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4 Thermodynamics in the expanding universe

4.1 Phase space density

As we look out to space we see the history of the universe unfolding in front of our
telescopes. However, at redshift z = 1090 our line of sight hits the last scattering sur-
face, from which the cosmic microwave background (CMB) radiation originates. This
corresponds to t = 370 000 . . . 380 000 years. Before that the universe was opaque, so
we cannot see further back in time using electromagnetic radiation. (However, it is
possible to see to earlier times using gravitational waves.) However, the isotropy of
the CMB indicates that matter was distributed almost homogeneously and isotrop-
ically in the early universe, and the spectrum of the CMB shows that this matter,
the primordial soup of particles, was in thermal equilibrium. Therefore we can use
thermodynamics to calculate the history of the early universe and obtain testable
predictions. We will now derive the thermodynamics of the primordial soup starting
from statistical physics. We only deal with the statistical physics of a gas of parti-
cles: thermodynamics of the gravitational degrees of freedom is poorly understood,
and will not be relevant for our discussion. Also, the interactions responsible for
thermal equilibrium are those of non-gravitational physics. The only role of gravity
here is to determine the expansion of space.

From elementary quantum mechanics we are familiar with the model of a particle
in a box. Consider a cubic box, with edge length L and volume V = L3, with
periodic boundary conditions. Solving the Schrödinger equation gives us the energy
and momentum eigenstates, with possible momentum values

p⃗ =
h

L
(n1x̂+ n2ŷ + n3ẑ) (ni = 0,±1,±2, . . .). (4.1)

The state density in momentum space (number of states / ∆px∆py∆pz) is thus

L3

h3
=

V

h3
, (4.2)
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and the state density in phase space {x⃗, p⃗} is 1/h3. If the particle has g internal
degrees of freedom (such as spin), we have

density of states =
g

h3
=

g

(2π)3

(
ℏ ≡ h

2π
= 1

)
. (4.3)

This result is true even for relativistic momenta. The state density in phase space
is independent of the volume V , so we can apply it to arbitrarily large systems
(including an infinite universe).

For much of the early universe, we can ignore interaction energies between par-
ticles. Then the particle energy is

E(p⃗) =
√

p2 +m2 , (4.4)

where p ≡ |p⃗| is the magnitude of the three-momentum (not to be confused with
pressure, also denoted by p), and the states available for the particles are the free
particle states discussed above.

Particles fall into two classes, fermions and bosons. Fermions obey the Pauli
exclusion principle: no two fermions can be in the same state, i.e. they cannot have
the same quantum numbers.

In thermodynamic equilibrium the distribution function, or the expectation value
f of the occupation number of a state, depends only on the energy of the state.
According to statistical physics, it is

f(p⃗) =
1

e(E−µ)/T ± 1
(4.5)

where + is for fermions and − is for bosons. (In the case of fermions, for which f ≤ 1,
f gives the probability that a state is occupied.) This equilibrium distribution has
two parameters, the temperature T and the chemical potential µ. The temperature
is related to the energy density ρ of the system and the chemical potential is related
to the number density n of particles in the system. Note that since we use the
relativistic formula for the particle energy E, which includes the mass m, the mass
is also included’ in the chemical potential µ. So in the nonrelativistic limit both
E and µ differ from the corresponding quantities used in nonrelativistic statistical
physics by m in such a way that E − µ and the distribution functions remain the
same.

If there is no conserved particle number in the system (this is true for e.g. a
photon gas), then µ = 0 in equilibrium.

The particle density in phase space is the density of states times their occupation
number,

g

(2π)3
f(p⃗). (4.6)

We get the particle density in (ordinary) space by integrating over the momentum
space. We thus have the following quantities:

number density ni =
gi

(2π)3

∫
fi(p⃗)d

3p (4.7)

energy density ρi =
gi

(2π)3

∫
Ei(p⃗)fi(p⃗)d

3p (4.8)

pressure pi =
gi

(2π)3

∫
|p⃗|2

3Ei
fi(p⃗)d

3p . (4.9)
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The index i here labels different particle species, which have different masses mi

and corresponding energies Ei(p⃗) =
√
p2 +m2

i . The above applies separately to

each particle species.

4.2 Equilibrium distributions

We say that the species i is in kinetic equilibrium if it has the above distribution for
some µi and Ti. We say that the system is in thermal equilibrium if species have
the same temperature, Ti = T . We say that the system is in chemical equilibrium
(“chemistry” here refers to reactions where particles change into other species) if
the chemical potentials of different particle species are related according to reaction
formulae. For example, if we have a reaction

i+ j ↔ k + l , (4.10)

then
µi + µj = µk + µl . (4.11)

In particular, if the chemical potential of particle species i is µi, then the chem-
ical potential of the corresponding antiparticle is −µi. Via the reaction formulae
all chemical potentials can be expressed in terms of the chemical potentials of con-
served quantities, e.g. the baryon number chemical potential µB. So there are as
many independent chemical potentials as there are independent conserved particle
numbers.

As the universe expands, T and µ change in such a way that the energy con-
tinuity equation is satisfied and conserved quantum numbers remain constant. An
expanding universe is not in equilibrium. However, in the early universe the particle
interactions are so rapid compared to the expansion rate that the particle soup has
time to settle close to local equilibrium. (And since the universe is homogeneous,
the local values of thermodynamic quantities are also global values). From the num-
bers of fermions (electrons and nucleons) remaining in the present universe, we can
conclude that in the early universe we had T ≫ |µ| for them when T ≫ m. We
don’t know the chemical potentials of the three neutrino species, but they are usu-
ally assumed to be small, too. If the temperature is much greater than the mass,
T ≫ m, in the ultrarelativistic limit, we can approximate E =

√
p2 +m2 ≈ p.

For T ≫ |µ| and T ≫ m, we approximate µ = 0 and m = 0 to get the following
formulae

n =
g

(2π)3

∫ ∞

0

4πp2dp

ep/T ± 1
=


3

4π2
ζ(3)gT 3 fermions

1

π2
ζ(3)gT 3 bosons

(4.12)

ρ =
g

(2π)3

∫ ∞

0

4πp3dp

ep/T ± 1
=


7

8

π2

30
gT 4 fermions

π2

30
gT 4 bosons

(4.13)

p =
g

(2π)3

∫ ∞

0

4
3πp

3dp

ep/T ± 1
=

1

3
ρ ≈

1.0505nT fermions

0.9004nT bosons .
(4.14)
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For the average particle energy we get

⟨E⟩ = ρ

n
=


7π4

180ζ(3)
T ≈ 3.151T fermions

π4

30ζ(3)
T ≈ 2.701T bosons .

