COSMOLOGY I

Homework 5

Due on October 7 by 14.00.

1. Matter-radiation equality. The present energy density of matter is $\rho_{m0} = \Omega_{m0}\rho_{c0}$ and the present energy density of radiation is $\rho_{r0} = \rho_{\gamma0} + \rho_{\nu0}$, where $\rho_{\gamma0} = AT_0^4$ is the contribution of the microwave background ($T_0 = 2.725$ K) and $\rho_{\nu0} = (21/8)AT_{\nu0}^4$ is the contribution of the neutrino background (we assume neutrinos are massless). Here $A = \pi^2/15$ and $T_{\nu0} = (4/11)^{1/3}T_0$.

a) What was the age of the universe $t_{\rm eq}$ when $\rho_m = \rho_r$? (Note that at these early times –but not today– you can ignore the curvature and vacuum terms in the Friedmann equation; you don't need to make other assumptions about the values of Ω_0 or $\Omega_{\Lambda 0}$, since the answer does not depend on them.) Give the numerical value (in years) for the cases $\Omega_{m0} = 0.1$, 0.3 and 1.0, assuming $H_0 = 70 \text{ km/s/Mpc}$.

b) What is the temperature $T_{eq} \equiv T(t_{eq})$? Give the numerical value (in K) in the three different cases.

2. Thermal distributions in the relativistic limit. Derive the following equations in the limit $T \gg m, T \gg |\mu|$.

$$n = \begin{cases} \frac{3}{4\pi^2} \zeta(3) g T^3 & \text{fermions} \\ \frac{1}{\pi^2} \zeta(3) g T^3 & \text{bosons} \end{cases}$$
$$\rho = \begin{cases} \frac{7}{8} \frac{\pi^2}{30} g T^4 & \text{fermions} \\ \frac{\pi^2}{30} g T^4 & \text{bosons} \end{cases}$$
$$p = \frac{1}{3} \rho$$
$$\langle E \rangle = \begin{cases} \frac{7\pi^4}{180\zeta(3)} T & \text{fermions} \\ \frac{\pi^4}{30\zeta(3)} T & \text{bosons} \end{cases}$$

3. Thermal distributions in the non-relativistic limit. Derive the following equations for non-relativistic Maxwell-Boltzmann statistics $(T \ll m \text{ and } T \ll |m - \mu|)$.

$$n = g\left(\frac{mT}{2\pi}\right)^{3/2} e^{-\frac{m-\mu}{T}}$$

$$\rho = n\left(m + \frac{3T}{2}\right)$$

$$p = nT$$

$$\langle E \rangle = m + \frac{3T}{2}$$

$$n - \bar{n} = 2g\left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} e^{-\frac{m}{T}} \sinh \frac{\mu}{T}$$

4. Transparency of the universe. We say that the universe is transparent when the photon mean free path λ_{γ} is larger than the Hubble length $l_H = H^{-1}$, and opaque when $\lambda_{\gamma} < l_H$. The photon mean free path is determined mainly by the scattering of photons by free electrons, so that $\lambda_{\gamma} = 1/(\sigma_T n_e)$, where $n_e = xn_e^*$ is the number density of free electrons, n_e^* is the total number density of electrons, and x is the ionization fraction. The cross section for photonelectron scattering is independent of energy for $E_{\gamma} \ll m_e$ and is then called the Thomson cross section, $\sigma_T = \frac{8\pi}{3} (\alpha/m_e)^2$, where α is the fine-structure constant. In recombination x falls from 1 to 10^{-4} . Assume instant recombination at 1 + z = 1300.

a) Show that the universe is opaque before recombination and transparent after recombination. (You can assume a matter-dominated universe; see below for parameter values.)

b) Interstellar baryonic matter gets later reionized (to $x \sim 1$) by light from the first stars. What is the earliest redshift when this can happen without making the universe opaque again? (You can assume that most (\sim all) matter has remained interstellar.)

Calculate for $\Omega_{m0} = 1.0$ and $\Omega_{m0} = 0.3$ (note that Ω_m includes nonbaryonic matter). Use $\Omega_{\Lambda} = 0, h = 0.7$ and $\eta = 6 \times 10^{-10}$.