

PlN = 2M2
Pl + 4M2

PlN ≈ 4M2
PlN . (8.81)

Thus (
MPl

φ

)2

=
1

4N
, (8.82)
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so we get

PR =
N2

6π2

m2

M2
Pl

=
600

π2

m2

M2
Pl

(8.83)

ns = 1− 2

N
= 0.97

αs = − 2

N2
= −0.0006 (8.84)

r =
8

N
= 0.13 , (8.85)

where we have input N = 60. For PR we have, according to (8.57) PR = 2.1×10−9,
which gives

m ≈ 8

N
1014 GeV ≈ 1× 1013 GeV ≈ 6× 10−6MPl , (8.86)

for N = 60. We get V 1/4 = (2Nm2M2
Pl)

1/4 ≈ 2 × 1016 GeV as the energy scale
for the period when the perturbations seen in the CMB were generated. Potential
energy at the end of inflation is

V
1/4
end =

(
1

2
m2φend

2

)1/4

=

√
m

MPl
MPl ≈ 2× 10−3MPl ≈ 6× 1015 GeV . (8.87)

Because of the high energy scale, r is well in excess of the observational upper
bound. Therefore, the simple m2φ2 model is now ruled out, although it fitted the
observations well until the Planck data.
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