(4.15)

In the above, ζ is the Riemann zeta function, with ζ(3) ≡
∑∞

n=1 n
−3 = 1.20206.

If the chemical potential vanishes, µ = 0, there are equal numbers of particles
and antiparticles. If µ ̸= 0, we find for fermions in the ultrarelativistic limit T ≫ m
(but keeping µ) the net particle number

n− n̄ =
g

(2π)3

∫ ∞

0
dp 4πp2

(
1

e(p−µ)/T + 1
− 1

e(p+µ)/T + 1

)
=

gT 3

6π2

[
π2 µ

T
+
(µ

T

)3
]

(4.16)

and the total energy density1

ρ+ ρ̄ =
g

(2π)3

∫ ∞

0
dp 4πp3

(
1

e(p−µ)/T + 1
+

1

e(p+µ)/T + 1

)
=

7

8
g
π2

15
T 4

[
1 +

30

7π2

(µ

T

)2
+

15

7π4

(µ

T

)4
]

. (4.17)

Note that the equations (4.16) and (4.17) are exact, not truncated series. (The
difference n − n̄ and the sum ρ + ρ̄ lead to a nice cancellation between the two
integrals. We don’t get such an elementary form for the individual quantities n, n̄,
ρ, ρ̄, nor for the sum n+ n̄ and the difference ρ− ρ̄ when µ ̸= 0.)

In the nonrelativistic limit, T ≪ m and T ≪ m− µ, the typical kinetic energies
are much below the mass m, so we can approximate E = m + p2/2m. The second
condition, T ≪ m − µ, leads to occupation numbers ≪ 1, a dilute system. This
second condition is usually satisfied in cosmology when the first one is. It is violated
in systems of high density, such as white dwarf stars and neutron stars. We can
then approximate

e(E−µ)/T ± 1 ≈ e(E−µ)/T , (4.18)

so the boson and fermion expressions become equal2, and we get (Exercise: Show
this.)

n = g

(
mT

2π

)3/2

e−
m−µ
T (4.19)

ρ = n

(
m+

3T

2

)
(4.20)

p = nT ≪ ρ (4.21)

⟨E⟩ = m+
3T

2
(4.22)

n− n̄ = 2g

(
mT

2π

) 3
2

e−
m
T sinh

µ

T
. (4.23)

1When the chemical potential is small, the contribution of the antiparticles to the energy density
is often included in the definition of g, unlike here.

2This approximation leads to what is called Maxwell–Boltzmann statistics, whereas the previous
exact formulae give Fermi–Dirac (for fermions) and Bose–Einstein (for bosons) statistics.
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In the general case, where neither T ≪ m nor T ≫ m, the integrals don’t give
elementary functions, so n(T ), ρ(T ), and so on need to be calculated numerically in
the region T ∼ m.3

Comparison of the ultrarelativistic and nonrelativistic limits above shows that
the number density, energy density, and pressure of a particle species fall exponen-
tially as the temperature falls below the mass of the particle. We have not so far
made assumptions about the interactions that are responsible for maintaining equi-
librium. In the cosmological case, these include annihilation and particle-antiparticle
pair formation. At high temperatures, these reactions balance each other, but as
the temperature falls below the mass, the thermal particle energies are not sufficient
for pair production any more, so the reactions happen only in the annihilation di-
rection. The process of particle-antiparticle annihilation takes place mainly (about
80%) during the temperature interval T = m → 1

6m, as shown in figure 1. It is not
an instantaneous, but takes several Hubble times.

Figure 1: The fall of energy density of a particle species, with mass m, as a function of
temperature (decreasing to the right).

4.3 Effective number of degrees of freedom

According to the Friedmann equation the expansion of the universe is governed by
the total energy density

ρ(T ) =
∑
i

ρi(T ) ,

where i runs over particle species. Because the energy density of relativistic species is
much greater than that of nonrelativistic species (in thermal equilibrium and when
we can neglect the chemical potential), it suffices to include only the relativistic
species. We thus have

ρ(T ) =
π2

30
g∗(T )T

4 (4.24)

where

g∗(T ) = gb(T ) +
7

8
gf (T ) ,

and gb =
∑

i gi sums over relativistic bosons and gf =
∑

i gi sum over relativistic
fermions. For pressure we have p(T ) ≈ 1

3ρ(T ).

3If we use Maxwell–Boltzmann statistics, i.e. , drop the term ±1 in the distribution function,
the integrals give modified Bessel functions, and the error is often less than 10%.
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The above is a simplification of the true situation: Since the annihilation takes
a long time, there are long periods when the annihilation of some particle species is
going on, and its contribution disappears gradually. Using the exact formula for ρ
we define the effective number of degrees of freedom g∗(T ) as

g∗(T ) ≡
30

π2

ρ

T 4
. (4.25)

We also define

g∗p(T ) ≡
90

π2

p

T 4
≈ g∗(T ) . (4.26)

When no annihilations are taking place, we have g∗p = g∗ = constant ⇒ p = 1
3ρ.

From the Friedmann equation it then follows that ρ ∝ a−4, so we have ρ ∝ T 4 and
T ∝ a−1. We will soon calculate the scale factor-temperature relation more precisely,
including the effects of annihilation.

4.4 Redshift of momenta

The momentum of freely moving particles redshifts with the expansion of the uni-
verse as

p(t2) =
a(t1)

a(t2)
p(t1) . (4.27)

Let us now show that it follows that ultrarelativistic non-interacting particles stay
in kinetic equilibrium.

At time t1 a phase space element d3p1dV1 contains

dN =
g

(2π)3
f(p⃗1)d

3p1dV1 (4.28)

particles, where

f(p⃗1) =
1

e(p1−µ1)/T1 ± 1

is the distribution function at time t1. At time t2 these same dN particles are in a
phase space element d3p2dV2. How is the distribution function at t2, given by

g

(2π)3
f(p⃗2) =

dN

d3p2dV2
,

related to f(p⃗1)? Since d3p2 = (a1/a2)
3d3p1 and dV2 = (a2/a1)

3dV1, we have

dN =
g

(2π)3
d3p1 dV1

e(p1−µ1)/T1 ± 1
(dN evaluated at t1)

=
g

(2π)3
(a2a1 )

3d3p2 (
a1
a2
)3dV2

e
(
a2
a1
p2 − µ1)/T1 ± 1

(rewritten in terms of
p2, dp2, and dV2)

(4.29)

=
g

(2π)3
d3p2 dV2

e(p2−µ2)/T2 ± 1
(defining µ2 and T2) ,

where µ2 ≡ (a1/a2)µ1 and T2 ≡ (a1/a2)T1. Thus distribution retains the thermal
shape; the temperature and the chemical potential just redshift ∝ a−1.

