COSMOLOGY I

Homework 4

Due on Monday September 30 by 14.00.

- 1. Age of the positively curved universe. Find the age-redshift relation for a positively curved universe (K > 0) with only matter (no radiation or vacuum energy). Calculate t_0 if $H_0 = 70 \text{ km/s/Mpc}$ and a) $\Omega_0 = 1.1$, b) $\Omega_0 = 2$.
- 2. The Λ CDM model. Suppose that we have $H_0 = 70 \text{ km/s/Mpc}$, $\Omega_{m0} = 0.3$ and $\Omega_{\Lambda 0} = 0.7$, so that $\Omega = \Omega_m + \Omega_{\Lambda} = 1$ and the universe is spatially flat.
 - a) Find the age of the universe today and at redshift z = 1090.
 - b) When is the matter density equal to the vacuum energy density? (Give both t and z.)

c) The scale factor has an inflection point, where $\ddot{a} = 0$, at which the expansion starts to accelerate. When does this happen, in t and in z?

(Hint: Use the substitution $x^{3/2} = b \sinh \phi$ for the integral $\int \frac{x^{1/2} dx}{\sqrt{b^2 + x^3}}$.)

3. Dynamical dark energy. Find H(z) for a non-flat ($\Omega_K \neq 0$) universe, which contains matter, radiation, and dark energy (that is not vacuum energy), where the dark energy equation of state is

$$w(a) = w_0 + w_a(1-a)$$
,

where w_0 and w_a are constants. (This is not a theoretically motivated dark energy model: it is just a commonly used phenomenological parametrization, which may be a reasonable approximation over an observationally relevant redshift range).