Exercise. Show that for a non-relativistic particle species, the distribution func-
tion retains the thermal shape as the universe expands, with T2 = T1(a(t1)/a(t2))

2 ∝
a(t2)

−2 and µ(t2) = m+ (µ(t1)−m)T2/T1.
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Figure 2: The expansion of the universe increases the volume element dV and decreases
the momentum space element d3p in such a way that the phase space element d3pdV stays
constant.

4.5 Scale factor-temperature relation

The relation between the temperature T and the scale factor a follows from the
conservation of entropy. According to the second law of thermodynamics the total
entropy of the universe never decreases: it either stays constant or grows. Entropy
production in various processes in the universe is insignificant compared to the
total entropy of the universe4, which is huge, and at all times dominated by the
relativistic species. Thus it is an excellent approximation to treat the expansion of
the universe as adiabatic, i.e. take the entropy to be constant. We find the entropy
in terms of the other thermodynamical quantities by using the fundamental equation
of thermodynamics

dE = TdS − pdV +
∑
i

µidNi . (4.30)

Dividing by dV , we find the entropy density s ≡ dS/dV ,

s =
ρ+ p−

∑
i µini

T
. (4.31)

We get the value of this quantity by summing up the contributions to ρ+p−
∑

i µini

from all particle species, using the exact expressions given earlier. If T ≫ |µi|, we
have for a single relativistic species

s =
ρ+ p

T
=


7π2

180 gT
3 fermions

2π2

45 gT 3 bosons .
(4.32)

4There may be exceptions to this in the very early universe, most notably the end of inflation,
where essentially all of the entropy of the universe may have been produced. Recall that we
discuss only the entropy of matter: the entropy of gravitational degrees of freedom remains poorly
understood. Black holes are thought to have extremely large entropy.
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We define the number of effective number of entropy degrees of freedom g∗s(t)
with the equation

s(T ) ≡ 2π2

45
g∗s(T )T

3 . (4.33)

Adding up all relativistic species and allowing for the possibility that some of them
may have a kinetic temperature Ti different from the temperature T of those species
that remain in thermal equilibrium, we get

g∗(T ) =
∑
bos

gi

(
Ti

T

)4

+
7

8

∑
fer

gi

(
Ti

T

)4

g∗s(T ) =
∑
bos

gi

(
Ti

T

)3

+
7

8

∑
fer

gi

(
Ti

T

)3

, (4.34)

and the sums are over all relativistic species of bosons and fermions. If some species
are “semirelativistic”, i.e. m = O(T ), then ρ(T ) and s(T ) have to be calculated
from the integral formulae of section 4.2. Non-relativistic species give negligible
contribution to the entropy. As long as all species have the same temperature and
p ≈ 1

3ρ, we have
g∗s(T ) ≈ g∗(T ) . (4.35)

We will see that this approximation breaks down in the real universe at around 1 s.
Now we have all we need to find the relation between the scale factor and tem-

perature, taking into account annihilations. The entropy stays constant, i.e.

sa3 = constant . (4.36)

Using (4.33), we immediately get the relation between a and T :

g∗s(T )T
3a(t)3 = constant . (4.37)

We will have much use for this formula.

4.6 Relation of time and temperature

So we know the relation between the scale factor and the temperature. The next step
is to find the relation between the temperature T and time t in the early universe,
and consider the evolution in terms of both. Spatial curvature can be neglected in
the early universe, so the Friedmann equation is

3H2 = 8πGNρ(T ) =
π2

30
g∗(T )

T 4

M2
Pl

, (4.38)

where we have written Newton’s constant in terms of the Planck mass, MPl ≡
1/

√
8πGN ≈ 2.436× 1021 MeV. To integrate this equation exactly we would need to

calculate numerically the function g∗(T ), taking into account all the annihilations.
For most of the time, however, g∗(T ) changes slowly, so we can approximate g∗(T ) =
constant. Then T ∝ a−1 and H ∝ a−2. Integrating H2 ∝ a−4 gives a ∝ t1/2, as we
saw in the previous chapter. So we have

a ∝ T−1 ∝ t1/2 .
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We hence get the following relation between the age of the universe t (or equivalently
the Hubble parameter H) and the temperature T :

t =
1

2
H−1 =

√
45

2π2

1
√
g∗

MPl

T 2
≈ 1.51

√
g∗

MPl

T 2
≈ 2.42

√
g∗

(
T

MeV

)−2

s . (4.39)

The approximate result (4.39) will be sufficient for us as far as the time scale is
concerned5, but for the relation between a and T , we have to use the more exact
result derived in section 4.5.

The distance to the horizon (i.e. proper comoving distance to t = 0, or z = ∞)
is

Dhor(t) = a(t)

∫ t

0

dt′

a(t′)
= 2t = H−1 . (4.40)

In the radiation-dominated early universe, the distance to the horizon is equal to the
Hubble length, so we can use the terms “horizon distance”, “horizon” and “Hubble
length” interchangeably. This is often also done for other eras, when the two are not
equal. In particular, when there is a period of inflation at early times, the particle
horizon will be much larger than the Hubble length at late times – we will come to
this when we discuss inflation in the second part of the course.

4.7 Particle content

The primordial soup initially consists of all the different species of elementary par-
ticles. Their masses range from the heaviest known elementary particle, the top
quark (m = 173 GeV) down to the lightest particles, the electron (m = 511 keV),
neutrinos (m < 0.12 eV), and the photon (m = 0). In addition to the particles of
the Standard Model, there are presumably other species that remain undiscovered.
In particular, we will discuss dark matter particles in chapter 6.

There are two main features of in the evolution of the soup, both driven by the
expansion of space, which leads to falling temperature and decreasing number den-
sity. One is that as the temperature falls below the masses of the various particles,
they become nonrelativistic and annihilate at different times. The second is that as
the interaction rate falls below the Hubble rate, the decouple from each other.

The particles of the Standard Model are listed in table 1. The limits on neu-
trino masses are from the Planck satellite experiment, the other values are from the
Particle Data Group.6 The internal degrees of freedom for quarks are 2 for spin,
2 for having both left- and right-handed components and 3 for colour. Electrons,
muons and and taus don’t have colour, but otherwise the counting is the same. In
the Standard Model, there are only left-handed neutrinos, so they only have the
spin degeneracy factor. Massless spin 1 particles like the photon only have 2 spin
degrees of freedom, while massive spin 1 particles, the W± and Z, have 3 (note that
W+ and W− are counted separately).

The effective number of degrees of freedom g∗(T ) (solid), g∗p(T ) (dashed) and
g∗s(T ) are plotted in figure 1 as a function of temperature. In table 2 we list some
important events in the early universe.

5Usually the error from ignoring the time-dependence of g∗(T ) is negligible, since the time scales
of earlier events are so much shorter.

6Strictly speaking, the masses of the electron, muon and tau neutrinos are not defined, and the
limits apply instead to the neutrino mass eigenstates.



4 THERMODYNAMICS IN THE EXPANDING UNIVERSE 64

Table 1: The particles in the Standard Model
Particle Data Group 2024 and the Planck collaboration [1, 2]

Quarks t 172.57±0.29 GeV t̄ spin 1
2 g = 2 · 2 · 3 = 12

b 4.183±0.007 GeV b̄ 3 colours
c 1.273±0.005 GeV c̄
s 93.5± 0.8 MeV s̄
d 4.70± 0.07 MeV d̄
u 2.16± 0.07 MeV ū

72

Gluons 8 massless bosons spin 1 g = 2 16

Leptons τ− 1776.93±0.09 MeVτ+ spin 1
2 g = 2 · 2 = 4

µ− 105.658 MeV µ+

e− 510.999 keV e+

12
ντ < 0.12 eV ν̄τ spin 1

2 g = 2
νµ < 0.12 eV ν̄µ
νe < 0.12 eV ν̄e

6

Electroweak W± 80.3692±0.0133 GeV spin 1 g = 3
gauge bosons Z0 91.1880±0.0020 GeV

γ 0 (< 1× 10−18 eV) g = 2
11

Higgs boson H0 125.20±0.11 GeV spin 0 g = 1 1

gf = 72 + 12 + 6 = 90
gb = 16 + 11 + 1 = 28

For T > mt = 173 GeV, all known particles are relativistic. Adding up their
internal degrees of freedom we get

gb = 28 gluons 8×2, photons 2, W± and Z0 3×3, Higgs 1

gf = 90 quarks 12×6, charged leptons 6×2, neutrinos 3×2

g∗ = 106.75 .

The electroweak crossover takes place at the temperature 160 GeV [3]. Some-
times this process is called the electroweak phase transition. However, in the Stan-
dard Model, it is a smooth crossover from one regime to another, and thermody-
namic quantities remain continuous. In some extensions of the Standard Model,
there is a phase transition, where the system is not in thermal equilibrium. This
may have important cosmological consequences (in particular, it may determine the
baryon-antibaryon asymmetry observed in the universe), depending on the way the
electroweak phase transition happens. We will not discuss details of the electroweak
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Figure 3: The functions g∗(T ) (solid), g∗p(T ) (dashed), and g∗s(T ) (dotted) for
Standard Model particle content.

crossover, for our purposes it is enough to know that g∗ is the same before and after
the transition, at least in the Standard Model. If there are thus far unknown particle
species beyond the Standard Model, g∗ can have different values, especially at high
temperatures.

Let us now follow the history of the universe starting at the time when the
electroweak crossover has already happened. We have T ∼ 160 GeV, t ∼ 10 ps, and
t quark annihilation is ongoing. (Recall that the transition from relativistic to non-
relativistic behaviour is not complete until about T ≈ m/6 ≈ 30 GeV.) The Higgs
boson annihilates next, and then the gauge bosons W± and Z0. At T ∼ 10 GeV,
we have g∗ = 86.25. Next the b and c quarks annihilate, followed by the τ lepton.
If the s quark would also have had time to annihilate, we would reach g∗ = 51.25.

4.8 QCD crossover

In the middle of the s quark annihilation, matter undergoes the QCD transition
or QCD crossover (also called the quark–hadron transition). This takes place at
T = 154± 9 MeV, t = 20 . . . 30µs [4]. The colour forces between quarks and gluons
become important, so the formulae for the energy density for free particles no longer
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Electroweak crossover T ∼ 160 GeV t ∼ 10−11 s
QCD crossover T ∼ 150 MeV t ∼ 30 µs
Neutrino decoupling T ∼ 1 MeV t ∼ 1 s
Electron-positron annihilation T ∼ me = 0.5 MeV t ∼ 1 s
Big Bang Nucleosynthesis T ∼ 50–100 keV t ∼ 3–30 min
Matter-radiation equality T ∼ 0.8 eV = 9000 K t ∼ 50 000 yr
Recombination + photon decoupling T ∼ 0.3 eV = 3000 K t ∼ 380 000 yr

Table 2: Early universe events.

apply to them. The quarks and gluons form bound three-quark systems, called
baryons, and quark-antiquark pairs, called mesons. (Together, these bound states
of quarks are known as hadrons.) Baryons are fermions, mesons are bosons. After
that, there are no more free quarks and gluons; the quark-gluon plasma has become a
hadron plasma. The lightest baryons are the nucleons: the proton and the neutron.
The lightest mesons are the pions π± and π0.

There are many different species of baryons and mesons, but all except pions
are non-relativistic below the QCD crossover temperature. Thus the only Standard
Model particle species left in large numbers are pions, muons, electrons, neutrinos
and photons. For pions, g = 3, so we have g∗ = 17.25.

Table 3: History of g∗(T )

T ∼ 200 GeV all present 106.75

T < 170 GeV top annihilation 96.25

T ∼ 160 GeV electroweak crossover (no effect)

T < 125 GeV H0 95.25

T < 80 GeV W±, Z0 86.25

T < 4 GeV bottom 75.75

T < 1 GeV charm, τ− 61.75

T ∼ 150 MeV QCD crossover 17.25 (u,d,g→ π±,0, 37 → 3)

T < 100 MeV π±, π0, µ− 10.75 e±, ν, ν̄, γ left

T < 500 keV e− (7.25) 2 + 5.25(4/11)4/3 = 3.36

The above table gives the value g∗(T ) would have after the annihilation is over,
assuming the next annihilation would not have begun yet. In reality the annihila-
tions overlap in many cases. The temperature value on the left is (apart from the
crossover temperatures) the approximate mass of the particle in question and indi-
cates roughly when the annihilation begins. The temperature is much smaller when
the annihilation ends. The top quark receives its mass in the electroweak crossover,
so its annihilation does not begin before the crossover.

4.9 Neutrino decoupling and electron-positron annihilation

Soon after the QCD crossover, pions and muons annihilate and for T = 20 MeV
→ 1 MeV, we have g∗ = 10.75. Next the electrons annihilate, but to discuss the
e+e− annihilation we need a bit more details.
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So far we have assumed that all particle species have the same temperature,
i.e. interactions keep them in thermal equilibrium. Neutrinos, however, feel only
the weak interaction. The weak interaction is actually not that weak when particle
energies are close to (or higher than) the masses of the W and Z bosons, which
mediate the interaction. But as the temperature, and thus mean energy of particles,
falls, the weak interaction becomes rapidly weaker.

A particle species falls out of chemical equilibrium when interactions become
too weak to maintain it in touch with the other species as the universe expands.
This happens when the interaction rate Γ becomes smaller than the expansion rate,
Γ < H. The interaction rate Γ has units of 1/time, and it can be interpreted as the
frequency of particle interactions. The limit Γ < H can roughly be understood as
saying that if particles on average have less than one interaction per Hubble time, the
distribution cannot keep up with the expansion. The interaction rate can be written
as Γ = n⟨σv⟩, where n is the number density of the particles, σ is the interaction
cross section, v is the absolute value of the particle velocity and the brackets are
average over the phase space. If the cross section is independent of velocity, we can
take it out of the average. If the particles are ultrarelativistic, we can approximate
|v| = 1, in which case we have simply Γ = nσ. The cross section has units of area,
and it expresses the strength of the interaction7.

For the weak interaction processes relevant for neutrinos, the cross section is
σ ∼ G2

FE
2 ∼ G2

FT
2, where GF ≈ 1.17 × 10−5 GeV−2 is the Fermi constant. The

interaction rate is then Γ = nσv ∼ G2
FT

5, where n is the number density and v ≈ 1

is typical neutrino velocity. According to the Friedmann equation, H ∼
√

ρ/M2
Pl ∼

T 2/MPl. So we have Γ/H ∼ G2
FMPlT

3 ∼ (T/ MeV)3. So, neutrinos decouple close
to T ∼ 1 MeV, after which they move practically freely, without interactions.

Even though neutrinos are no longer in chemical equilibrium, they remain in
thermal equilibrium as long as the temperature of the particle soup also evolves like
T ∝ a−1, so Tν = T . However, annihilations will cause a deviation from T ∝ a−1.
The next annihilation event is the electron-positron annihilation.

As the number of relativistic degrees of freedom falls, energy density and entropy
are transferred from electrons and positrons to photons, but not to neutrinos, in the
annihilation reactions

e+ + e− → γ + γ .

The photons are thus heated relative to neutrinos (i.e. the photon temperature falls
less rapidly). In the electron-positron annihilation, g∗s changes from

g∗s = g∗ = 2 + 3.5 + 5.25 = 10.75 (4.41)

γ e± ν

to

g∗s = 2 + 5.25

(
Tν

T

)3

. (4.42)

For time 1 before the annihilation and time 2 after it, we have from (4.37)

2a32T
3
2 + 5.25a32T

3
ν2 = 10.75a31T

3
1 . (4.43)

7This terminology comes from particle physics. The idea is that if you consider a beam of
classical particles randomly directed at a target with total area A, and classical particles take up
an area σ, the probability of crossing a particle and hence interacting is σ/A.
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Before the electron-positron annihilation, the neutrino temperature was the same as
the temperature of the other species, so a31T

3
1 = a31T

3
ν1 = a32T

3
ν2, where we have used

the fact that Tν ∝ a−1 throughout, since neutrinos are relativistic and they are not
heated by the electron-positron annihilation. We thus have from (4.43)

10.75 = 2

(
T

Tν

)3

+ 5.25 ,

from which we solve the neutrino temperature after e+e− annihilation8,

Tν =

(
4

11

)1
3
T = 0.714T (4.44)

g∗s(T ) = 2 + 5.25 · 4

11
= 3.909 (4.45)

g∗(T ) = 2 + 5.25

(
4

11

)4
3

= 3.363 . (4.46)

These relations remain true for the photon+neutrino background as long as the
neutrinos stay ultrarelativistic (mν ≪ T ). The neutrinos are no longer in chemical
or thermal equilibrium, but they are still in kinetic equilibrium, i.e. their distribution
function has the thermal shape.

If the neutrino masses were small enough to be ignored, the above relation would
apply even today, when the photon (the CMB) temperature is T = T0 = 2.725 K
= 0.235 meV, giving the neutrino background temperature Tν0 = 0.714 · 2.725 K
= 1.95 K = 0.168 meV. However, neutrino oscillation experiments have established
that neutrinos have masses ≳ 10 meV [1]9, and there is the upper limit 0.12 eV on the
sum of neutrino masses from cosmology [2]. Therefore, the neutrino background is
non-relativistic today. As neutrinos become non-relativistic, they fall out of kinetic
equilibrium, because the shape of the thermal distribution function is not preserved
as the momenta redshift to the value p ∼ m. Once neutrinos become very non-
relativistic, with typical values of the momenta p ≪ m, the distribution function
again has the thermal shape, but with a different temperature scaling.

8To be more precise, neutrino decoupling was not complete when e+e− annihilation began, so
some of the energy and entropy did leak to the neutrinos. Therefore the neutrino energy density
after e+e− annihilation is about 1.3% higher (at a given T ) than the above calculation gives. The
neutrino distribution also deviates slightly from kinetic equilibrium.

9Specifically, the oscillations show that the mass differences between the neutrinos are of this
order. The observations do not exclude the possibility that the lightest neutrino could be massless.
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Figure 4: The evolution of the energy density, or rather, g∗(T ), and its different components
through electron-positron annihilation. Since g∗(T ) is defined as ρ/(π2T 4/30), where T
is the photon temperature, the photon contribution appears constant. If we had plotted
ρ/(π2T 4

ν /30) ∝ ρa4 instead, the neutrino contribution would appear constant, and the
photon contribution would increase at the cost of the electron-positron contribution.
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4.10 Matter

We noted that the early universe is dominated by the relativistic particles, and we
can forget the nonrelativistic particles when we are considering the dynamics of
the universe. We followed one species after another becoming nonrelativistic and
disappearing from the picture, until only photons (the CMB) and neutrinos were
left, and the neutrinos had stopped interacting.

We now return to look in more detail what happens to nucleons and electrons.
They annihilated with their antiparticles when the temperature fell below their
respective rest masses. For nucleons, the annihilation began immediately after they
were formed in the QCD crossover. There were however slightly more particles than
antiparticles, and this small excess of particles was left over. (This has to be the
case because we observe electrons and nucleons today – we’ll be more quantitative
in chapter 6.) This means that the chemical potential µB associated with baryon
number differs from zero (it is positive). Baryon number is a conserved quantity in
the eras we are considering (though not before the electroweak crossover). Baryon
number resides today in nucleons (protons and neutrons; since the proton is lighter
than the neutron, free neutrons have decayed into protons, but there are neutrons
in atomic nuclei) because they are the lightest baryons. The universe is electrically
neutral, and the negative charge lies in the electrons, the lightest particles with
negative charge. Therefore the number of electrons equals the number of protons.

The number density, energy density and pressure of the electrons and the nu-
cleons by the equations written down in section 4.2. But what is the value of the
chemical potential µ that appears in them? For each species, we get µ(T ) from the
conserved quantities10. The baryon number resides in the nucleons,

nb = nN − nN̄ = np + nn − np̄ − nn̄ . (4.47)

Let us define the parameter η, the baryon-photon ratio today,

η ≡ nb(t0)

nγ(t0)
. (4.48)

From observations we know that η ≈ 6 × 10−10. (We will take a closer look at
the observational value in the next chapter.) Since baryon number is conserved,
nbV ∝ nba

3 stays constant, so
nb ∝ a−3 . (4.49)

After electron-positron annihilation, we have nγ ∝ a−3, so we get

nb(T ) = ηnγ = η
2ζ(3)

π2
T 3 for T ≪ me . (4.50)

We can put (4.49) and (4.50) together and replace a−3 using the relation (4.34)
between the temperature and the scale factor to obtain

nb(T ) = η
2ζ(3)

π2

g∗s(T )

g∗s(T0)
T 3 . (4.51)

10In general, the way to find how the thermodynamical parameters evolve in the expanding FLRW
universe is to use the conservation laws of the conserved number densities, entropy conservation
and the energy continuity equation to find how the number densities and energy densities evolve.
The other thermodynamical parameters then evolve so as to satisfy these requirements.
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For T < 10 MeV we have

nN̄ ≪ nN and nN ≡ nn + np = nb .

In the next chapter, we will discuss big bang nucleosynthesis, i.e. how protons
and neutrons form atomic nuclei. Approximately one quarter of all nucleons (all
neutrons and roughly the same number of protons) form nuclei (with mass number
A > 1) and three quarters remain as free protons. Let us denote by n∗

p and n∗
n the

total number densities of protons and neutrons including those in nuclei (and also
those in atoms), whereas we use np and nn for the number densities of free protons
and neutrons, which are not bound to each other or electrons. We thus write

n∗
N ≡ n∗

n + n∗
p = nb .

In the same manner, for T < 10 keV we have

ne+ ≪ ne− and ne− = n∗
p .

At this time (T ∼ 10 keV → 1 eV) the universe contains a relativistic photon and
neutrino background (“radiation”) and nonrelativistic free electrons, protons, and
nuclei (“matter”). Since ρ ∝ a−4 for radiation and ρ ∝ a−3 for matter, the energy
density in radiation falls eventually below the energy density in matter—the universe
becomes matter-dominated.

The above discussion only takes into account the known particle species. To-
day there is much observational evidence for the existence of dark matter, which
presumably consists of either black holes (formed in the early universe, not from
stellar collapse) or some yet undiscovered species of particles. The most popular
candidate is cold dark matter (CDM). CDM particles interact weakly with normal
matter, and hence decouple early. At early times, when they are in thermal equi-
librium, they would slightly increase the number of degrees of freedom; after they
decouple, they have no effect on the discussion above. They become nonrelativistic
early and dominate the matter density of the universe today (there is five times as
much mass in CDM as there is in baryons). So CDM causes the universe to become
matter-dominated earlier than if the matter consisted of nucleons and electrons only.
The CDM will be important later when we discuss the formation of structures in
the universe. The time of matter-radiation equality teq is calculated in an exercise
at the end of this chapter.

4.11 Recombination

Radiation (photons) and matter (electrons, protons, and nuclei) remained in thermal
equilibrium as long as there were lots of free electrons. When the temperature
became low enough the electrons and nuclei combined to form neutral atoms, an
event known as recombination11, and the density of free electrons fell sharply. The
photon mean free path grew rapidly and became longer than the horizon distance.
Thus the universe became transparent. Photons and matter decoupled, i.e. their
interactions were no longer able to maintain them in thermal equilibrium with each
other. After this, by T we refer to the photon temperature. Today, these photons are

11This is the first time when nuclei and electrons combine, so the term recombination, adopted
from chemistry, is somewhat of a misnomer.
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the CMB, and T = T0 = 2.725 K. (After photon decoupling, the matter temperature
at first fell faster than the photon temperature, but structure formation then heated
up the matter to different temperatures in different places.)

The relevant interaction here is not the weak interaction, as in the case of the
neutrinos, but instead electromagnetic interaction between photons and electrons.
The interaction rate is Γ ∼ neσT , where σT = 8π

3 α2/m2
e ≈ 2 × 10−3 MeV−2 is

the Thomson cross-section, and α ≈ 1/137 is the electromagnetic coupling constant.
(The 1/m2 factor shows that interactions between photons and nuclei are not impor-
tant, as they are suppressed by the large masses of the nuclei.) Finding the photon
decoupling era is a bit more involved than in the neutrino case, as the evolution of
the electron number density is more complicated.

To simplify the discussion, let us ignore other nuclei than protons (over 90%,
by number, of the nuclei are protons, and almost all the rest are 4He nuclei). We
denote the number density of free protons by np, free electrons by ne, and hydrogen
atoms by nH. Since the universe is electrically neutral, np = ne. The conservation
of baryon number gives nb = np + nH. We have

ni = gi

(
miT

2π

)3/2

e
µi−mi

T . (4.52)

As long as the reaction
p+ e− ↔ H+ γ (4.53)

is in chemical equilibrium the chemical potentials are related by µp+µe = µH (since
µγ = 0). Using this we get the relation

nH =
gH
gpge

npne

(
meT

2π

)−3/2

eB/T , (4.54)

between the number densities. Here B = mp +me −mH = 13.6 eV is the binding
energy of hydrogen. The numbers of internal degrees of freedom are gp = ge = 2,
gH = 4. Outside the exponent we have approximated mH ≈ mp. Defining the
fractional ionisation

x ≡ np

nb
, (4.55)

equation (4.54) becomes

1− x

x2
=

4
√
2 ζ(3)√
π

η

(
T

me

)3/2

eB/T . (4.56)

This is the Saha equation for ionisation in thermal equilibrium. When B ≪ T ≪ me,
the right-hand side is ≪ 1, so x ∼ 1, and almost all protons and electrons are free.
As temperature falls, eB/T grows, but since both η and (T/me)

3/2 are ≪ 1, the
temperature needs to fall to T ≪ B before the whole expression becomes large
(≳ 1).

The ionisation fraction at first follows the equilibrium result (4.56) closely, but as
this equilibrium fraction begins to fall rapidly, it starts to lag behind the equilibrium
value. As the number densities of free electrons and protons fall, it becomes more
difficult for them to find each other, and they are no longer able to maintain chemical
equilibrium for the reaction (4.53). To find the correct ionisation evolution, x(t),
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Figure 5: Recombination. In the top panel the dashed curve gives the equilibrium ionisation
fraction as given by the Saha equation. The solid curve is the true ionisation fraction,
calculated using the actual reaction rates (original calculation by Peebles). You can see that
the equilibrium fraction is followed at first, but then the true fraction lags behind. The
bottom panel shows the free electron number density ne and the photon mean free path
λγ . The latter is given in comoving units, i.e. , the distance is scaled to the corresponding
present distance. This figure is for η = 8.22× 10−10. (Figure by R. Keskitalo.)
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Figure 6: Same as figure 5, but with a logarithmic scale for the ionisation fraction, and the
redshift scale extended to present time (z = 0 or 1 + z = 1). You can see that a residual
ionisation x ∼ 10−4 remains. This figure does not include reionisation, which happened
around z ∼ 10. (Figure by R. Keskitalo.)
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requires then a more complicated calculation involving the reaction cross section of
this reaction. See figures 5 and 6.

Although the equilibrium formula is thus not enough to give us the true ionisation
evolution, its benefit is twofold:

1. It tells us when recombination begins. While the equilibrium ionisation changes
only very slowly, it is easy to stay in equilibrium. Thus things won’t start to
happen until the equilibrium fraction begins to change a lot.

2. It gives the initial conditions for the more complicated calculation that gives
the true evolution.

A similar situation holds for many other events in the early universe, such as big
bang nucleosynthesis that we will discuss in chapter 5.

Recombination is not instantaneous. Let us define the recombination temper-
ature Trec as the temperature where x = 0.5. We have Trec = T0(1 + zrec) since
1+ z = a−1 and the photon temperature falls as T ∝ a−1. (Since η ≪ 1, the energy
release in recombination is negligible compared to ργ ; and after photon decoupling
photons travel freely maintaining kinetic equilibrium with T ∝ a−1.)

We get (for η ∼ 10−9)

Trec ∼ 0.3 eV

zrec ∼ 1300 .

You might have expected that Trec ∼ B. Instead we found Trec ≪ B. The main
reason for this is that η ≪ 1. This means that there are very many photons for each
hydrogen atom. Even when T ≪ B, the high-energy tail of the photon distribution
contains photons with energy E > B so that they can ionise a hydrogen atom.

The photon decoupling takes place somewhat later, at Tdec ≡ (1+ zdec)T0, when
the ionisation fraction has fallen enough. We define the photon decoupling time
as the time when the photon mean free path exceeds the Hubble distance. The
numbers are roughly

Tdec ∼ 3000 K ∼ 0.26 eV

zdec ∼ 1100 .

Because of the decoupling, the recombination reaction cannot anymore keep the
ionisation fraction on the equilibrium track, and we are left with a residual ionisation
of x ∼ 10−4.

A long time later (at z ≈ 30) the first stars form, and their radiation reionises
the gas in interstellar space. The gas has now such a low density, however, that the
universe remains transparent.

Exercise: Transparency of the universe. We say the universe is transparent
when the photon mean free path λγ is larger than the Hubble length lH = H−1,
and opaque when λγ < lH . The photon mean free path is determined mainly by
the scattering of photons by free electrons, so λγ = 1/(σTne), where ne = xn∗

e is
the number density of free electrons, n∗

e is the total number density of electrons,
and x is the ionisation fraction. The cross section for photon-electron scattering
is independent of energy for Eγ ≪ me and is then called the Thomson cross sec-
tion, σT = 8π

3 (α/me)
2, where α is the fine-structure constant. In recombination x
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Figure 7: The CMB frequency spectrum as measured by the FIRAS instrument on the
COBE satellite [5]. This first spectrum from FIRAS was based on just 9 minutes of mea-
surements. The CMB temperature estimated from it was T = 2.735 ± 0.060 K. The final
result from FIRAS is T = 2.725 ± 0.002 K (95% confidence interval) [6]. Using data from
other experiments as well, the best current value is T0 = 2.72548± 0.00057 K [7].

falls from 1 to 10−4. Show that the universe is opaque before recombination and
transparent after recombination. (Assume recombination takes place instantly at
z = 1300. You can assume a matter-dominated universe—see below for parameter
values.) The interstellar matter gets later reionised (to x ∼ 1) by the light from the
first stars. What is the earliest redshift when this can happen without making the
universe opaque again? (You can assume that most (∼ all) matter has remained
interstellar.) Calculate for Ωm0 = 1.0 and Ωm0 = 0.3 (note that Ωm includes non-
baryonic matter). Use ΩΛ = 0, h = 0.7 and η = 6× 10−10.

The photons in the cosmic background radiation have thus travelled almost with-
out scattering through space all the way since we had T = Tdec ∼ 1090T0.

12 When
we look at this cosmic background radiation we thus see the universe (its faraway
parts near our horizon) as it was at that early time. Because of the redshift, these
photons which were then largely in the visible part of the spectrum, have now be-
come microwave photons, so this radiation is now the CMB. It retains the thermal
equilibrium distribution, although it has not been in thermal equilibrium since last
scattering. This was confirmed to high accuracy by the FIRAS (Far InfraRed Abso-
lute Spectrophotometer) instrument on the COBE (Cosmic Background Explorer)
satellite in 1989. John Mather received the 2006 Physics Nobel Prize for this mea-
surement of the CMB frequency (photon energy) spectrum, see figure 7.13

12The probability for a photon to have one or more scatterings between decoupling and today is
about 10% – in the second part of the course, we’ll discuss how we know this.

13He shared the prize with George Smoot, who got it for the discovery of the CMB anisotropy
with the DMR instrument on the same satellite. We will discuss the CMB anisotropy in the second
part of the course.
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We shall now, for a while, stop the detailed discussion of recombination and
photon decoupling. The universe is about 380 000 years old at decoupling. Next,
gravitationally bound structures start to form as overdense regions evolve and col-
lapse under gravity. We will discuss structure formation in the second part of the
course, before that let us discuss big bang nucleosynthesis and dark matter.

4.12 The Dark Ages

How would the universe after recombination appear to an observer with human
eyes? At first we would see a uniform glow, since the wavelengths of many of the
CMB photons are in the visible range, though the peak is in the infrared. (It would
also feel rather hot, 3000 K). As time goes on, this glow gets dimmer and dimmer
as the photons redshift towards the infrared, and after a few million years it gets
completely dark, as photons even deep into the tail of the Planck distribution are
redshifted into the infrared. There are no stars yet. This era is called the Dark
Ages of the universe. It lasts dozens of millions of years, during which the universe
becomes colder. In the dark, however, masses are gathering together. And then,
one by one, the first stars light up. It seems that the star formation rate peaked
between redshifts z = 1 and z = 2. Thus the universe at a few billion years was
brighter than it is today, since the brightest stars are short-lived, and the galaxies
were closer to each other back then.

4.13 The radiation and neutrino backgrounds

While the starlight is more visible to the naked human eye than the CMB, its energy
density and number density in the universe is much smaller. Thus the photon density
is essentially given by the CMB. The number density of CMB photons today is

nγ0 =
2ζ(3)

π2
T 3
0 = 410.7 photons/cm3 . (4.57)

This corresponds to the mean value of the measured temperature 2.72548±0.00057K.
The 68% range is between 410.46 and 410.98 photons/cm3. The photon energy den-
sity is

ργ0 =
π2

15
T 4
0 = 4.645× 10−31 kg/m3 , (4.58)

where this number, again, corresponds to the mean value, and the 68% range is from
4.6410 to 4.6488 ×10−31 kg/m3. The critical density today is

ρc0 =
3H2

0

8πGN
= h2 · 1.87834× 10−26 kg/m3 . (4.59)

Recall that the proton mass is 10−27 kg. The photon density parameter is

Ωγ0 ≡
ργ0
ρc0

= 2.47× 10−5h−2 . (4.60)

While relativistic, neutrinos contribute another radiation component, with the
energy density

ρν =
7Nν

8

π2

15
T 4
ν . (4.61)
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After e+e− annihilation this gives (recalling the relation (4.44) between the photon
and neutrino temperature)

ρν =
7Nν

8

(
4

11

) 4
3

ργ , (4.62)

where Nν is the number of neutrino species.
When the number of (light) neutrino species was not yet known from colliders,

cosmology was used to constrain it. Big bang nucleosynthesis is sensitive to the
expansion rate in the early universe, and that depends on the energy density. Ob-
servations of CMB and large-scale structure require Nν = 2.99± 0.17 [2] (this limit
is somewhat dependent on the precise assumptions about the cosmological model).
Any new particle species that would be relativistic around big bang nucleosynthesis
(T ∼ 50 keV – 1 MeV) and would thus contribute to the expansion rate through
its energy density, but which would not interact directly with nuclei and electrons,
would have the same effect. The presence of such unknown particles at big bang
nucleosynthesis is thus rather constrained.

If we take (4.62) to define Nν , but then take into account the extra contribution
to ρν from energy leakage during e+e−-annihilation (and some other small effects),
we get (as a result of years of hard work by many theorists) [8]

Nν = 3.043 . (4.63)

(This does not mean that there are 3.043 neutrino species, but that the total energy
density in neutrinos is 3.043 times as much as the energy density one neutrino species
would contribute had it decoupled completely before e+e− annihilation.)

If neutrinos were still relativistic today, the neutrino density parameter would
be

Ων0 =
7Nν

22

(
4

11

) 1
3

Ωγ0 = 1.71× 10−5h−2 , (4.64)

so the total radiation density parameter would be

Ωr0 = Ωγ0 +Ων0 = 4.18× 10−5h−2 ∼ 10−4 . (4.65)

We thus confirm the claim in chapter 3 that the radiation component can be ignored
in the Friedmann equation, except in the early universe. The combination Ωih

2 is
denoted by ωi, so we have

ωγ = 2.47× 10−5 (4.66)

ων = 1.71× 10−5 (4.67)

ωr = ωγ + ων = 4.18× 10−5 . (4.68)

As noted earlier, neutrinos have masses in range ∼ 10 . . . 100 meV, and are non-
relativistic today. Therefore they count as matter, not radiation, so the above result
for the neutrino energy density does not apply. However, they were still relativistic,
and so counted as radiation, at the time of recombination and matter-radiation
equality. While the neutrinos are relativistic, the neutrino energy density is

ρν = Ων0ρc0a
−4 (4.69)
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using Ων0 from (4.64), even though Ων0 does not give the present density of neutrinos.
Today, even though the photon and neutrino backgrounds do not dominate the

energy density of the universe, they do dominate the entropy density.

Exercise: Matter–radiation equality. The present density of matter is
ρm0 = Ωm0ρc and the present density of radiation is ρr0 = ργ0 + ρν0 (we assume we
can neglect neutrino masses). What was the age of the universe teq when ρm = ρr?
(Assume spatial flatness; note that in these early times—but not today—you can
ignore vacuum energy term in the Friedmann equation.) Give numerical value (in
years) for the cases Ωm0 = 0.1, 0.3, and 1.0, and H0 = 70 km/s/Mpc. What was
the temperature at that time, Teq?
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